
systems

Article

A System Dynamics Modeling Support System Based
on Computational Intelligence

Hassan Abdelbari * and Kamran Shafi

School of Engineering and Information Technology, University of New South Wales at Australian Defense Force
Academy, Northcott Drive, Campbell, Canberra, ACT 2600, Australia; kamran.shafi@adfa.edu.au
* Correspondence: hassan.abdelbary@gmail.com

Received: 12 August 2019; Accepted: 4 September 2019; Published: 25 September 2019
����������
�������

Abstract: System dynamics (SD) is a complex systems modeling and simulation approach with wide
ranging applications in various science and engineering disciplines. While subject matter experts lead
most of the model building, recent advances have attempted to bring system dynamics closer to fast
growing fields such as data sciences. This may prove promising for the development of novel support
methods that augment human cognition and improve efficiencies in the model building process.
A few different directions have been explored recently to support individual modeling stages, such as
the generation of model structure, model calibration and policy optimization. However, an integrated
approach that supports across the board modeling process is still missing. In this paper, a prototype
integrated modeling support system is presented for the purpose of supporting the modelers at
each stage of the process. The proposed support system facilitates data-driven inferring of causal
loop diagrams (CLDs), stock-flow diagrams (SFDs), model equations and the estimation of model
parameters using computational intelligence (CI) techniques. The ultimate goal of the proposed
system is to support the construction of complex models, where the human power is not enough.
With this goal in mind, we demonstrate the working and utility of the proposed support system.
We have used two well-known synthetic reality case studies with small models from the system
dynamics literature, in order to verify the support system performance. The experimental results
showed the effectiveness of the proposed support system to infer close model structures to target
models directly from system time-series observations. Future work will focus on improving the
support system so that it can generate complex models on a large scale.

Keywords: modeling support system; system dynamics modeling; computational intelligence;
genetic programming ensemble; simulated annealing

1. Introduction

System dynamics (SD) is a modeling and simulation approach with wide ranging applications
in various disciplines such as management [1], constructions [2] and agriculture [3]. The need
to improve efficiencies in the model building process and to deal with the explosion of data
have already been acknowledged in the SD literature [4–6]. Several opportunities exist for recent
advances in computational intelligence (CI) and machine learning techniques to be leveraged to
support and improve the model building process. Although such techniques do not replace human
cognition, they do alleviate some of the tedious tasks, such as data analysis, knowledge extraction,
model calibration and model validation. This may lead to significant improvements in saving resources,
dealing with large amounts of data and exploring large model spaces. The use of data driven
approaches, specifically the CI methods, in SD modeling is not entirely new. In recent years, several
studies have reported on the application of CI methods to SD modeling. Salient examples of such works
include: the use of fuzzy logic (FL) for knowledge acquisition and representation [7] and identification

Systems 2019, 7, 47; doi:10.3390/systems7040047 www.mdpi.com/journal/systems

http://www.mdpi.com/journal/systems
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/2079-8954/7/4/47?type=check_update&version=1
http://dx.doi.org/10.3390/systems7040047
http://www.mdpi.com/journal/systems

Systems 2019, 7, 47 2 of 19

of key system variables [8]; the application of echo state networks (ESNs) [9] and evolutionary echo
state networks [10,11] for generating causal loop diagrams (CLDs); the use of a hybrid approach
combining recurrent neural networks (RNNs) and genetic algorithms (GA) for generating stock and
flow diagrams (SFDs) as well as for parameter estimation [12]; the application of genetic programming
(GP) [13–15] and a hybrid of feed forward neural networks (FFNNs) and GA [16] for generating
model equations and parameter estimation; the application of GA [17] , fuzzy multiple objective
programming (FMOP) [18] and bootstrapping methods [19] for parameter estimation; the application
of particle swarm optimization (PSO) [20], grammatical evolution (GE) [21], simulated annealing
(SA) [22], decision trees [23] and differential games [24] for policy optimization; and the use of
GA [25,26] and FL [27] for model validation and testing. A clear trend that can be observed from the
above works is that the application of CI methods has been limited to specific stages of the model
building process, with greater attention paid to model parameter estimation and policy optimization
stages. Furthermore, the application of these methods to generate conceptual and formal models (often
represented by CLDs and SDFs, respectively) or the underlying mathematical equations is rare.

This paper presents our progress towards developing an integrated CI-based, SD modeling
support system to facilitate modelers through the model building stages. In particular, the learning
engine of the support system builds upon several CI techniques, namely Cartesian genetic
programming (CGP), GP ensemble learning, standard SA and fixed rule-based heuristics, to support the
building of system CLDs, SFDs, equations and calibration of the model. A prototype of the proposed
support system is provided as an easy to use executable tool. The tool provides a graphical user
interface to feed data into the learning engine and to visually present the automatically inferred models.
The minimum required knowledge that needs to be present before starting the automated modeling
effort includes: the list of key variables, identification of stock variables, time series data capturing
system observations for the stock variables, and the parameter settings of different CI methods.

Genetic programming (GP) is a population-based evolutionary algorithm, representing individual
solutions as programs instead of a string of bits, as in a genetic algorithm (GA) [28], in which the
evolving structures are represented as hierarchical trees. GP uses notions of functional (F) and
terminal (T) sets to represent and evolve such structures, where all internal nodes are elements of
F and all leaf nodes are elements of T. The generation of the initial population in a typical GP
algorithm could be created in three different ways according to Koza [28]: full method, grow method
and ramped half-and-half. Similar to other evolutionary algorithms, GP evolves the structures
using selection, crossover, and mutation operators. The selection mechanisms most commonly used
include tournament and roulette wheel selection. In crossover, random subtrees are selected from
the parents and exchanged to generate the offspring. During mutation, each node is selected with
a certain probability and the associated subtree is either replaced with a randomly generated one
(subtree mutation) or the node type is simply changed (point mutation). Therefore, each solution has a
fitness that measures the output error between target outputs and generated outputs. Standard GP
suffers from several issues, the major one being bloating [29,30]. Bloating refers to the production of
solutions with large amounts of unnecessary code that increases over the evolutionary process without
providing any improvement [31]. Cartesian genetic programming (CGP) is a special, flexible and
highly efficient type of GP algorithm that encodes a graphic representation of a computer program
and uses only point mutation operator without applying the crossover operator [32]. It has several
advantages over standard GP: it finds good solutions after only a few evaluations; it decodes solutions
efficiently; it does not bloat; and it is easy to implement. Simulated annealing (SA) is a global
optimization algorithm inspired from the cooling process of a material. During temperature reduction,
the molecules of a material slow down and align to a crystallized form that represents the lowest
energy state of the system [33]. Standard SA evolves one solution over time, unlike evolutionary
algorithms that are population-based. The algorithm starts with an initial random solution, which is
followed by a newly generated solution based on the initial one. The next step is the acceptance or
rejection of the newly created solution. If the newly created solution shows an improvement in the

Systems 2019, 7, 47 3 of 19

objective function, it is accepted. If it shows an increase in the objective function, it is either rejected or
accepted, with a probability based on the difference between objective values for current and newly
created solutions. SA has the following advantages: able to deal with arbitrary cost functions, able
to skip from local minimas, simple to implement, and can be applied to continuous and discrete
problem domains.

We have demonstrated the ability of the modeling support system to generate useful models
and equations by conducting experiments with two synthetic reality case studies taken from the
SD literature. Our goal is to use CI methods in the SD field to support the modeling process with
complex and large scale models. In this paper, however, we report on our progress using small models
involving two and three stocks. In our opinion, the work presented here could be extended to improve
the proposed support system and applied to complex models with a lot of data. To the best of our
knowledge, this proposal is one of the first attempts to provide an SD modeling support system.

This paper is organized as follows: an overview of the proposed support system is followed
by a description of how the different components work. The next section presents the experimental
setup and describes the case studies used to demonstrate the performance of the support system.
Lastly, we discuss the experimental results and limitations, draw conclusions and summarize future
directions for this work.

2. Overview of SD Modeling Support System

Figure 1 shows the design of the proposed modeling support system using a conceptual block
diagram. The support system consists of two main components: a learning engine, consisting of CI
algorithms as the back-end of the system, and a graphical user interface component representing
the front-end of the system. The graphical user interface component allows the modeler to interact
with the tool, load the required input data, validate the format and correctness of the information
provided and graphically present the generated models of the learning engine. The minimum
information required by the system to generate the desired models includes the list of key variables,
time series data capturing system observations for the stock variables, and the parameter settings
of different CI methods. The learning engine is the core part of the support system and implements
several CI algorithms to generate probable system CLDs, SFDs, model equations and parameters.
The support system facilitates model building iteratively. In other words, the modeler can inspect
the generated models and add, subtract or modify the input loaded into the data repository to see
the effects of any changes. A user guide for the support system executable tool is provided in the
supplementary material.

The support system can be invoked in two different modes: to generate the underlying equations
and their parameters; or to generate CLDs, SFDs, equations and parameter estimation, as shown
in Figure 2.

2.1. Inferring System Equations and Parameter Estimation

A hybrid genetic programming (GP) and simulated annealing (SA) ensemble method is applied
to generate the stock variable differential equations and estimate their parameters, as shown in
Figure 2. Given an expert-defined CLD, a GP ensemble is constructed and the variables’ search space
is decomposed to allow the inferring of each stock variable’s differential equation independently.
Each ensemble member consists of coupled Cartesian genetic programming (CGP) and SA algorithms
to generate the equation structure and estimate its parameters, respectively. The tree structure for each
GP ensemble member is created, based on the CLD. Four constraints are applied when creating any
new individual, either at the initial population creation step, or after applying each mating operator,
to ensure the feasibility of the evolved expressions: (1) the tree depth is restricted to not exceed the
size of the terminal set by introducing a parameter, called the depth controller Dcontr; (2) only the tree
expression containing all the terms in the terminal set is accepted; (3) the duplication of symbols in
the terminal set is disallowed; and (4) redundant expressions, such as (X− X), (X/X), and (X ∗ 1), are

Systems 2019, 7, 47 4 of 19

disallowed. Algorithms 1 and 2, in the supplementary material, show CGP algorithm steps, applied for
equation inferring, and standard SA algorithm steps, applied for parameter estimation, respectively.

Figure 1. The proposed system dynamics modeling support system.

Figure 2. The main components of the support system learning engine.

The equations generated for each ensemble member are combined. Following this, the outputs
arising from simulating the generated equations are compared with the target outputs to calculate the
output error (ε) by applying the complexity invariant distance (CID) measure [34]. Current distance
measures, such as Euclidean distance and mean square errors, are introduced to measure the similarity
between time series with invariance to various combinations of distortions [35], scaling [36], offset [37],
phase [35], occlusions and uncertainty. However, the complexity invariance is still missing and not

Systems 2019, 7, 47 5 of 19

considered in all introduced measures. Time series data generated from complex systems obtain such
complexity factor. Pairs of complex time series data, which could seem very similar, are considered
further apart from each other under current standard distance measures. Complexity invariant distance
measure uses information about complexity differences between two time series as a correction factor
for Euclidean distance. CID is a Euclidean distance measure which when added to a correction factor
measures the shape of the time series as follows:

ε(X, X̂) =
∑M

i=1 CID(Xi, X̂i)

M
, (1)

CID(X, X̂) = ED(X, X̂)× CF(X, X̂), (2)

ED(X, X̂) = 2

√√√√ L

∑
i=1

(xi, x̂i)2, (3)

CF(X, X̂) =
max(CE(X), CE(X̂))

min(CE(X), CE(X̂))
, (4)

CE(X) = 2

√√√√L−1

∑
i=1

(xi, xi+1)2, (5)

where X is the target time series observations for the output variables, X̂ the generated behavior from
the inferred model’s output variables, M is the number of output variables, L is the size of time series,
ED is Euclidean distance, CF is the complexity correction factor and CE is the complexity estimate of a
time series.

2.2. Inferring CLDs, SFDs, System Equations and Parameter Estimation

An integration between simulated annealing (SA) algorithm and the GP ensemble discussed
in the previous subsection is applied to generate CLD, system equations and estimate the model
parameters simultaneously. We represent the CLD using an adjacency matrix data structure [38].
During initialization, a CLD is created randomly from the set of variables provided by the modeler.
We start with an empty adjacency matrix and for each ith row and jth column, a random link with
probability ρ is created to describe a causal link from the ith variable to the jth variable, where ρ is a
predefined CLD sparsity value. Before creating any link, we check the validity to create one between
the two nominated variables based on the rules that describe how SFDs are created [39]. The quality of
the CLD is determined by transforming the CLD into a simulation model by running the GP ensemble
and calculating the CLD output error. A new CLD is then generated from the seed CLD using the SA
variation operators by flipping each causal link between ith and jth variables with certain probability
Pf lip. Algorithm 3, in the supplementary material, shows the SA+GP ensemble integrated algorithm
steps. Given the best generated CLD and equations with their estimated parameters, the SFD is
generated by identifying the links among the variables and identifying the variable types to be either
flows, auxiliaries or parameters, since we already know the stock variables. The variables that affect the
stock variables directly are considered as flow variables. Based on the causal link polarity presented in
the inferred CLD, this variable will be identified as either inflow for positive causal link or outflow for
negative causal link. Finally, the remaining variables are considered as auxiliaries and the parameters
estimated with the equations are included in the SFD.

3. Experimental Setup

This section provides the details of the experimental setup, which we used to validate the
performance of the modeling support system in inferred SD models. Figure 3 shows the flow of the
experimental setup starting with the inputs, setups and expected outputs from the experiments.

Systems 2019, 7, 47 6 of 19

Experimental Setup inputs include the synthetic reality case studies; CI algorithm controlling
parameters; and general assumptions regarding the setups. Two experimental setups are introduced,
Setup 1 and Setup 2. We have assumed that the number of variables provided by the modeler was the
complete set that efficiently described the system’s behavior. Furthermore, we assumed that the types
of stock variables are known and that time series observations will be available for all of them.

Figure 3. Experimental setup.

3.1. Setups

3.1.1. Setup 1

The goal of the first set of experiments was to establish a baseline whether the genetic
programming (GP) ensemble can generate similar equations with correctly estimated parameters
to the target equations given the target CLD. In this setup, we ran the experiments to generate the
equations with and without the depth controller parameter Dcontr. This was done to determine whether
application of the depth controller was helpful for generating similar equations.

The GP algorithm for each ensemble member performed 25 independent runs with different
random seeds. We recorded the best inferred solution at each generation, based on the minimum
fitness value. The best inferred solution was recorded over all generations and selected for the run.
Finally, the solution with the minimum fitness value was selected from these 25 solutions to be the
best of the best, over all runs. This process was run M times, where M is the case stock variables
number used to create the ensemble members. This provided us with a total of 25 × M runs. These
runs were conducted twice, once by applying the depth controller parameter Dcontr and then without
applying it. For Case 1 (two stock variables) and Case 2 (three stock variables), the total number of
runs is 100 (2 × 2 × 25) and 150 (2 × 3 × 25), respectively.

3.1.2. Setup 2

In this setup, we ran the experiments to simultaneously generate both the CLD and the equations
with estimated parameters. Using the best inferred models, we were able to generate the SFD. The aim

Systems 2019, 7, 47 7 of 19

of this setup was to test the ability of the method under development to generate models similar to
those of the system’s target. Based on the results from Setup 1, the experiments were run with or
without depth controller.

The simulated annealing (SA) algorithm, integrated with the GP ensemble and depth controller
setting, made 10 independent runs with random seeds. In order to select the best overall, the best
inferred solution was recorded at each SA iteration, based on the minimum fitness value. Then, the best
inferred solution of all iterations was selected to be the best one for this run. Finally, the solution with
the minimum fitness value was selected to be the best of the best, over all runs.

3.2. Case Studies

Two synthetic reality case studies were used for validation in each of the experimental settings.
These cases were selected to provide variety in the number of stocks, as well as complexity in the
CLDs and SFDs, equations, and the behavioral patterns. The target outputs for the two cases were
generated through building and simulating the standard SFDs. For each case, we implemented our
own simulation model by solving the model equations using the Euler method. Python source code
for the implemented simulation models of the two cases are provided in the supplementary material.
The delta time (DT) values used for simulating Case 1 and Case 2 are 0.0625 and 0.58, respectively.
These same values are used to simulate the inferred equations by applying GP ensemble method.

Case 1 is a simple epidemic model that shows how healthy people are converted to sick people [40].
The model has two stocks: healthy people (HP), and sick people (SP); two flows: catching illness
(CI) and recovering rate (RR); one auxiliary variable: probability of contact with sick people (PCSP);
and three exogenous inputs (model parameters): population interactions (PI), probability of catching
illness (PCI) and duration of illness (DI), as shown in the CLD (Figure 4a) and SFD (Figure 4c).
The simulated stocks show S-shape growth behaviors (Figure 4e).

Case 2 is a more complex epidemic model that shows how a population goes through different
states, from susceptible to infected and finally to recovery [41]. The model has three stocks: susceptible
population (SP), infected population (IP), and recovered population (RP); two flows: infection
rate (IR) and recovery rate (RR); and four exogenous inputs (model parameters): total number of
population (N), infectivity (i), contacts (c) and duration (d), as shown in the CLD (Figure 4b) and
SFD (Figure 4d). The simulated stocks show different behaviors that include S-shape growth behavior
and S-shape growth with decline behavior (Figure 4f).

3.3. CI Algorithm Parameters

For the CGP algorithm used by each GP ensemble member, defining the functional and terminal
sets and the parameter ranges are case-dependent given our pre-defined assumptions of the target
models. The functional set {+,−, ∗, %} is used for both Case 1 and Case 2. The parameter ranges,
identified for the SA algorithm, applied to estimate the parameters of the generated equations are
[1, 6] and [0, 2] for Case 1 and Case 2, respectively. For each ensemble member, the terminal sets are
defined for each case given the CLD. The remaining parameters for GP algorithm are defined given
the recommendations in [28], where the population size Psize is 50, and the maximum number of
generations G is 100. The grow method is applied to generate the initial population with varying depth
D ranging from 1 to 3, and the usage of the depth controller Dcontr. Tournament selection mechanism
is applied with size Toursize equals to 3, and a single point mutation is used with probability Pm of 0.05.

Systems 2019, 7, 47 8 of 19

Healthy People
(HP)

Sick People
(SP)

Recovery Rate
(RR)

with Sick People (PCSP)

(a) Case 1 target CLD.

Susceptible
Population

(SP)

Infected
Population

Recovered
Population

Recovered
Rate
(RR)

Total Number
of Population (N)

(b) Case 2 target CLD.

Healthy
People (HP)

Sick People
(SP)Catching

Illness (CI)

Recovery Rate
(RR)

Probability of Contact
with Sick People

(PCSP)

Population
Interaction (PI)

Probability of
Catching Illness

(PCI)

Duration of
Illness (DI)

(c) Case 1 target SFD.

Susceptible
Population (SP)

Infected
Population (IP)

Recovered
Population (RP)Infection Rate

(IR)
Recovered Rate

(RR)

Total Number of
Population (N)

Infectivity
(i)

Contacts
(c)

Duration
(d)

(d) Case 2 target SFD.

Time
0 50 100

0

50

100
HP
SP

(e) Case 1 target behavior.
Time

0 20 40
0

5000

10000
SP
IP
RP

(f) Case 2 target behavior.

Figure 4. Case studies system dynamics models and behaviors.

For SA algorithms applied to estimate inferred equation parameters and to generate the CLD,
we used an initial temperature T0 of 10,000 and cooling constant α of 0.95. For the SA algorithm
that estimates the inferred equation parameters, the perturbation constant pconst is equal to 2.5 and
the maximum number of iterations and sub iterations is equal to 10 and 3, respectively. For the
SA algorithm that is applied to learn the CLD in combination with GP ensemble, the links flipping
probability Pf lip is equal to 0.05; the maximum number of iterations and sub iterations is equal to 100
and 15 for Case 1 and Case 2, respectively; and the CLD’s sparsity ρ is equal to 0.0981. This sparsity
value is estimated by calculating the average sparsity, which is the total number of links divided by all
possible links, for target CLDs for both cases. The parameters used for the SA algorithms are based on
values recommended in the academic literature [33].

Systems 2019, 7, 47 9 of 19

4. Results and Analysis

4.1. Setup 1

Setup 1 results for Case 1 and Case 2 are shown in Tables 1 and 2, respectively. Each equation
set shows the target equations, followed by equations generated by the GP ensemble in the presence
and absence of the depth controller parameter Dcontr. The observation was made that each stock
variable’s generated equation contained the correct variables. This was because the knowledge of
causalities among the variables was known from the predefined CLD. This knowledge defines the
terminal set for each GP ensemble member and determines how the generated equations will look.
The comparison between target and generated behaviors from Case 1 inferred equations (Table 1)
and Case 2 inferred equations (Table 2), with and without applying the depth controller, is shown in
Figures 5 and 6, respectively.

4.1.1. Case 1

For Case 1 with and without the depth controller, an obvious difference between the target
equations and generated ones resides in the values of model parameters in all generated equations.
Additional parameter values were added to the SP stock variable’s generated equations in the presence
and absence of Dcontr. In addition, additional parameter values were added to the HP stock variable’s
generated equation only in the absence of Dcontr. For the generated equation structures, the GP
ensemble is able to generate equations for both HP and SP stock variables similar to the target
equations in the presence and absence of the depth controller parameter. However, the denominator
term (HP + SP) is missing in the generated equations, as shown in Table 1. Since this term is the
sum of both populations (total number of population), it could be considered a normalization term.
The inferred equations with depth controller generate behaviors more similar to those of the targets
than in the absence of depth controller, as shown in Figure 5.

Table 1. Comparison of Case 1 target system equations with inferred equations using genetic
programming ensemble applied with and without depth controller parameter Dcont—Setup 1.

Target Equations Inferred with Dcont = 1 Inferred with Dcont = 0
dHP

dt
= (2× SP)− (5×HP×SP

HP+SP
) dHP

dt
= (1.99× SP)− (0.05× HP× SP) dHP

dt = (1.95× SP)− (0.05× HP× SP− 21.74)

dSP
dt

= (5×HP×SP
HP+SP

)− (2× SP) dSP
dt

= (0.04× HP× SP + 1.58)− (1.77× SP) dSP
dt

= (0.05× HP× SP + 0.41)− (1.9× 8SP)

A possible explanation for the absence of this term from the generated equations using depth
controller is that the depth controller restricts the GP generated tree to not exceed the terminal set
size. This encourages the GP to converge toward solutions with small and balanced trees. This is
illustrated by the term (0.05× HP× SP) in the HP generated equation where its tree size is one and
the first multiplication operator is the tree root. In the SP generated equation, the tree size is two and
the second multiplication operator is the tree root, as shown by (0.04× HP× SP + 1.58) term. For the
generated equations, without the depth controller, the absence of this term causes the generation
of large and more unbalanced GP trees, as shown by the term (0.05× HP× SP− 21.74) in the HP
generated equation. Its tree size is three and the first multiplication operator is the tree root, similarly
for the term (0.05× HP× SP× 0.41) whose tree size is three and the plus operator is the tree root.
In terms of model parameters and equation structures, there is no obvious advantage to apply the
depth controller over not applying it. However, we consider it best to apply the depth controller to the
generated equations because the resulting behavior is closer to the target behavior.

Systems 2019, 7, 47 10 of 19

0 10 20 30 40 50 60 70 80
Time

0

20

40

60

80

100

120

140

160
Po

pu
la
tio

n
Target HP

GP-D=1 HP

GP-D=0 HP

Target SP

GP-D=1 SP

GP-D=0 SP

Figure 5. Illustration of Case 1 target behaviors, healthy people (HP) and sick people (SP), and the
generated behaviors from the corresponding inferred models for Setup 1, with and without applying
genetic programming depth controller.

4.1.2. Case 2

For Case 2, the GP ensemble is able to generate the exact target equations, including the correct
values for model parameters, with and without the depth controller, as shown in Equation (2).
A possible explanation for the ability of GP to generate these exact similar structures is that the
target equation has maximum depth of two with smaller algebraic operators compared to the operators
in Case 1’s equation. GP, with and without the depth controller, results in small and balanced trees
similar to the target equations. The generated behaviors from inferred equations exactly match the
target behaviors, as shown in Figure 6. This is expected since the inferred equations exactly match the
structure of the target equations.

0 10 20 30 40 50
Time

0

2000

4000

6000

8000

10000

Po
pu

la
tio

n

Target SP

GP-D=1 SP

GP-D=0 SP

Target IP

GP-D=1 IP

GP-D=0 IP

Target RP

GP-D=1 RP

GP-D=0 RP

Figure 6. Illustration of Case 2 target outputs, susceptible population (SP), infected population (IP)
and recovery population (RP), and the two generated outputs from the corresponding inferred models
for Setup 1, with and without applying genetic programming depth controller.

Table 2. Comparison of Case 2 target system equations with inferred equations using genetic
programming ensemble applied with and without depth controller parameter Dcont—Setup 1.

Target Equations Inferred with Dcont = 1 Inferred with Dcont = 0
dSP
dt

= − 1.5×SP×IP
N

dSP
dt

= − 1.5×SP×IP
N

dSP
dt

= − 1.5×SP×IP
N

dIP
dt

= 1.5×SP×IP
N

− 0.5× IP dIP
dt

= 1.501×SP×IP
N

− 0.5× IP dIP
dt

= 1.5×SP×IP
N

− 0.501× IP

dRP
dt

= 0.5× IP dRP
dt

= 0.5× IP dRP
dt

= 0.5× IP

Systems 2019, 7, 47 11 of 19

4.2. Setup 2

For each case in Setup 2, we compared the best generated CLD, SFD and equation structures with
the target structures. The comparison between target and generated behaviors from Case 1 inferred
equations (Table 3), with and without applying the depth controller, is shown in Figure 7. The best
generated CLD for Case 1 was compared to the target structure by illustrating the correctly predicted,
additional and missing links, as shown in Figure 8. The best generated SFD for Case 1 was compared
to target one, as shown in Figure 9. The comparison between target and generated behaviors from Case
2 inferred equations (Table 4), with and without applying the depth controller, is shown in Figure 10.
The best generated CLD for Case 2 was compared to the target structure by illustrating the correctly
predicted, additional and missing links, as shown in Figure 11. The best generated SFD for Case 2 was
compared to target one, as shown in Figure 12. In contrast to Setup 1, in Setup 2, the defined terminal
sets for each GP ensemble member depend upon the evolved CLD links by the SA algorithm. We
generated SFD by applying predefined rules to mark variable types as either stock, flow, auxiliary or
model parameters.

4.2.1. Case 1

An obvious difference between the target equations and generated equations, in Case 1, lies in
the values of the model parameters for the generated equations. Additional parameter value is added
to the second term of the HP stock variable’s generated equation. The inferred CLD has six correct
links (Figure 8b) out of nine, three missing (Figure 8d) and four additional (Figure 8c). It can be seen
from the values of different generated links in the CLD that the SA algorithm is able to predict most
of the correct links. This is because it is a global optimization algorithm. The constructed SFD for
this case (Figure 9b) is quite similar to the target one with some additional links and flow variables.
This is because the SFD is based on the generated CLD and equations. Evolving the CLD by flipping
randomly chosen links to either on or off affects the defined terminal sets for the GP ensemble that also
affects the evaluation of how accurate the CLD is. The accuracy of CLD is the output error between
the behavior generated from inferred equations and the target ones. Given the best generated CLD,
the terminal sets defined for the GP ensemble that generates the HP stock equation will be {SP, HP}
for both equation terms. The terminal sets defined for the GP ensemble that generates the SP stock
equation will be {SP, HP} for first equation term and SP for second equation term. The presence
of HP symbol in the first term of HP stock variable’s generated equation could be explained by the
defined terminal set {SP, HP} for both terms in HP stock generated equation and the restriction for
each GP ensemble member to include all symbols defined in the terminal set. This provide us with
correct symbols in the second term of HP stock variable’s generated equation. Given the correct
defined terminal sets for SP stock variable’s generated equation terms, the generated equation is quite
similar to the target one. However, we made the same observation with Setup 1: in the absence of the
denominator term (HP + SP), for both stocks, HP and SP generated equations. This is the effect of
applying the depth controller to restrict the tree size to the size of the terminal sets. In the absence
of this term, the equation structure still valid since it could be considered as a normalization term.
The generated behaviors from inferred equations exactly match the target. This is despite the addition
of HP symbol in the first term of stock variable HP inferred equation and the minus operator between
the symbols in the second term. This observation was not expected since the inferred equations in
Setup 1 looks more similar to the target equations than the inferred equations in Setup 2.

Systems 2019, 7, 47 12 of 19

Table 3. Comparison of Case 1 target system equations with inferred equations using genetic
programming ensemble applied with depth controller parameter Dcont—Setup 2.

Target Equations Inferred with Dcont = 1
dHP

dt
= (2× SP)− (5×HP×SP

HP+SP
) dHP

dt
= (−0.05× SP× HP)− (HP− SP− 99.968)

dSP
dt

= (5×HP×SP
HP+SP

)− (2× SP) dSP
dt

= −(0.05× HP× SP) + (2.001× SP)

0 10 20 30 40 50 60 70 80
Time

0

20

40

60

80

100

P
eo
pl
e

Target HP

GP-D=1 HP

Target SP

GP-D=1 SP

Figure 7. Illustration of Case 1 target outputs, healthy people (HP) and sick people (SP), and the two
generated outputs from the corresponding inferred models for Setup 2 with genetic programming
depth controller.

(a) (b) (c) (d)

Figure 8. Case 1 inferred CLD by showing the correctly predicted links (b), additional links (c) and
missing links (d) compared to the target CLD (a)—Setup 2.

Systems 2019, 7, 47 13 of 19

(a) Target SFD. (b) Inferred SFD.

Figure 9. Case 1 inferred SFD vs. target one—Setup 2.

4.2.2. Case 2

In Case 2, the differences between the target equations and generated equations reside in the
values of model parameters. A possible explanation for these differences and additional parameter
values is the presence of the additional symbols in these generated equations, specifically in the RP
stock generated equation. The GP algorithm will have more numeric values if there are many symbolic
terms in the tree. This is because the GP tree is constructed in a random manner from the terminal set
and crossover and mutation operators. The inferred CLD has five correct links out of eight (Figure 11b),
three missing (Figure 11d) and four additional (Figure 11c). Similar to Case 1, the SA algorithm is
able to predict most of the correct links, causing the generated equations to be more similar to target
equations. Since generating the SFD is based on the generated CLD and equations, the constructed
SFD for this case (Figure 12b) closely matches the target one with two additional links. Given the
best generated CLD, GP ensemble members that generated all stock variables’ equations were using
{SP, IP, N} as their terminal set. The correctly defined terminal set for the GP ensemble that generates
the SP stock equation enables generation of the same structure as the target equation—similarly for
the correctly defined terminal set for the IP stock generated equation, which also results in the same
structure as the target equation. However, the incorrect defined terminal set with additional symbols
SP and N for the both IP and RP stock generated equations causes the presence of these symbols and
generates different structures than target equations. Even with applying the depth controller to restrict
the tree depth size, the presence of these symbols in the terminal sets forces the GP ensemble members
to reject any tree structure lacking these symbols. The generated behaviors from inferred equations
exactly match the target behaviors. This was not expected since the inferred equations have additional
terms added to IP and RP stock variables’ inferred equations.

4.3. Runtime Analysis

We used Java version 1.8.0_91 to develop the algorithms. The experiments were run on an Intel
Core i7 CPU 3.4 GHz, with 16 GB of RAM and Windows 7 (64 bit) machine (Dell, Canberra, Australia).
The execution time for one run of the GP ensemble for equation learning and parameter estimation
(Setup 1) and SA + GP ensemble for inferring CLD (Setup 2) was recorded for each case, as shown in
Table 5.

For Setup 1, cases 1 and 2 execution times are around 6.2 and 6.9 min, respectively. Cases 1 and 2
have five and six total variables, respectively, and two and three stock variables, respectively. Since the
GP ensemble is constructed based on the number of stock variables, we believe that number of stock

Systems 2019, 7, 47 14 of 19

variables effects the execution time. In addition, the complexity of relationships among variables also
has an effect on the execution time. We think this an acceptable time to learn such models, given the
ability of the support system to navigate through the modeling space by producing a large number
of models. In order to judge if the execution time of the GP ensemble is reliable, the time taken by a
human modeler to come up with these models should be recorded.

Table 4. Comparison of Case 1 target system equations with inferred equations using genetic programming
ensemble applied with depth controller parameter Dcont—Setup 2.

Target Equations Inferred with Dcont = 1
dSP
dt

= − 1.5×SP×IP
N

dSP
dt

= − 1.5×SP×IP
N

dIP
dt

= 1.5×SP×IP
N

− 0.5× IP dIP
dt

= SP×IP
N
− 0.00005× IP× (N − SP)

dRP
dt

= 0.5× IP dRP
dt

= 83.96×IP×SP+N
167.91×SP

0 10 20 30 40 50
Time

0

2000

4000

6000

8000

10000

Po
pu

la
tio

n

Target SP

GP-D=1 SP

Target IP

GP-D=1 IP

Target RP

GP-D=1 RP

Figure 10. Illustration of Case 2 target outputs, susceptible population (SP), infected population (IP)
and recovery population (RP), and the two generated outputs from the corresponding inferred models
for Setup 2 with genetic programming depth controller.

(a) (b) (c) (d)

Figure 11. Case 2 inferred CLD by showing the correctly predicted links (b); additional links (c); and
missing links (d) compared to the target CLD (a)—Setup 2.

Systems 2019, 7, 47 15 of 19

(a) Target SFD. (b) Inferred SFD.

Figure 12. Case 2 inferred SFD vs. target one—Setup 2.

For Setup 2, execution times for cases 1 and 2 are around 4 and 5 h, respectively. Since CLD and
equation structures are inferred with parameter estimation, both number of stocks and relationship
complexity influence execution time. In addition, the execution time for this Setup is longer than
Setup 1 which makes sense. From the perspective of modeling time, we think this an acceptable
time to infer such models. It is probably much quicker to generate CLD, SFD, equations and their
parameters, with the ability to navigate and produce a large number of models, than to develop these
models manually. However, the human-based modeling has the benefit of producing more meaningful
and structurally valid models than the CI-based methods can do. In order to determine whether the
execution time in this Setup is reliable, it should be compared with the time taken by a human modeler
to come up with these case models.

Table 5. Runtime for proposed computational intelligence methods in generating system dynamics
models for each case with different setups.

Case Studies Setup 1 Setup 2

Case 1 6.2 min 4 h

Case 2 6.9 min 5 h

4.4. Limitations

The concept of structural validity of method under development generated models is not applied
in this paper, where graphical or topological error measures are only applied to compare the generated
models against the target synthetic models. The structural credibility of models was assessed by
asking the following questions: Do the equations make causal sense? Do they have a real-life causal
meaning? Do they possess unit consistency? Do units of the equations naturally yield the units of the
output variable, without adding any dummy ‘fudging’ coefficients? Do the equations yield logical
extreme values, under extreme input values? Are the equations robust/valid under high and low
parameter values?

The GP ensemble used to generate the model equations suffers from two main issues: first,
the predefined functional sets that list the mathematical operators and functions used to build the GP
trees. In our experimental setups, we defined these sets according to our knowledge of case study
models nature. However, this assumption is a weak point in the proposed GP ensemble which could
be fixed either by defining functional sets that contain a large collection of algebraic and nonlinear
functions, or by learning these sets during the evolution process. Second, the defined fitness function
relies on the output error between the target behavior and generated behavior. The main purpose of
the proposed GP ensemble is to generate models that have valid structures and not just models that
generate behavior similar to that of the target. As we see from the results, for Case 2 in particular,
two different model structures inferred in both Setup 1 and 2 can generate the same behavior despite
having different equation structures. The main purpose of using ensemble learning method is to avoid

Systems 2019, 7, 47 16 of 19

inferring the whole system equations all at once given the time-series observations. This could lead to
generate too large equations for the sake of matching the target ones since the fitness function is mainly
derived by output error. This problem is a well-known issue in the literature called bloating [29].
Furthermore, the balance between the model structure and generated behaviors should be preserved
as much as we can to provide SD modelers with model equations that make sense at least in terms of
equations size.

Our proposed methodology relies mainly on the CLDs to generate both SFD and equations.
In Setup 1, we assume that target CLD is given and based on this we generate the equations. In Setup 2,
we learn CLD and underlying equations simultaneously, and, after the SFD is built, by annotating
each variable in the CLD. Although CLDs play an important role in the SD modeling process, such as
enabling the smooth transition to the final SFDs and early engagement with system stakeholders,
they are not in themselves the complete SD models. From the perspective of the SD modeling process,
it makes more sense to use SFDs instead of CLDs to generate the equations, where CLD can be
generated easily from SFD for presentation purposes. The reason for choosing to learn the model
equations based on the CLDs and not SFDs is due to the smaller search space needed to infer CLDs
than to infer SFDs. With CLDs, we are only interested in the links between variables, whereas, with
SFDs, we aim to identify the variable types (e.g., stock, in/out flow, auxiliary) and the links between
them. This could make the overall inferring process more complicated and costly.

The integration of the SA and GP ensemble algorithm to generate both CLD and equations
simultaneously is still a costly process. The reason is that both processes are nested and the quality
of the CLD depends on the generated equations that should be simulated first to generate behavior.
This nested process could be avoided by determining how to evaluate the CLD independently,
before giving it to the GP ensemble to generate the underlying equations. Furthermore, we need to use
a wide range of case studies that scale from simpler to more complicated ones to see how the proposed
CI methods’ calculation time scale for large scale cases.

We assume that the stocks are known and that time series observations will be available for all of
them. This assumption is necessary for two purposes: for the GP ensemble methodology which is used
to generate the mathematical representation, with differential equations, of system stock variables;
and for SFD inferring where the identification of the remaining system variables starts from knowing
the stocks. However, the system observations could refer to stock variables or to any other variables,
such as flows or auxiliaries. In addition, the availability of the observations for all system variables,
regardless of their types, is not always known.

5. Conclusions

Our ability to store and process increasing amounts of data and then to utilize CI methods to
turn this data into useful information is driving a revolution across the SD field. SD is a powerful tool
used in the modeling of complex dynamical systems. It is extensively applied to dynamic phenomena
emerging in industrial, economic, social, ecological and transportation systems, as well as being used
for a variety of tasks, such as policy analysis and design, learning and training, decision-making and
forecasting. This paper contributes to a growing field of interest that aims to facilitate and improve the
efficiency of the SD modeling process by developing a CI-based modeling support system to generate
SD models from system observations. The core component of the support system is the learning engine
which builds upon different CI methods. These can be invoked in two different inferring modes:
inferring only the underlying equations and their parameters using the GP ensemble; and inferring
CLDs, SFDs, equations and estimating their parameters by the integration of the GP ensemble and SA
algorithms. Based on the inferred CLD and system equations, the SFD was created by applying a fixed
rule-based system to identify the variable types as either inflows, outflows, auxiliaries or parameters.

To illustrate how the support system could be applied to generate SD models close to target
models, we chose two synthetic reality cases from the epidemics domain. Two main setups were
applied, Setup 1 for generating the system equations and estimating their parameters given the

Systems 2019, 7, 47 17 of 19

target CLD, and Setup 2 for generating CLD, SFD, equations and estimating the model parameters.
The experimental results from Setup 1 show the ability of the GP ensemble to match the target
equations and generate the same behaviors for Case 2. Although the generated equations for Case 1
have missing terms, these inferred equations are able to generate a very close match to the target
behavior. These differences in the generated equations are affected by the depth controlled parameter
that controls the GP tree depth. It has the advantage of preventing the generated equations from
growing and at the same time generates the desired behavior since the fitness function is mainly
derived from the output error between the generated and target behaviors. The results from Setup 2
show that the inferred CLDs, SFDs and equations have some similarities to the target ones. There are
additional and missing links in the generated CLD and SFD, and additional terms in the inferred
equations. The inferred structures generate behaviors which match those of the target because the GP
fitness function is derived from the output error. In order to guide the GP inferring process to generate
valid structures in addition to minimizing the output error, a structural measure needs to be integrated
with the output error fitness. This structural measure should be inspired and derived from structural
validation tests applied to SD models built by SD practitioners and modelers. The performance of the
GP ensemble is verified with specific conditions, where all system stocks, their observations and the
mathematical nature of the target equations are known. Changing one of these conditions will have an
effect on the performance of GP ensemble, in addition to the uncertainty in the system observations
which could also affect the robustness of GP algorithm. Regarding the conducted runtime analysis,
the scale of the problem affects the evolution process of the CI algorithms—specifically if we want to
infer different model parts synchronously such as CLDs, SFDs or equations which are tightly coupled
through the SD modeling process.

The proposed support system in this paper shows great promise to support SD modeling process
which will enable the modelers to save time and effort in building an SD model by providing the SD
modeler with an inferred model where the modeler could check and validate. Several directions can
be taken to extend this work:

1. Most pressing is the need to work towards enhancing the ability of the methods to generate
models with minimal structures that can characterize the data. The methods under development
should be robust and scalable with the ability to handle big data.

2. It is crucial to integrate the necessary semantic domain knowledge, about the system or problem
of interest, with the CI-based methods to generate valid structures. This will add a new dimension
to the capability of the CI-methods for generating valuable models, especially for real-life systems
where we do not have any idea about how the target model looks.

3. Identification of which variables to include in the model, as part of the support system’s inference
engine, is challenging because, for each variable set selected, a SD model should be built and
simulated to evaluate those selected. Therefore, the efficiency of the modeling process would be
greatly enhanced by finding a method which bypassed the need to build the whole SD model.

4. Generating an SD model without prior knowledge of the types of variables and only limited
observations is a challenging task too. However, the ability to handle these conditions since they
are common in real world applications is an important feature to be added to the support system.
Generating SD models under these conditions will require not only a search for the set of causal
and mathematical relationships, but a search for the types of variables and for the mathematical
equations for those variables that do not have any observations.

Supplementary Materials: List of acronyms, Case studies simulation model description and python code,
Computational intelligence algorithms pseudo code, and User manual for system dynamics modeling support
system, are available online at http://www.mdpi.com/2079-8954/7/4/47/s1.

Author Contributions: Conceptualization, H.A.; methodology, H.A.; software, H.A.; validation, H.A. and K.S;
writing–original draft preparation, H.A.; writing–review and editing, H.A. and K.S.; supervision, K.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2079-8954/7/4/47/s1

Systems 2019, 7, 47 18 of 19

References

1. Mohammadifardi, H.; Knight, M.A.; Unger, A.A. Sustainability Assessment of Asset Management Decisions
for Wastewater Infrastructure Systems—Implementation of a System Dynamics Model. Systems 2019, 7, 34.
[CrossRef]

2. Suprun, E.; Sahin, O.; Stewart, R.; Panuwatwanich, K.; Shcherbachenko, Y. An Integrated Participatory
Systems Modelling Approach: Application to Construction Innovation. Systems 2018, 6, 33. [CrossRef]

3. Reinker, M.; Gralla, E. A System Dynamics Model of the Adoption of Improved Agricultural Inputs in
Uganda, with Insights for Systems Approaches to Development. Systems 2018, 6, 31. [CrossRef]

4. Winch, G.W.; Arthur, D.J. User-parameterised generic models: A solution to the conundrum of modelling
access for SMEs? Syst. Dyn. Rev. 2002, 18, 339–357. [CrossRef]

5. Kanninga, P. Simulation Model Development, The Devil Is in the Detail! Ph.D. Thesis, Delft University of
Technology, TU Delft, The Netherlands, 2008.

6. Pruyt, E.; Cunningham, S.; Kwakkel, J.; De Bruijn, J. From data-poor to data-rich: System dynamics in the
era of big data. In Proceedings of the 32nd International Conference of the System Dynamics Society, Delft,
The Netherlands, 20–24 July 2014; System Dynamics Society: Albany, NY, USA, 2014.

7. Bourguet, R.E.; Soto, R. Qualitative knowledge acquisition using fuzzy logic and system dynamics.
In Proceedings of the 20th International Conference of the System Dynamics Society, Palermo, Italy,
28 July–1 August 2002; System Dynamics Society: Albany, NY, USA, 2002.

8. Ho, Y.F.; Wang, H.L. Applying fuzzy Delphi method to select the variables of a sustainable urban system
dynamics model. In Proceedings of the 26th International Conference of the System Dynamics Society,
Athens, Greece, 20–24 July 2008; System Dynamics Society: Albany, NY, USA, 2008.

9. Abdelbari, H.; Shafi, K. A Computational Intelligence-based Method to Learn Causal Loop Diagram-like
Structures from Observed Data. Syst. Dyn. Rev. 2017, 33, 3-33. [CrossRef]

10. Abdelbari, H.; Shafi, K. Optimizing a Constrained Echo State Network using Evolutionary Algorithms for
Learning Mental Models of complex dynamical systems. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 4735–4742.

11. Abdelbari, H.; Shafi, K. Learning Structures of Conceptual Models from Observed Dynamics using
Evolutionary Echo State Networks. J. Artif. Intell. Soft Comput. Res. 2018, 8, 133–154. [CrossRef]

12. Chen, Y.T.; Tu, Y.M.; Jeng, B. A machine learning approach to policy optimization in system dynamics
models. Syst. Res. Behav. Sci. 2011, 28, 369–390. [CrossRef]

13. Abdelbari, H.; Elsawah, S.; Shafi, K. Model Learning using Genetic Programming under Full and Parial
System Information Conditions. In Proceedings of the 33rd International Conference of the System Dynamics
Society, Cambridge, MA, USA, 19–23 July 2015; System Dynamics Society: Albany, NY, USA, 2015.

14. Abdelbari, H.; Shafi, K. A Genetic Programming Ensemble Method for Learning Dynamical System Models.
In Proceedings of the 8th International Conference on Computer Modeling and Simulation, Canberra, Australia,
20–23 January 2017.

15. North, M.; Sydelko, P.; Martinez-Moyano, I. Structurally Evolving System Dynamics Models Using Genetic
Algorithms. In Proceedings of the 33rd International Conference of the System Dynamics Society, Cambridge,
MA, USA, 19–23 July 2015, System Dynamics Society: Albany, NY, USA, 2015.

16. Drobek, M.; Gilani, W.; Molka, T.; Soban, D. Automated equation formulation for causal loop diagrams.
Lect. Notes Bus. Inf. Process. 2015, 208, 38–49.

17. Yücel, G.; Barlas, Y. Automated parameter specification in dynamic feedback models based on behavior
pattern features. Syst. Dyn. Rev. 2011, 27, 195–215. [CrossRef]

18. Wu, Z.; Xu, J. Predicting and optimization of energy consumption using system dynamics-fuzzy multiple
objective programming in world heritage areas. Energy 2013, 49, 19–31. [CrossRef]

19. Struben, J.; Sterman, J.; Keith, D. Parameter Estimation through Maximum Likelihood and Bootstrapping
Methods. In Analytical Methods for Dynamic Modelers; MIT Press: Cambridge, MA, USA, 2015; pp. 3–38.

20. Liu, H.; Howley, E.; Duggan, J. Optimisation of the Beer Distribution Game with complex customer
demand patterns, In Proceedings of the 2009 Congress on Evolutionary Computation. Trondheim, Norway,
18–21 May 2009.

http://dx.doi.org/10.3390/systems7030034
http://dx.doi.org/10.3390/systems6030033
http://dx.doi.org/10.3390/systems6030031
http://dx.doi.org/10.1002/sdr.252
http://dx.doi.org/10.1002/sdr.1567
http://dx.doi.org/10.1515/jaiscr-2018-0010
http://dx.doi.org/10.1002/sres.1089
http://dx.doi.org/10.1002/sdr.457
http://dx.doi.org/10.1016/j.energy.2012.10.030

Systems 2019, 7, 47 19 of 19

21. Phelan, M.; McGarraghy, S. Mitigating the bullwhip effect in supply chains using grammatical evolution.
In Proceedings of the 25th International Conference of the System Dynamics Society, Boston, MA, USA,
29 July–2 August 2007; System Dynamics Society: Albany, NY, USA, 2007.

22. Graham, A.K.; Ariza, C.A. Dynamic, hard and strategic questions: Using optimization to answer a marketing
resource allocation question. Syst. Dyn. Rev. 2003, 19, 27–46. [CrossRef]

23. Rahmandad, H.; Oliva, R.; Osgood, N.D.; Richardson, G. Using Decision Trees to Value Managerial Real
Options. In Analytical Methods for Dynamic Modelers; MIT Press: Cambridge, MA, USA, 2015; pp. 307–336.

24. Rahmandad, H.; Spiteri, R.J. Modeling Comparing Actors using Differential Games. In Analytical Methods
for Dynamic Modelers; MIT Press: Cambridge, MA, USA, 2015; pp. 373–404.

25. Miller, J.H. Active nonlinear tests (ANTs) of complex simulation models. Manag. Sci. 1998, 44, 820–830.
[CrossRef]

26. Yücel, G.; Barlas, Y. Pattern recognition for model testing, calibration, and behavior analysis. In Analytical
Methods for Dynamic Modelers; MIT Press: Cambridge, MA, USA, 2015; pp. 173–206.

27. Pei, W. Fuzzy Evaluation on the Validity of System Dynamics Models. In Computer-Based Management of
Complex Systems; Springer: Berlin/Heidelberg, Germany, 1989; pp. 271–276.

28. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:
Cambridge, MA, USA, 1992; Volume 1.

29. O’Neill, M.; Vanneschi, L.; Gustafson, S.; Banzhaf, W. Open issues in genetic programming. Genet. Program.
Evolvable Mach. 2010, 11, 339–363. [CrossRef]

30. Quade, M.; Abel, M.; Shafi, K.; Niven, R.K.; Noack, B.R. Prediction of Dynamical Systems by Symbolic
Regression. Phys. Rev. E 2016, 94, 012214. [CrossRef] [PubMed]

31. Soule, T. Code Growth in Genetic Programming. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 1998.
32. Miller, J.F. Cartesian Genetic Programming. In Cartesian Genetic Programming; Springer: Berlin, Germany,

2011; pp. 17–34.
33. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.

[CrossRef] [PubMed]
34. Batista, G.E.; Wang, X.; Keogh, E.J. A complexity-invariant distance measure for time series. In Proceedings

of the 2011 International Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011; pp. 699–710.
35. Keogh, E.; Wei, L.; Xi, X.; Vlachos, M.; Lee, S.H.; Protopapas, P. Supporting exact indexing of arbitrarily

rotated shapes and periodic time series under Euclidean and warping distance measures. VLDB J. 2009,
18, 611–630. [CrossRef]

36. Keogh, E. Efficiently finding arbitrarily scaled patterns in massive time series databases. In Proceedings of the
European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-Dubrovnik, Croatia,
22–26 September 2003; Springer: Berlin, Germany, 2003, pp. 253–265.

37. Faloutsos, C.; Ranganathan, M.; Manolopoulos, Y. Fast Subsequence Matching in Time-Series Databases;
ACM: New York, NY, USA, 1994; Volume 23.

38. Oliva, R. Model structure analysis through graph theory: Partition heuristics and feedback structure decomposition.
Syst. Dyn. Rev. 2004, 20, 313. [CrossRef]

39. Takahashi, Y. Stock Flow Diagram Making with Incomplete Information about Time Properties of Variables.
In Proceedings of the 24th International Conference of the System Dynamics Society, Nijmegen, The
Netherlands, 23–27 July 2006; System Dynamics Society: Albany, NY, USA, 2006.

40. Forrester, J.W. System Dynamics Self Study—MIT OpenCourseWare. Available online: http://ocw.mit.
edu/courses/sloan-school-of-management/15-988-system-dynamics-self-study-fall-1998-spring-1999/
(accessed on 19 July 2017).

41. Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill:
Boston, MA, USA, 2000; Volume 19.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/sdr.264
http://dx.doi.org/10.1287/mnsc.44.6.820
http://dx.doi.org/10.1007/s10710-010-9113-2
http://dx.doi.org/10.1103/PhysRevE.94.012214
http://www.ncbi.nlm.nih.gov/pubmed/27575130
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1007/s00778-008-0111-4
http://dx.doi.org/10.1002/sdr.298
http://ocw.mit.edu/courses/sloan-school-of-management/15-988-system-dynamics-self-study-fall-1998-spring-1999/
http://ocw.mit.edu/courses/sloan-school-of-management/15-988-system-dynamics-self-study-fall-1998-spring-1999/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of SD Modeling Support System
	Inferring System Equations and Parameter Estimation
	Inferring CLDs, SFDs, System Equations and Parameter Estimation

	Experimental Setup
	Setups
	Setup 1
	Setup 2

	Case Studies
	CI Algorithm Parameters

	Results and Analysis
	Setup 1
	Case 1
	Case 2

	Setup 2
	Case 1
	Case 2

	Runtime Analysis
	Limitations

	Conclusions
	References

