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Abstract: Autonomous production needs to be reliable. Outputs from reliable production systems
consistently conform to performance requirements. By contrast, outputs from unreliable production
systems often do not conform to performance requirements. Unreliable production can lead to
accidents, rework, scrap, loss of good will, etc. In this communication paper, comparative analyses
are provided of work characteristics in the manufacturing and construction industries, which affect
opportunities for reliable high-level autonomous production systems. Analyses indicate that there are
strong opportunities and weak opportunities for reliable high-level autonomous production systems
in these industries. In the strongest opportunities, there is repeated work certainty; the composition
of work involves few materials/parts that have little variation; and work is carried out in settings
that require no additional engineering to facilitate reliable autonomous production. In the weakest
opportunities, work settings require extensive additional engineering; the composition of work
involves many materials/parts that have lots of variation; the work to be done is not certain until
completion and then it is never repeated. It is explained that when seeking to improve weak
opportunities for reliable high-level autonomous production systems, industrial engineering methods
and situation awareness modelling can be combined within a critical realist framework in order to
address challenges in work setting, composition and uncertainty.

Keywords: autonomous systems; critical realism; construction; industrial engineering; manufacturing;
process capability; production; situation awareness

1. Introduction

There are levels of autonomous systems: for example, 1–6 [1]. Although high-level autonomous
production systems are necessary to enable high-levels of autonomous production, they are not
sufficient to enable reliable conformance to production performance requirements. Rather, as with any
production system, the deployed system needs to be compatible with work characteristics in order for
there to be reliable conformance to production performance requirements in practice [2–4].

Autonomous production technologies go beyond conventional automation by having autonomous
cognition, which can involve sensing, awareness, deciding, acting, adapting and learning [5].
Autonomous cognition is being introduced by vendors into updates of their established production
technologies. Also, autonomous cognition is included in new kinds of production technologies such as
mobile robots used in building construction. Overall, different types of production technologies are
being combined in autonomous production systems. For example, industrial company Komatsu is
working with high-tech firm NVIDIA to introduce autonomous systems for carrying out raw material
extraction at mines, and for groundworks at construction sites [6]. However, the potential for reliable
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implementation of high-level autonomous production systems is affected by work characteristics in
the manufacturing and construction industries.

First, in this communication paper, work characteristics affecting potential for reliable
implementation of high-level autonomous production systems are explained in terms of work setting,
work composition, and work certainty. Next, strong and weak opportunities for reliable high-level
autonomous production systems are described for two industries: manufacturing and construction.
Then, it is explained how weak opportunities for reliable high-level autonomous production can
be improved through the application of industrial engineering methods and situation awareness
modelling within a critical realist framework. In conclusion, principal contributions are stated,
together with implications for research and for practice.

2. Work Characteristics’ Challenges to Reliable High-Level Autonomous Production

2.1. Work Setting

2.1.1. Overview

Potential for reliable high-level autonomous production systems is affected by the distribution
and regularity of work settings. Lots of production work needs to be widely distributed and must
take place in settings that have irregular characteristics. For example, much of the world’s agri-food
production begins on small holdings at different altitudes where there are different ground and
weather conditions [7]. At low altitude on flat ground, autonomous cognition by farming robots
is more technically feasible than at high altitude on uneven sloping ground. This is because of
difficulties in farming robots maintaining stability and difficulties in taking accurate data from
sensors in adverse conditions, such as from computer vision during the mist, rain and wind of
higher altitudes. Subsequently, there are risks of incorrect action selection from computation of
inaccurate sensor data. Work settings can be engineered to better facilitate the reliable operation of
autonomous systems, but this can be very complicated and expensive. For example, it is recognized
in Vehicle–Infrastructure Integration initiatives throughout the world that the extent of driverless
vehicle autonomy will depend upon the extent of autonomous vehicle integration with new types
of smart vehicle infrastructure. Accordingly, public roads are being re-engineered to be smart roads
that provide “cooperative infrastructure” for autonomous vehicles. This involves a range of costly
engineering activities. For example, the installation of V2X (Vehicle-to-Everything) WiFi enables
traffic lights to communicate with nearby cars. Also, sensors are being developed to be integrated
into road surfaces. These in-road sensors are intended to detect the passage of traffic in real time.
They can be used to inform communication to autonomous vehicles by new types of smart road
signage. In addition, there is the need for overhead cameras that send alerts to autonomous vehicles
in the event of an emergency that cannot be detected by road sensors, such as an animal straying
onto a road. Further smart road developments include engineering power-generating road surfaces
that have technologies for recharging autonomous vehicles as they drive along the road surface.
Overall, these investments in smart “cooperative infrastructure” do not engineer out all possible
irregularities in the operation of autonomous vehicles. Rather, they are intended to engineer out the
effects of irregularities in the operation of autonomous vehicles. For example, an animal may stray on to
a road but, if the various sensors and signals of smart “cooperative infrastructure” function as intended,
that will not cause a vehicle crash. The economic viability of engineering work settings depends on the
costs and number of operations over which the costs can be spread. For example, power-generating
road surfaces that charge autonomous vehicles cost several million euros per kilometre/dollars per
mile. Such costs can perhaps be absorbed over main roads with a high frequency of autonomous
vehicles, but can be prohibitively expensive for low-frequency roads and for off-road locations [8–11].
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2.1.2. Manufacturing Industry

Physical production in the manufacturing industry can be considered in terms of the
following phases: raw materials extraction/harvesting, converting raw materials into processed materials,
manufacturing parts, and assembling goods. In terms of work settings, sites of raw materials
extraction/harvesting can be highly distributed and have irregular conditions. Hence, the prospects for
reliable autonomous production can depend upon the economic viability of engineering the effects
of irregularities out of work settings to facilitate accurate autonomous sensing, which provides
the basis for effective autonomous deciding and acting. The cost of engineering work settings
for autonomous materials extraction is illustrated by the mining corporation Rio Tinto’s plan to
spend more than two billion U.S. dollars to develop an “intelligent” iron ore mine, which will
incorporate driverless vehicles and robotics [12]. By contrast, much of converting raw materials,
manufacturing parts, and assembling goods is already concentrated in factories, where work settings are
conducive to sensing and awareness by autonomous robots and vehicles. For example, automated
guided vehicle systems (AGVS) are used extensively inside factories to move materials, components,
and goods. Factories are well suited to providing “cooperative infrastructure” for automated guided
vehicles (AGV) to operate in. In particular, factories have controlled internal environments where
markers, wires, etc., can be easily set up and maintained for AGVs to follow predetermined routes.
Also, factories have controlled internal environments that are well suited to more sophisticated AGV
navigation methods. For example, AGVS laser navigation involves mounting reflective tape on factory
fixtures. The AGV carries a laser transmitter and receiver via which laser information is compared to
the map of the reflector layout stored in the AGV’s memory. This allows the AGVS to triangulate the
current position of the AGV and guide travel to its destination by constantly updating the position.
Thus, “vehicle–infrastructure integration” is commonplace in factories where the positions of loading
bays, storage spaces, work stations, etc., are fixed for long durations and are always protected from
adverse weather conditions that could be detrimental to AGVS operations [13].

2.1.3. Construction Industry

Physical production in construction industry can be considered in terms of the following phases:
raw materials extraction; site works; continuous processes, such as concrete pouring, slip forming and
large-scale 3D printing; and combining discrete materials/parts/goods produced by companies in the
manufacturing industry as components for building construction, such as paints, concrete blocks,
screws, door sets, and bathroom modules. Issues involved in raw materials extraction are similar to
those in the manufacturing industry, and issues involved in site works are much the same as for raw
materials extraction. Specifically, if it is economically viable to engineer the effects of irregularities
out of work settings for autonomous operation, then autonomous vehicles and robots can be used.
This can be difficult at any small construction site, and particularly difficult for building renovation
work settings where many existing features have to be worked around and existing surfaces have
to be protected for preservation: rather than engineered to suit the temporary needs of autonomous
construction activities [14]. More generally, when compared to factories, construction sites do not
have loading bays, storage spaces, work stations, etc., that are in fixed positions for long durations.
Rather, the positions of loading bays, storage spaces, work stations, etc., change as work progresses
from site works to combining materials in substructures to combining parts in superstructures to combining
goods in internal fit-outs. Furthermore, it is often only in the later stages of construction projects
when there can be controlled internal environments that could facilitate AGV navigation, which could
cope with frequently changing layouts of workspaces. Moreover, when compared to public roads,
construction sites do not provide the high volume of traffic needed to recover the costs of investment
in vehicle–infrastructure integration technologies. Hence, when compared to factories and to public
roads, construction sites are much more challenging locations for economically viable engineering of
“cooperative infrastructures” for autonomous production systems. Thus, human operated moveable
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cranes, rough terrain forklift trucks, pallet jacks, etc., continue to be widely used on construction sites
as economically viable robust solutions for irregular work settings.

2.2. Work Composition

2.2.1. Overview

Work composition includes the number and variability of materials/parts. If materials/parts
are always the same, reliable autonomous production is technically feasible. If there are many
materials/parts that are always the same, then investment in autonomous production is economically
viable. Here, always the same means conformance to production process parameters. For example,
materials extracted from mines may have many different geometries, but they are effectively all the
same if they can be handled by the same designated equipment. More difficult to handle variability can
be natural, such as in foodstuffs, and/or can take place through production such as the deforming of
textiles during apparel production. The more variability there is, the more sophisticated the computer
vision, image processing, and handling manipulators, etc. that are needed in autonomous sensing and
acting [15].

2.2.2. Manufacturing Industry

In terms of work composition, the number and variability of material types can be low in raw
materials extraction/harvesting, converting raw materials, and manufacturing parts. The number of parts in
the assembly of goods depends on the type of good and can range from less than 10 (e.g., in a simple toy)
to more than 10 thousand (e.g., in an aeroplane). The variability of parts will typically be within agreed
parameters, which are stable other than for parts in soft products such as apparel [15]. Hence, accurate
autonomous sensing of work composition is technically feasible in most of the manufacturing industry.

2.2.3. Construction Industry

Work composition involves formless materials (e.g., paint), formed materials (e.g., concrete
blocks), loose parts (e.g., screws), sub-assemblies (e.g., door sets), assemblies (e.g., bathroom modules).
There can be on-site deformation of components, such as twisting of door set frames due to damp
air. In addition, there can be unpredictable variation at interfaces, such as between door openings in
walls built with concrete blocks and wooden door sets. Consequently, much more computational effort
is required for accurate autonomous combining materials/parts/goods in building construction than in
manufacturing industry assembly of parts that have all been designed specifically to fit together for one
particular product.

2.3. Work Certainty

2.3.1. Overview

The timing, extent and repetition of work certainty affect the potential for reliable autonomous
production. If all the work to be undertaken is always certain from the outset, then reliable autonomous
production can be technically feasible and economically viable—for example, in so called “lights-out”
factories where no lighting is needed because no human workers are involved [16]. By contrast, if work
to be done is not certain until its completion and subsequently there is no repetition of that certainty,
such as in building renovations, then autonomous production is less likely to be technically feasible
and economically viable. In particular, continual work uncertainty increases the difficulty of achieving
accuracy in autonomous learning and adapting.

2.3.2. Manufacturing Industry

In terms of work certainty, production operations in raw materials extraction/harvesting and
converting raw materials typically involve high repetition of certainty that is defined before work begins.
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Work certainty in assembling goods depends upon how much authority is given to individual customers.
Make-to-stock (MTS) production is characterized by work certainty. By contrast, engineer-to-order
production (ETO) is based on eliciting requirements from individual customers. Hence, there is
little or no repetition of work certainty because individual customers have diverse requirements.
The more uncertainty there is, the more challenging is autonomous transfer learning, which enables
accurate autonomous adaptation. This is case even for assemble-to-order (ATO) production that
offers individual customers more choice than MTS, but less authority than ETO [14]. For example,
Mercedes has replaced robots with human workers in the assembly of its S-Class sedan car, because of
the number of vehicle options and the frequency with which it changes the kinds of options being
offered [17].

2.3.3. Construction Industry

To meet customer-specific and location-specific requirements, many buildings are engineered to
order. Even where more building standardization is possible, such as petrol stations and drive-through
restaurants, site works will be location-specific and characterized by work uncertainty. In addition,
building standardization does not necessarily bring work certainty to continuous process, such as
concrete pouring at an inner city construction site. While driving the concrete pump through inner
city traffic can eventually be within the scope of autonomous vehicles, repeatedly positioning and
repositioning the hose of a concrete pump when pouring concrete is a far more dynamic operation.
This is because of the uncertainty about where each hose position will be, uncertainty about the
amount of force needed to hold the hose in each position, and uncertainty about deformation of the
hose. Moreover, there is often little work certainty to facilitate autonomous combining parts/goods.
For example, what is to be picked and placed at construction sites, and where it is to be picked from
and placed to, can be uncertain from one day to the next as work progresses. Hence, the opportunities
for autonomous learning and adaptation can be limited.

2.4. Strong and Weak Opportunities for Reliable High-Level Autonomous Production

A summary of the relative strength of opportunities for reliable high-level autonomous production
is provided in Table 1.

Table 1. Strong and weak opportunities for reliable high-level autonomous production.

Phases of Physical Production
Opportunity

Strength Work Characteristic Issues

Manufacturing
industry

Raw materials extraction Weak Work setting: Low economic viability of
engineering out irregularity effects

Converting raw materials Strong Work setting, composition, and certainty
facilitate reliability

Manufacturing parts Strong Work setting, composition, and certainty
facilitate reliability

Assembling goods Variable Work certainty: ATO and ETO low
technical feasibility of transfer learning

Construction
industry

Raw materials extraction Weak Work setting: Low economic viability of
engineering out irregularity effects

Site works Weak Work setting: Low economic viability of
engineering out irregularity effects

Continuous processes Medium Work setting, composition and certainty
require engineering effort

Combining components Weak Work setting, composition and certainty do
not facilitate reliability
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In particular, the opportunities for reliable high-level autonomous production are strongest in the
manufacturing industry during make-to-stock (MTS) production inside factories. They are weaker in
the manufacturing industry when there is work uncertainty, such as in engineer-to-order, and/or work
settings have irregular conditions. Work certainty can be increased through increased standardization,
but this can be contrary to the demand for increased personalization [17]. Work settings can be
engineered to better facilitate autonomous production, but this can be extremely costly [12].

Opportunities for reliable high-level autonomous production in the construction industry are
often weaker than in the manufacturing industry. This is because of the comparative difficulty of
engineering irregularity effects out of work settings to facilitate autonomous production, the wider
variation in work composition, and less frequent work certainty. Together, these factors combine to
increase the difficulty of implementing autonomous cognition during production operations.

Furthermore, in the manufacturing industry, any additional costs incurred to better enable
operation of autonomous production technologies can be recovered from many sales of the same good.
By contrast, in the construction industry, costs incurred to facilitate implementation of autonomous
production often need to be recovered from one project.

3. Critical Realist Framework for Improving Autonomous Production Reliability

3.1. Critical Realism

Critical realism is a philosophy of science that can provide a unifying framework for application
of industrial engineering methods and situation awareness modelling. This is because it is recognized
within critical realism that reality is an open system in which the effectiveness of causal mechanisms
(e.g., autonomous production technologies) is dependent upon them acting with appropriate causal
contexts (e.g., work setting, work composition, work certainty). Moreover, critical realism is a
philosophy of science that is open to practical application through reference to any individual methods
that can be combined in order to address causal mechanisms and causal contexts. Thus, critical realism
is not in competition with existing methods. Rather, it is a philosophy of science that can provide a
unifying direction for the combination of diverse methods. Overall, the critical realist perspective
is that the exact details of appropriate causal context (e.g., work characteristics) to enable effective
operation of a causal mechanism (e.g., autonomous production technology) cannot be known at
the outset. Rather, initial proposals as to what might be the appropriate causal context evolve as
understanding increases through investigation. This is because causation in the real world is open to a
huge range of codetermining factors [18,19].

3.2. Industrial Engineering Methods

Industrial engineering seeks to optimize complex production processes. Industrial engineering
methods can be used to develop and control production processes that are designed to generate
most value for lowest resource consumption. Methods to develop production processes include task
analysis, design for manufacture and assembly (DFMA), failure modes and effects analysis (FMEA),
and job design [20–22]. Methods to control production processes include statistical process control
(SPC), which is often implemented with the slogan, Six Sigma [23,24]. Thus far, these methods have
been applied mostly to make-to-stock (MTS) and assemble-to-order (ATO) production inside factories:
rather than to engineer-to-order (ETO) production outside of factories.

One reason has been that industrial engineering methods depend upon the extensive sampling
and processing of production data to inform iterations of assessment–improvement–reassessment
during the development of production processes [25]. Beyond MTS and ATO inside factories, it has
been much more difficult to sample and process production data. Now, however, data sampling and
processing for the development of production processes is becoming more possible. This is because
of the introduction of Big Data Analytics technologies into ETO production [26,27]. For example,
video recordings of construction processes can be analysed to reveal common features across different
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operations [28]. Also, video recordings can be analysed to identify safety issues during construction
work [29]. In addition, databases linked to digital building models can be analysed to assign work
optimally within time constraints [30]; and to reveal causes of delays in construction work [31].
Furthermore, there is now increased potential for assessment–improvement–reassessment during
production processes through rapid iterations with digital simulation models, which are being
introduced into ETO production [32,33]. For example, the alternative pathways for the movement
of construction resources on congested construction sites can be simulated [34]. Also, productivity
can be simulated as an emergent property of interactions between individual workers and groups of
workers [35]. In addition, digital simulation models can be applied to assess and improve strategies
for dealing with unexpected circumstances during construction operations [36]. Importantly, there are
some advances in automated collection by on-site sensors of direct inputs into digital simulation
models [37]. Such analyses and simulations are mostly at the stage of proof-of-concept demonstrations,
but indicate that there is increasing potential for production data sampling and processing beyond
MTS and ATO factory production.

Task analysis, DFMA, FMEA, and job design can be applied to basic motions. For example,
the basic motions of laying bricks, such as picking, orientating and placing, can be analysed and
designed for maximum efficiency. Indeed, organizations that are developing autonomous construction
equipment, such as bricklaying robots, undertake thorough task analysis, job design, and DFMA in
order to enable high speed picking, orientating, and placing of bricks by robots arms. For example,
DFMA design rules and strategies can be applied to develop bricks with shapes that are easy to robots
to handle [38]. The introduction of Big Data Analytics and simulation modelling into ETO can enable
assessment–improvement–reassessment of basic motions such as picking, orientating and placing.
However, the process of entire ETO operations, such as building entire walls, can have too little
work certainty, too varying work compositions, and too irregular work settings to be generalized as a
standardized job design, which can be assessed, improved, and reassessed in process. Nonetheless,
the well-established industrial engineering method of statistical process control (SPC) can be applied
to control specific outcomes of many ETO operations, such as building entire walls.

In particular, upper and lower specification limits can be set for main process variables using
process capability indices. These indices provide statistical measures of the capability of a process to
produce output within production specification limits. Process capability indices have a specified mean
value together with upper specification limits (USL) and lower specification limits (LSL). The reason
SPC is often implemented with the slogan Six Sigma is that sigma or σ is the symbol for standard
deviation, which is term used for the spread around the mean value. The drift of production processes
away from the mean value towards either of these limits should lead to production processes being
slowed or being stopped and corrected. Typically, if a process operates within six standard deviations
(i.e., six sigma) between USL and LSL, it is a reliable process that conforms efficiently to production
performance requirements [23,24].

The ranges between specification limits (SL) in ETO work can be far higher than the miniscule
ranges of hundredths of millimetres that are common in precision engineering applied in MTS.
For example, in brick construction work, a range of 10 millimetres (mm) in straightness between
USL and LSL is permissible for walls of any length up to five meters (m). In other words, a building
inspector will approve brickwork if it bends in its length up to 10 mm in 5 m, but will not approve the
brickwork if it bend 11 mm or more in 5 m of length. If the wall is over 5 m long the maximum range
should be no more than 15 mm. Thus, specification ranges that would be impossibly large in MTS
production are common in ETO [39].

3.3. Situation Awareness Modelling

Situation awareness involves perception, comprehension and projection [40,41]. Typically, the higher
the level of autonomous production, the higher the level of autonomous situation awareness that
is needed by autonomous technologies [42]. Enabling production technologies with autonomous
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situation awareness is a formidable challenge for computer science [43,44]. However, computational
complexity can be reduced if modelling of situation awareness includes definition of consistent
parameters and design of clear parameter markers. In order to better enable accurate situation
awareness when there are challenging work settings, visual controls and other types of clear markers
can be related to SPC specification limits (SL). Where there are insufficient financial resources to
engineer irregularity effects out of work settings fully, this can be a low cost means of making at
least some progress towards work settings being compatible with reliable high-level autonomous
production. Also, recognition of parts within work composition can involve defining appropriate USL
and LSL for different types of components. If SL markers are very clear and very durable, they can
increase potential for consistent conformance to production requirements by making USL and LSL
explicit in production beyond MTO and ATO inside factories. A model of situation awareness that
incorporates the addition of SL data inputs is shown in Figure 1.
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Figure 1. Specification limit situation awareness.

This model is based on the widely applied three-level situation awareness construct that integrates
perception, comprehension and projection [40,45]. Perception involves the processing of data inputs
for multiple situational variables. It can be expected that robots, such as bricklaying robots, will be
preprogrammed to process data inputs for basic motions such as picking, orientating, and placing
bricks. For example, the robot will be equipped with sensors that provide data inputs about what basic
motion in currently in progress. Also, robots will be preprogrammed for situation comprehension
through synthesis and evaluation of basic inputs. In addition, robots will be preprogrammed to
project multiple situational variables into action selections, such as picking the next brick to be
orientated and placed. SL situation awareness can be added to basic perception, comprehension
and projection through relatively simple means. For example, a laser transmitter/receiver can be
attached to a robot for the purpose of determining the distance between the vertical surface of a brick
wall as it is constructed and SLs. The USL and LSL can be marked, for example, with reflective tape
mounted onto moveable stands, which are positioned the appropriate distance from the location of
wall surfaces. As with laser transmitter/receivers on AGVs, distances can be calculated automatically.
Then, the robot can be automatically stopped if the distance between USL or LSL and the wall surface
is close to the SL maximum. Thus, the robot is not integrated into the working environment as with
Vehicle—Infrastructure Integration for public main roads. Rather, some targeted simple temporary
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works can be carried out in the work environment to make it a more “cooperative infrastructure”
for important tasks as they arise amidst the changing work layouts of ETO production. However,
it is essential that such situation awareness modelling should encompass the extremes of work
characteristics, such as high winds and heavy rain at locations of changeable ground conditions.
This is necessary to ensure that situation awareness can be accurate enough in practice to enable
appropriate autonomous action selection [46].

3.4. Combination of Methods and Modelling within a Critical Realist Framework

A critical realist diagram is shown in Figure 2. This illustrates that the achievement of a desired
outcome from a planned action depends on both the causal mechanism and the causal context.
As indicated in Figure 2, many of the small- to medium-sized enterprises working in the manufacturing
and construction industries can apply industrial engineering methods and non-computational
situation awareness modelling to improve the compatibility of work characteristics with autonomous
production technologies.
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Figure 2. Combining industrial engineering methods and situation awareness modelling in critical
realist design of reliable autonomous production systems.

As summarized in Figure 2, industrial engineering methods can be applied to minimize
irregularity effects at work settings in so far as is possible within financial constraints; to reduce
non-value adding variations in work composition, and to increase work certainty wherever it is
possible without reducing sales by limiting customer choice. Situation awareness modelling can
include identifying where position markers for USL and LSL should be located at work settings;
identifying which parts in the composition of work should be marked as being prone to variation;
and designing durable markers in order to maintain work certainty in all conditions.

4. Conclusions

4.1. Implications for Theory Building

Within critical realism, causal mechanisms in real-world activities may be generalizable,
but will only enable intended outcomes if those causal mechanisms operate within appropriate
causal contexts. Thus, critical realism is different to other philosophies of science. For example,
positivism seeks to define causation in terms of generalizable laws that will operate irrespective
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of context, while interpretivism eschews generalizable causation in favour of the notion that
reality is always a subjective construction. Also, critical realism differs from design science that
often overlooks underlying causation in technology-orientated cycles of build-and-evaluate [47,48].
This communication paper provides a starting point for critical realist theory building for autonomous
production systems. In particular, research that seeks to determine how and where causation can
be generalized across the diversity of many real-world implementations in the manufacturing and
construction industries.

For example, extant research into autonomous systems involves theoretical formulations such
as the Paperclip Maximizer and the Trolley Problem. The widely debated Paperclip Maximizer
though experiment involves an autonomous production system being programmed to turn all matter,
including human beings, into paperclips or machines that manufacture paperclips. This speculative
formulation is intended to illustrate that autonomous systems pose existential threats to humanity even
when robots are programmed to pursue seemingly harmless goals [49,50]. However, thought about
this thought experiment has hitherto failed to recognize the work characteristic challenges involved in
raw materials extraction/harvesting. Moreover, it has failed to recognise that challenges could be greatly
exacerbated by human beings deliberately increasing work setting irregularities, increasing work
composition variations, and reducing work certainty. This is possible through applying industrial
engineering methods and situation awareness modelling to prevent, rather than facilitate, the reliable
operation of autonomous production systems intent on paperclip maximizing at the cost of humanity.
Another well-known speculative formulation is the Trolley Problem thought experiment, which is
widely applied in debate about driverless cars [51,52]. This involves a runaway trolley being about to
hit and kill five people who are tied up and unable to move. The trolley can be diverted but only to
an alternative track where there is one other person tied up and unable to move. There are only two
options within the conventional thought of the Trolley Problem thought experiment: do nothing and
the trolley kills the five people on the main track or divert the trolley onto the side track where it will
kill one person. However, from the critical realist perspective, there is certainly another option: apply
industrial engineering methods and situation awareness modelling to work characteristics so that it is
not possible to tie people up onto the paths of moving trolleys and/or for the presence of stationary
loads on the track to reduce the trolley to a harmless speed.

These examples illustrate the need for critical realism to be applied to bring speculative theorizing
about autonomous production systems into the scope of critical realist framing of challenging work
characteristics and the different opportunities for these to be addressed through industrial engineering
methods and situation awareness modelling.

4.2. Implications for Applied Research

In addition to providing a philosophy of science for theory building, critical realism can also
provide a framework for applied research. Importantly, critical realism is a philosophy of science that
is open to practical application through reference to any individual scientific theories and use of any
individual research methods. Most relevant to application of critical realism to improving the reliability
of autonomous production systems is action research. In addition to the traditional research objectives
of improving explanation and prediction of complex phenomena, action research aims to influence or
to change some aspect of whatever is the focus of the research [53,54]. For this topic, the purpose of
future action research would be to change the reliability of autonomous systems from dependence
upon massive capital investment in engineering entire infrastructures. In particular, we can enable
reliable autonomous production systems through targeted applications of industrial engineering and
situation awareness modelling. Action research evolves in stages that are not fully defined at the outset.
Rather, the findings of each stage lead to the development of the next stage [55,56]. This is entirely
compatible with the critical realist perspective that causal mechanism and causal context cannot be
known at the outset. Rather, initial proposals as to what might be causal mechanism and causal context
evolve as understanding increases through research [18,19]. Furthermore, both critical realism and
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action research involve abductive reasoning. This involves inferring causal mechanism and context for
a particular situation through iterative cycles of reference to theories and observations. By contrast,
inductive reasoning involves moving from observation to theory; and deductive reasoning involves
moving from theory to observation [57].

A first stage of critical realist action research could be to define the state of the art for autonomous
production technologies through multi-vocal literature review and vendor demonstrations. Multi-vocal
literature reviews extend beyond scientific literature to online reports. Multi-vocal literature review is
appropriate when the topic of a study is developing quickly and/or there few scientific papers on the
topic [58]. A second stage could be to trial operation of the autonomous production in mock-ups of
work characteristics in order to inform task analysis and failure modes and effects analysis (FMEA).
A third stage could also be trails carried out in mock-ups. This could involve preliminary application
of design for manufacture and assembly (DFMA) and job design, together with application of situation
awareness modelling. Initial trails in mock-ups can be framed as pre-tests and follow-up trials could
be framed as post-tests in quasi-experimental testing of the efficacy of industrial engineering methods
and situation awareness modelling. However, the purpose of action research is to bring about change.
Accordingly, post-test findings should be used straightaway in the next stages of critical realist action
research to improve the match of work characteristics to the autonomous production technology.
After mock-up stages, action research can progress to the actual work stages. Particularly in ETO work,
this should involve seeking to implement new opportunities to apply Big Data Analytics and simulation
modelling in iterations of assessment–improvement–reassessment. In this way, critical realist action
research can be embedded into practice as a continual endeavour to bring about improvements to the
reliability of autonomous production as soon as possible.

4.3. Implications for Practice

The development of autonomous production technologies supplied by vendors will involve
task analysis, DFMA, etc., to enable robots to carry out basic motions efficiently. Also, autonomous
production technologies supplied by vendors will have situation awareness at least for the status
of basic motions such as picking, orientating and placing. Outside of fully autonomous production
systems in MTS factories, there are an increasing number of production technologies with some
autonomous functionalities. For example, several companies now produce robotic glazing machines,
which are used for installing glass panels and glass windows at construction sites. These robots
grip the glass with multiple suction pads. They can have handling capacities that exceed
1000 kilograms (kg) and robotic arms that can extend more than 2 m with potential for 360 degrees
rotation. However, much of their operation is still controlled remotely by human operators [38].

As summarized in Figure 2, human remote control and on-site safety risks can be reduced by
targeted application of selected industrial engineering methods and situation awareness modelling
within the cost constraints of individual ETO projects and company resources. Here, it is significant that
production in the manufacturing and construction industries involves many small- to medium-sized
companies, which do not have sufficient in-house expertise to undertake the computer science involved
in developing their own autonomous production technologies or to modify substantially those
offered by vendors. By contrast, the application of industrial engineering methods can be quite
straightforward when summarized in simple rules such as “Ensure adequate access and unrestricted
vision”; “minimize the need for reorientation during assembly”; and “mark parts with correct
orientation” [22]. Similarly, the development of visual controls in situation awareness modelling
can follow simple principles for avoiding conceptual, presentational and linguistic ambiguity [53].
Progress towards implementation of statistical process control can be made by drawing upon the expert
knowledge of relevant practitioners such as working foreman and production supervisors. In particular,
through asking and answering simple questions such as “if this work were to be constructed with this
autonomous production system five times, how many times would it be constructed right first time
within the agreed time and for the agreed cost in accordance with relevant safety regulations?” If the
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response for relevant expert practitioners is less than five times out of five, then more effort should be
made to improve work characteristics [23,24].

Subsequently, the introduction of big data analytics and simulation modelling into ETO bring
possibilities for digital capture and analysis of the performance of production systems that are
made more autonomous through combination of autonomous production technologies with work
characteristic improved by application of industrial engineering methods and situation awareness
modelling [26–37]. A relevant technical measurement that can be used in computer-aided analysis
of the fit of autonomous production systems to challenging work characteristics is entropy and the
associated Information Gain needed to increase the reliability of autonomous production systems.
The more different ways there are of undertaking the same work, the more entropy is involved and
the more additional information is needed for either a human being or an autonomous machine to
know how to do the work correctly. If the application of industrial engineering methods and situation
awareness modelling is successful, there will be only one way to carry out a work process—the way
that achieves most value with the least waste. In such cases, the entropy is 0.00. By contrast, if there are
five different ways to carry out a work process, each of which involves different set-up arrangements
etc., then entropy is 2.32 and so the required Information gain is 2.32. If there are five ways to carry
out a work process but one of those ways is followed four times in five, then the entropy is 1.12.
Thus, entropy and Information Gain can provide a practical bridge between practitioner expertise
and computer-aided analyses of the fit of autonomous production systems to work with challenging
characteristics [59–61].

4.4. Principal Contributions

Three contributions to knowledge are provided in this communication paper. First, challenges
arising from work characteristics to reliable implementation of high-level autonomous production
technologies are explained in terms of work setting, work composition, and work certainty.
This contribution goes beyond previous implementation-specific descriptions, such as those for
driverless cars on public roads. Furthermore, it goes beyond implementation-specific descriptions that
emphasize one particular technology, such as driverless cars: rather than the fundamental importance
of engineering work characteristics to enable realization of reliable autonomous operation. For example,
there needs to be Vehicle–Infrastructure Integration involving smart roads, smart signage, etc., in order
for driverless cars to operate reliably [8–11]. Yet, the fundamental importance of engineering work
characteristics to enable autonomous operation is not communicated in the hype about driverless
cars or more generally in the hype about autonomous systems [62,63]. The second contribution
provided is a definition of strong and weak opportunities for high-level autonomous production in
two industries: manufacturing and construction. The third contribution is an explanation of how
industrial engineering methods and situation awareness modelling can be combined in a critical realist
framework to improve otherwise weak opportunities for reliable high-level autonomous production
systems. In particular, it is explained how weak opportunities can be improved within the practical
constraints of ETO where there are challenges in work characteristics that cannot be addressed through
massive capital investment in enabling engineering for autonomous production. Massive capital
investment in enabling engineering is often not economically viable because all costs need to be
recovered within each individual ETO project. This is very different to the economic viability of
massive financial investment in Vehicle–Infrastructure Integration on main public roads, which can
have millions of users every year for many decades.
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