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Abstract: Decision support systems (DSSs) are used to enhance decision making speed and
effectiveness. However, without a view of the entire system, any decision may have unanticipated
effects, such as sub-optimal outcomes. This paper explores the benefits of applying a DSS over
the analysis of unprocessed data and the effectiveness of integrating a product design generator
(PDG) with a business DSS where system-level effects can be analyzed. Using survey questions and
recording decision makers’ actions, it was found that decision makers are significantly faster and
came to better conclusions when using the DSS over unprocessed data. However, it was also seen that
the difference between the two variants of the system DSS that were used for testing was insignificant.
Overall, this research shows that having a system-level tool is better than the unprocessed data and
that large differences in a DSS are required for improvement between them.

Keywords: decision support system; product design generator; system DSS; multi-disciplinary
decision making; engineering systems

1. Introduction

Decision support systems (DSSs) are software tools that are widely used in industry and are
created to assist individuals in making decisions. DSSs give decision makers the ability to analyze
data rapidly, as well as accelerate their decision making [1–4].

Some recent studies have investigated the enabling technology from DSSs for improving
data analysis in multi-objective spaces. Studies explore topics such as the emotional process of
decision making [5], performing dynamic analysis on temporal (time-dependent) data [6], ‘situational
awareness’ to better understand the performance of different applications [7] and optimization models
for business planning [8]. In the realm of product development, a field more closely related to the
research performed in this study, researchers experimented with how decision makers implement
new products effectively [9] and also discussed creating automated product designs through product
design generators (PDGs) [10,11].

Similarly, research is ongoing into how DSSs increase effectiveness and help with decision making
by focusing the DSS on useful information [12]. These efforts have resulted in the development of
improved systems geared toward many different industries or needs, such as ambulance dispatch
or flood warnings in California [13,14]. DSSs facilitate data fusion to support better decision making
when time for additional data analysis is unavailable.

DSSs have been developed and are used for analysis purposes; however, even with the use
of DSSs, data analysis can have many problems [15]. Some challenges regarding the data include
inaccurate data [16], delayed data [17,18], excessive data [19] and unorganized data [20]. In addition,
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a continuing problem in industry is making effective decisions that take system-wide effects into
consideration [21]. Therefore, the combination of inadequate data analysis coupled with a limited
view of system-wide effects can result in poor decisions and designs. Without proper understanding
of these challenges, many DSSs are underutilized and potentially ill-constructed [22]. Furthermore,
as systems get larger and communications become faster, individuals struggle to understand how to
interpret the exponentially-increasing amount of information [23]. Large amounts of poorly-presented
data can cause decision makers to make worse decisions than if they were presented with less,
but focused data because of the inherent limitations on their ability to interpret all of the data
simultaneously [24]. In other words, the decision makers’ perspective of the system is limited as
the system grows, which further hinders their ability to make good system-level decisions.

Having poor or limited systems analysis can cause problems in engineering and business [25].
An example from the automobile industry illustrates the lack of system communication, analysis
and integration. An automobile company in Detroit analyzed an imported car from Japan to better
understand why the Japanese parts had better precision and reliability at lower cost than the American
cars. In their analysis, they found that the Japanese company had used the same bolt three times
to mount the engine, whereas the American company had used three different bolts for the same
comparable assembly. The Japanese company did not need the additional tools and bolt inventories,
which were used by the company in Detroit; as a result, assembly was faster and less expensive for the
Japanese company. In America, there were three teams of engineers, each responsible for their bolt
and mounting process. Although, in their limited perspective, they each achieved the requirement of
mounting the engine even though each team used a different type of bolt. In contrast, there was one
designer in charge of engine mounting for the company in Japan [21]. The three teams in Detroit failed
to have a view of the impact of their configuration on the system, while the designer in Japan did and
therefore was able to make a better system-level decision [26]. With an increase in the data shared and
analyzed, the effectiveness of system-level decisions increases [27].

Similarly, the lack of a system view can hinder the decision maker from choosing an optimal
solution for the system [28,29]. A common mistake can result from focusing on and optimizing a
specific sub-system or a portion of the design space at the expense of a global optimum across the
entire system. Paradoxically, if every individual sub-system is optimized for efficiency, there is still
no guarantee that the total system would be optimized, and in many cases, it would be impossible to
“optimize” all sub-systems due to differing design objectives [30].

Though the use of DSSs is usually well received, the implementation and use of a system-wide
DSS has not been thoroughly explored. Many would agree that using a DSS is more time effective than
unprocessed data; however, the implementation and use of such tools is limited and in many cases not
developed to account for the entirety of the system it affects.

With effective DSSs, employees at all levels can potentially make improved decisions because
they have a better view of the entire system based on quantitative analysis. Furthermore, using the
data can help the decision maker with system-level decisions [31]. DSSs have become more common in
the past few years, especially with the advancement in computer technology [32]. One way to increase
productivity is by having information dynamically updated because it allows the user to analyze the
data more quickly [33].

PDGs have also been developed for instantaneous product design updates [34]. With these
PDGs, creating a product that is aesthetically pleasing, structurally sound and that meets the design
requirements can be evaluated with respect to its predicted success in the market [35]. Despite these
advancements, the effectiveness of integrating a product design generator with a DSS for system-level
decision making has not been fully explored across all possible interactions, though some articles have
pushed into the realm of product design inside the DSS [36,37].

A DSS, developed for the purpose of testing if a system view can help the decision maker beyond
the non-system DSS, has the potential to overcome the non-system limitations. This system DSS
consists of an integrated product design generator (PDG) and a business DSS. The integration of
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the two shows interactions in the system that may not have been considered previously without the
connection. Using this DSS, experiments were performed to show whether or not it was effective in
increasing decision-making capability. It is hypothesized that the system DSS is a better method than
unprocessed data and singular DSS, because it shows more trends and relationships on interactions
between the design variables and assumptions in the system.

This research will focus specifically on creating an integrated system analysis wherein a new
product is under consideration to be added to a company’s current product lineup. Two high-level
questions guided this research: (1) How much does a system DSS improve decision making
over unprocessed data? (2) What level of system integration is sufficient for communicating and
demonstrating the interactions between disciplines? To achieve this objective, a system DSS was
developed, linking business data with engineering models, and tested to evaluate its effectiveness in
helping with decision making. Experiments and survey questions from test decision makers were
implemented to evaluate the DSS’s measures of performance. To enable this testing, JMP R© [38], a
dynamic graphical software , was integrated with Solidworks R© [39] for product engineering and
MATLAB R© [40] for business optimization.

This paper is organized as follows: Section 2 describes this research’s methodology and
development of the system DSS discussing the PDG, business DSS and the optimization process.
Section 3 summarizes the testing procedure and assessment process. Section 4 discusses and analyzes
the results from the data acquired from the user experiments, and Section 5 contains conclusions,
recommendations and future work.

2. Methodology

The methodology described in this section satisfies a few conditions. It was preferred, though not
necessary, that the system DSS help make a decision in a real-world problem. This was achieved by
interfacing with a company trying to decide if adding a bariatric shower chair to their product lineup
was a good idea. This real-world problem met the criteria of what was needed to justify the exploration
and development of an integrated system DSS, meaning that it had at least two systems, business
and product design, that could be explored. The DSS would be able to support design investigations,
present data trades and interactions and optimize current business practices to increase profitability.
Similarly, the effects between the engineering design parameters and the financial decisions could be
evaluated and compared. The multi-objective system DSS is composed of a product design generator
and a business DSS allowing optimization of the business inputs, both of which are defined in the
following sections.

2.1. Product Design Generator

The product design generator (PDG) is used to assist in the product design process with the
capability of generating thousands of potential designs in near real time [34,41]. The PDG accepts
user-defined inputs and updates the product and all of its specifications dynamically. As mentioned
above, a parametrically-designed bariatric shower chair was selected to support the current decision
faced by the sponsoring company’s decision makers.

2.2. PDG Model Development and Formulation

The PDG uses many different calculations and assumptions to generate designs and specifications.
One key calculation is an estimate of a maximum load Fl in normal conditions on the bariatric shower
chair. This is calculated by using Equations (1) and (2):

V2 = V2
0 + 2ac∆s (1)

Fl = ma (2)
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where the sit velocity V is calculated assuming that the person drops onto the chair from 1.22 m (4 ft),
V0 is the initial velocity (which is 0 m/s), a is the user’s deceleration as they sit, ∆s is the slowing
distance (assumed to be 0.052 m (0.17 ft)) and m is the mass of the chair’s user. This load is then split
across the four legs, with the worst case scenario occurring when the user of the chair sits with most
of his or her weight on one leg. The specific assumption that is made is that the user could apply up
to 77% of the entire load onto one leg when they sit down, with a maximum of 90% of their weight
onto the back portion and 85% onto one of the sides. The factors of safety for buckling were calculated
using the buckling equation shown in Equation (3),

Fb =
πEI
(KL)2 (3)

where F is the maximum critical force, E is the modulus of elasticity, I is the area moment of inertia,
l is the length of the leg and K is the effective leg length factor (which is 5.08 cm (2 in) this case for the
fixed-free loading condition). The maximum critical force was then divided by the worst case force
Fl to calculate the factor of safety FoSb shown in Equation (4). All factors of safety under two were
considered unacceptable to the design and would add penalties to the final profitability if selected.

FoSb =
Fb
Fl

(4)

The factors of safety for stress in the width and depth of the seat base, strength of the back post
and bending in the back were also calculated. A diagram showing the different sections of the chair is
shown in Figure 1. The stress in the seat base was calculated in the x and z directions, where y is the
vertical plane. Boundary conditions were established with fixed points at the leg positions with the
weight set at the center of the seat base. Bending in the back of the seat was calculated assuming fixed
points at the left and right edges of the seat posts and a force applied in the middle of the seat back.
Lastly, a bending calculation was made on the seat support posts, where the weight was focused onto
the top middle of the seat back and the seat posts were fixed.

Figure 1. A screenshot of the chair with the parameterized areas marked.
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The maximum stress σm on the material was calculated using the stress equation shown in
Equation (5),

σm =
Mc

I
(5)

where M is the bending moment, c is the distance to the neutral axis from the edge of the material and
I is the second moment of inertia. The factor of safeties FoSs for the bending conditions was calculated
using Equation (6) where the yield stress σy was that of PVC (5000 PSI [42]) divided by the maximum
stress σm calculated from Equation (5).

FoSs =
σy

σm
(6)

The parametric chair model was updated through a connection to Solidworks R© [39]. This was
accomplished by sending the 10 chair parameters to Solidworks R© [39], updating the chair model with
them and exporting an orthographic image of the chair. One run through the Solidworks R© [39] CAD
update required 20 s to execute; however, this was considered too long to support the near real-time
analysis capability that was desired in the PDG. To enable this capability, the Solidworks R© [39]
CAD model was executed 1500 times using a Latin hypercube to uniformly explore the design
spacing. Images and values were saved for each condition, and a nearest-neighbor algorithm was then
implemented in the system DSS to enable the comparison of the current chair parameters to the closest
parameters of a saved value. Once the nearest condition was found, it was loaded into the DSS. This
was accomplished at a near real-time rate.

A picture collage is shown in Figure 2 to show how the parametric parameterization of the CAD
model works. In this example, we start with a random chair in the bottom-left corner. Going across
the x-axis, the height of the chair back is being increased; going up the y-axis, the seat thickness is
increased. Going horizontally up to the top-right corner, they both increase.

Figure 2. A screenshot of chairs that can be designed through Solidworks R© [39] changing the back
height in the x-axis and the seat thickness in the y-axis.
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Without running the Solidworks R© [39] model every time, the volume initially could not be
calculated. Although the nearest-neighbor algorithm could have functioned for this purpose, a neural
network was used because it provided greater accuracy. Using the same 1500 runs, a neural network
was trained to approximate an equation that could predict the volume of the chair for any input
configuration. With this equation placed inside the DSS, the full PDG could run in near real time.

The unit cost was also calculated inside the PDG by the amount of material used in the chair and
an estimated added manufacturing cost. The investment cost was estimated from similar products
that the company had designed.

2.3. Business Decision Support System

An analysis on the small business [43] with which we partnered was performed using income
and expenditure data from 2006 to 2014 to identify critical parameters and relationships that influence
the overall profitability of the company. Optimizing these critical parameters, a business can make
more profitable choices specifically in areas of product development and investment [44].

2.3.1. Parameter Relationships

The methodology for setting up the small business model involved mapping out the inputs and
outputs of the business to determine how these facets relate inside this business. The model also
involved determining the constraints of the business, which could reflect the long-term financial or
growth goals of the company, as well as any resource limitations.

The inputs of the business have been defined to include those aspects of the company that are
determined or controlled directly by those operating the company. In this case, the inputs included:

• Number of employees
• Employee salaries
• Floor size of working location
• Investment in advertising
• Product lines being sold in various product families
• Product sales markup
• Inventory retained
• Advertising proportion among product families

Each of these inputs is dependent of each other to some extent. The top-level variables, which are
changeable by the user inside the DSS, were chosen by observing which dependencies existed among
all of the variables. The highest-level inputs were chosen to try to minimize making choices of lesser
importance. The top-level inputs that were chosen include the total amount spent on advertising, the
markup per product family, the advertising percentage for each product family and the number of
product lines per product family. The products were separated into four different families for analysis.
This was done rather than individual product lines because the products within each family performed
similarly in terms of sales revenue and other parameters. Furthermore, this greatly simplified the
analysis for the user of the tool. This created a total of thirteen input variables within the business DSS.

The outputs of the business have been defined as the parameters that result from the business
operation inputs. The main outputs include the quantity of each product sold and the overall profit
of the company. All equations and values used in this model were in terms of a yearly summation
(e.g., the annual quantity sold, annual salary or annual advertising cost).

Profit is sensitive to all of the chosen design variables; it was found that advertising, product lines
and markup are all connected to the number of sales. As advertising increases, sales also increase.
With too much spent on advertising, however, the return on investment from that advertising drops,
which is best described by the law of diminishing returns [45]. Similarly, marking up the product
affected the quantity of sales. With an excessive markup, no one buys the product; with too little of a
markup, the business is not profitable.
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JMP R© [38] statistical software was used to analytically determine the relationships between the
many mentioned parameters provided by the small company. The equations relating the various
parameters were determined using fit models of actual past data discretized by year. The equations
determined using JMP R© [38] used in the optimizer include:

• Markup multiplier per product family: Ki

• Quantity of products sold per product family: Qi

The markup multiplier equation per product family was obtained using the quantity sold from
a product family versus markup Mi at that same quantity. The regression equation for these data
followed an inverse relationship, meaning that as the markup increased, the quantity sold decreased.
Four equations were found for these regressions. One equation was made for each of the four product
families; an example is shown in Equation (7). All future examples are values used for the bariatric
shower chair scaled from one of the other lines.

Ki =
1

Mi
(1800)

50
(7)

The quantity of products sold per product family was developed using a two-dimensional linear
surrogate model. This model is a function of advertising expense per product family Ai and number
of product lines per family Li. The markup ratio was used as a normalized scaling factor. Equation (8)
shows an equation generated by the regression.

Qi = 5(Ki((−50) + 0.0004065(Ai) + 200(Li) + (Li − 0.1125)(0.00039193(Ai − 200)))/10) (8)

Further equations that were generated for analysis include:

• Revenue per family Ri;
• Total revenue Rt;
• Product investment Ii;
• Total product investment It;
• Total number of sales Qt;
• Number of employees E;
• Inventory Y;
• Office size F;
• Office cost O;
• Total salary St.

Revenue from one line was calculated by multiplying the projected quantity of sales by the
production cost Pc and the markup ratio as shown in Equation (9). The production cost for the chair
in this instance is passed in by the PDG. In lines other than the chair, it is already determined by the
current cost for the company to make that product.

Ri = QiPc Mi (9)

The total revenue for the company was calculated by adding all of the revenue from the individual
lines as shown in Equation (10).

Rt =
5

∑
i=1

Ri (10)
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Product investment cost for the year was given by the number of new product lines multiplied by
the cost of adding a product line Di and divided by the number of years Y the company plans to pay
off the investment, as shown in Equation (11).

Ii = Li
Di
Y

(11)

The total investment for the company was calculated by adding all of the investment costs from
the individual lines as shown in Equation (12).

It =
5

∑
i=1

Ii (12)

The total number of sales was calculated by adding together the five product line sales as shown
in Equation (13).

Qt =
5

∑
i=1

Qi (13)

The number of employees was determined to be a function of how much work needed to be done
and was defined as the total quantity of products sold in the company divided by a fixed number
of quantity able to be handled per employee. The company stated that the parameter that increased
their need for employees was more sales; based on their current setup, 8000 sales were assumed.
The employee calculation is shown in Equation (14).

E = Qt/8000 (14)

The inventory was calculated as 5% of the total annual quantity sold comparable to their current
sales-to-inventory ratio. This is shown in Equation (15).

Y = 0.05(Qt) (15)

The required space was calculated such as to allow a given square footage per employee and a
given square footage per inventory item, as shown in Equation (16).

O = 400E + 0.375Y (16)

The office cost was simply an annual rental square footage cost per month multiplied by the
calculated office size in terms of square footage multiplied by 12 months, as shown in Equation (17).

C = 0.75(12O) (17)

The total salary cost was calculated as the quantity of employees multiplied by the average
salary S. The salary of each employee was assumed to be $75,000. This is shown in Equation (18).

St = ES (18)

2.4. Problem Constraints

Sixteen different constraints were potentially active in the business optimizer. The constraints
related to business operation included a maximum yearly operating office cost of less that $35,000,
a maximum yearly total salary cost of $350,000, a minimum number of three employees and a maximum
annual product investment cost of $100,000. The advertising cost was also constrained to be 11% of
the total gross revenue, which has been shown in previous studies to be an optimal percentage [46].
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These constrained equations were defined to encourage sustainable growth of the company since
growing too quickly can be detrimental to a business [47].

Additional constraints used for successful optimizer operation included the quantities sold, salary
costs and non-negative revenues. Furthermore, the markup multiplier used in calculating the markup
ratio must be greater than zero, and the total percentage of advertising costs for the different product
families needed to add to 100%.

Constraints were also applied to ensure the optimizer performed within reasonable limits.
These bounds provided limits on advertising, the number of product lines that could be added
per year, the markup ratio and the percentage of advertising cost that could split per product family.
The lower bound for product lines per family is the current amount of products for a given category
(there is assumed to be no cost to retain an existing product line). The upper bound for product lines
per family is two more than the lower bound (except for the bariatric chair, which only has the current
design that can be added) because two is considered the maximum number of product lines that can be
added in a year for a product family due to resources and time required for development. The upper
bound for advertising allocation to a single line is 80%, because all of the advertising should not be
spent on one line.

2.4.1. Optimization

Optimization is a growing field with increasing areas of application. One of these areas has been
to optimize and improve business performance [48–50]. Due to the complex nature of a business,
the actual application of various optimization methods is difficult and generally involves data mining
and the hiring of analysts to break the business down into manageable and related components [51,52].
The costs of such tools can be prohibitively expensive for small, start-up companies [53]. In order for
these companies to remain competitive and have an opportunity to survive in such a market, simplified
optimization methods with readily available information and tools need to be developed. Silva
provided one such example of how optimization can be used to find effective business parameters [54].

While it is possible to attempt a multi-objective optimization through maximizing revenue and
minimizing expenditures, a single-objective optimization to maximize the company’s profit was
sufficient. This approach retained both the aforementioned desired objectives of minimizing expenses
and maximizing sales revenue combined into one objective in the optimization. By reducing the
number of objectives to a single-objective problem, a relatively simple constrained optimization
was able to be utilized to maximize desired profit. The total profit P was calculated using outputs
from many of the previous equations as shown in Equation (19), where At is total money spent on
advertising and Tt is the total material cost.

P = Rt − It − At − Tt − O − St (19)

An optimizer was used to vary the inputs while adhering to constraints to find optimum
input values to maximize the profit of the business. The gradient-based sequential quadratic
programming (SQP) algorithm was used within this optimizer and provided an optimum within
19 major iterations and 343 function calls. For this application, the fmincon optimizer in MATLAB R© [40]
was used, which is an SQP-type algorithm. The optimizer converged to a single solution consistently,
which suggests a properly-formulated problem that avoids ill-conditioned functions. Design
constraints and constraint scaling were used to provide improved optimizer performance.

The outputs of the optimizer included optimum values for total advertising expenditure and
product lines added, markup percentage and distribution of advertising funds in each of the four
product families. Other outputs calculated by the optimizer, which were not design variables, provided
very useful information to the company, including the yearly projected profit, number of employees,
inventory, office costs and total salary expense.
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The established scenario included five product lines. Four of the lines were modeled directly
from past sales; however, the fifth, the bariatric chair, was modeled by scaling down a similar product
line with comparable information. The chosen line upon which to model the chair was the toilet seat
line. This line was scaled down to about one-twentieth under the assumption that the demand for
the bariatric chair is smaller due to it being more specialized than the products in the toilet seat line.
Furthermore, as a new product, it could take some time to build up momentum in sales.

Regarding the fifth product line in the optimizer, the optimizer took in values from the PDG
that were calculated for investment cost, material costs and sales penalties for bad designs. With the
connection between the PDG and the optimizer established, the decision maker could change the chair
parameters to explore the design space and find which chair was optimal for the company needs.

2.5. System DSS

The integration of the business DSS and the product design generator is called the system DSS.
The system DSS is developed in JMP R© [38] and is dynamically updating, meaning that whenever
any input value changes, it updates any related outputs in near real time. For example, if the chair
variables are changed, the adjustments are reflected in both systems. The system DSS is shown in
Figure 3 with the PDG on the top and the business DSS on the bottom.

Figure 3. A screenshot of the final system DSS with the PDG on top and the business DSS on the bottom.

The data flow from the inputs on the left to the outputs on the right in the PDG and business DSS
with the option to save the design at the bottom right of each section. An alternate program such as
Excel R© [55] may have been used to do similar calculations. However, the dynamic nature of the PDG
would not have been as effective as it is in the JMP R© [38] software package, such as in the case of the
updating chair image, some data visualizations and in other capabilities.
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3. DSS Assessment and Evaluation Process

Experimentation and tests were performed to see if an interactive system DSS was effective in
helping decision makers, who were unfamiliar with the product, make decisions. The system DSS was
presented in a specific manner, and survey questions were also given.

3.1. Experimental Procedure

Testers were selected from any number of individuals over the age of 18. There was no needed
requirements to be a tester for this research other than age and basic cognitive abilities. The testing took
place mostly in the BYUEngineering and System Design Lab (BESD) on the BYU campus, where the
software tool was developed. It was also given remotely to those in reach of BYU’s Internet network.

The testing started with the decision maker being given one of two different types of tests.
The first, or unconstrained test is the full system DSS, including the unprocessed data, PDG, business
DSS and scatterplot (the scatterplot is made up of the results of a Monte Carlo analysis that was run on
the full system). The second constrained test is similar except the PDG and business DSS are no longer
on the same viewing area, which means a user cannot watch how making small changes in the design
directly affects the details of the business outputs. Small details are unable to be observed because the
constrained test is guided, meaning that once a user continues to the next section, they cannot go back
and view the changes on what was previously entered. Furthermore, the constrained test does not
have the scatterplot section.

Once given a test, the decision maker starts by viewing the survey questions to get an idea of
what he or she will answer by using the system DSS. He or she is also given instructions to determine if
adding the bariatric chair to the business is a good decision. The next stage of the test is the unprocessed
data stage where the decision maker is able to look at all of the unprocessed data of the company in an
Excel R© [55] sheet. The decision maker can conduct any analysis with this data to find out if it is a good
idea to add a chair in the future. Once this question is answered, he or she moves on to the system
DSS. Here, he or she can change values as desired with the option of using the scatterplot if given the
unconstrained test. Once finished with analysis, he or she is required to answer the questionnaire.
The questions in the questionnaire were generated to discourage decision makers from evaluating this
tool specifically and instead focused on the concept and functionality that was in this tool that could
be added in other tools.

3.2. Survey Questions

Survey questions were given to the decision makers to read before taking the test and then given
again afterwards to answer. These were shown to help them understand what they should be looking
for in the tool. The survey questions are shown in Table 1.

3.3. Event Recordings

The decision maker’s interactions with the tool were recorded by the DSS. All mouse clicks,
information entered and times of these events were recorded. This was ascertained to see if there were
any patterns in the decision maker’s interactions with the tool that caused him or her to make certain
decisions. Furthermore, it can be analyzed to see if decision makers spending time on certain sections
was more beneficial than using time on others. Using this information, more conclusions can be made
about the usefulness of the tool and the different test types. A visual of the recording is shown in
Figure 4.
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Table 1. The average rating for the survey questions from all testers, as well as the chi-square probability
of the question difference between test variants.

# Survey Question Average Rating Prob > ChiSq

1
The tool is interactive in such a way that I was able to make
effective trade-offs between the business and product. 3.95 0.0287

2
The tool helped me make effective decision on which product
to design. 3.98 0.0816

3
The tool helped me find better solutions than the
unprocessed data. 4.41 0.4472

4
The tool is structured in a way that it helped with making system
level decisions. 4.05 2023

5
Business and engineering data are connected in such a way that
the interactions between the two can be seen. 4.16 0.3989

6
The integration of the engineering and business system into one
GUI improved my decision making ability. 4.18 0.4129

7
I was able to analyze more possibilities for designs using the tool
than over the unprocessed data. 4.64 0.6946

8 The tool saved time over using the raw data. 4.57 0.5640

9
The DSS help me gain a better understanding of the effect of
product design on a business. 4.23 0.4315

10 What did you find most useful in the DSS? Open Response -

11 Is it a good idea to add the bariatric chair line? Why or why not? Open Response -

12
How does the overall business change as individual parameters
are changed for the chair? Open Response -

8V
HU

� �� ��� ��� ���
&OLFN

&RGH

%XVLQHVV�'66
)LQLVK
3URGXFW'66
4XHVWLRQQDLUH
5DZ'DWD
6FDWWHUSORW

Figure 4. Users’ clicks and the section of the DSS in which they were made, shown chronologically.
Each row is a different user’s test.



Systems 2017, 5, 14 13 of 19

4. Results and Analysis

4.1. User Testing Sample and Time

A majority of the testers were college students in the 18- to 27-year-old age range. Many were
mechanical engineering students familiar with software tools used in engineering design and analysis.
Although the difference in age, skill level and work experience may have had some effect on the results,
the differences in experience should not have significantly changed the outcomes of the study.

There was a total of 44 testers who volunteered a combined total of 15 h to evaluate the data and
system DSS. The average decision maker took about 21 min to complete the experiment, the longest
55 min and the shortest 9 min.

4.2. Unprocessed Data vs. System DSS

As the testers used the unprocessed data, they generally made a decision based solely on the
information they were provided and engaged in no further analysis of their own. The data contained
nothing but a summation table and the raw data. A few decision makers summed up items that were
not explicitly stated like total expenditures. In general, decision makers looked at the tabled company
data and how it was performing and decided if adding the chair was a good investment. The data
indicated that the company was doing well over the past eight years with consistent growth in revenue
and profit. Many of the testers stated it would be a good idea to add a new product based on the fact
that the company had previously been doing well. When asked if the chair should be added, one user
states “Yeah. The profit seems high enough that you might as well go for more!” This attitude was
representative of other users. A good percentage of other testers stated that there was not enough
information to gauge the demand for this sort of item. When asked the same question, a different user
states “No, because there is not enough evidence that there is demand for this product.”, which is
also a common answer among those that disagreed that the chair was a good investment. Using the
unprocessed data, 73% of the users came to a conclusion; 59% of users would add the chair and 14%
would not. After using the DSS, 45% of the users changed their answer. In the end, 61% of users would
add the chair, 30% would not and 9% did not know. The distribution of the choices users made is
shown in Figure 5. After using the system DSS, 91% of decision makers came to a conclusion, meaning
that 75% of the users who were beforehand unsure were now able to make a decision. This means 45%
of users changed answers, which shows that many were not sure of their answer after using just the
unprocessed data. With the system DSS, they were able to evaluate information that caused them to
change their answer.

4.3. Test Result Analysis

An analysis was performed to compare the users’ best solutions against the optimized solution,
as well as a solution of random selections. Of the 44 testers, 30 had an answer that was comparable to
the optimizer, and all users had answers that were profitable. An average of completely randomized
answers bears highly negative profits, so all users were considered to have chosen better than random
using the tool. This demonstrates that the users did discover solutions that were better than random
and in many cases at the same level as the optimizer.
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Figure 5. A graph of testers’ answers as to whether or not to add the chair after using the unprocessed
data and the system DSS.

4.4. Survey Analysis

At the conclusion of testing, decision makers were asked 12 questions; three were free response
questions, and the other nine were questions that were rated using the following scale: strongly
agree (5), agree (4), neutral (3), disagree (2), strongly disagree (1). The survey questions and the
average rating for each question are shown in Table 1.

It was found that a decision maker could better see the interactions between the business and the
product design from the survey. It was also noted that they were able to better understand the trade-offs
between the two. One tester stated, “I thought the interaction between business and engineering data
was very helpful in seeing the connection between the two.” Comments like these were found for both
system tests even though there was less of an interactive view in the constrained system.

Based on the high average rating for some of the questions, it was observed that decision makers
found the tool to be more effective than using unprocessed data. Decision makers also found that
they had a better view of the system with the DSS than with the unprocessed data. The questionnaire
showed that the hypotheses were correct, meaning it was more effective in time and ability to help a
decision maker find an answer.

Since each of the decision makers was presented with one of the two treatments for the system
DSS (constrained or unconstrained), the differences in answers to the questions across the two groups
could be compared. As shown in Table 1, only the first question, regarding trade-offs, showed a
statistical difference between the perceived interactivity of the constrained and unconstrained system
DSSs. However, it was also noted that Question 5 did not show significance, and because of the close
nature and wording of Questions 1 and 5, the low chi-squared value for Question 1 was discounted.

4.5. Analysis of Test Variants

An analysis was performed using the event recording data shown in Figure 4. The test was
to see whether or not the users spent their clicks in a manner that was statistically different when
using one test variant or the other. It was found, with a p-value of less than 0.0001, that there was
a difference between the two tests as far as what the user was clicking. This is shown in Figure 6.
This was interesting because it showed that the users had spent more or less time on certain sections
dependent on the test variant.
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Figure 6. There is a statistical difference between the items that the users clicked on between the two
test variants. The constrained testers clicked the business DSS options more, and the unconstrained
testers clicked the questionnaire tab more.

It is seen that the constrained users spent significantly more clicks on parameters that were
within the business DSS section. This may have been because users felt overwhelmed with all of the
information being on one page in the unconstrained test, while in the constrained test, the PDG and
business sections were on their own tabs. Conversely, it might have been that when presented with
the PDG and business analysis in the unconstrained test, testers with an engineering background were
perhaps more familiar with the PDG type of analysis, so they spent more time on it.

Furthermore, it is seen that users with the unconstrained test looked at the survey questions
(questionnaire tab) more frequently, which might suggest that they were more interested in what they
were trying to answer than the constrained users.

It was also tested if decision makers had more confidence in their final answers using one test or
another. This was done by rating the user’s written answers, asking whether they would add the chair
or not, on a scale where zero was unsure, one was somewhat confident and two was fully confident.
The results of this test are shown in Figure 7. This was found to have no significant difference.

Figure 7. User’s confidence was tested for each of the test types. There is no statistical difference.
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4.6. Closing the Loop

After this tool was created, it was given to the company that initially had the question about
adding the product. One of the employees of the company went through and did the analysis for
himself. He remarked in the survey about whether or not to add the chair, “Based on the payback
time, it does appear to be a good product to add to our line. We are currently in the process of adding
a chair similar to the one in Troy’s program based on his recommendations.”

5. Conclusions

DSSs have been developed and used in the past; however, the effectiveness of integrating the DSS
with other systems so that it showed the system effects has been given little attention, specifically in the
area of product design and business integration. The system DSS in this research was developed to see
if a system view is more useful than having unprocessed data or a non-system DSS. The system DSS
consisted of an integrated PDG and business DSS. Using these two system tools, the effects of product
design on the business could be analyzed. Results confirmed that the DSS increases the effectiveness
of decision makers’ decisions by helping them better understand the decision they were making over
using the unprocessed data. However, being able to view small dynamic changes in the system did
not help the user come to better conclusions, nor was it shown in the survey that such was the case.
Decision makers rated the tool quite well in the survey questions regardless of the test type. From this,
it can be concluded that the system DSS is in fact more useful than other analysis forms. However,
an interesting conclusion was also made that the two types of DSSs that were presented showed no
difference on the decision maker’s ability to make decisions.

5.1. Recommendations

Due to the favorable response of users in this testing scenario, the authors consider the design
and usage of a system DSS to be useful in industry. Furthermore, the more complex a system is,
the more beneficial a tool becomes. However, in designing a simple product or system, the benefits are
somewhat reduced since developing an entire system DSS takes significant time and effort relative
to how long it takes to do the analysis iteratively. In a scenario where the system being analyzed is
affected by many factors that are hard to visualize (e.g., flash memory devices, military systems), a tool
similar to the one developed could be very beneficial because it will allow the analyst to account for
interactions that would not otherwise be seen.

5.2. Future Work

There is a large amount of work that has been performed in the area of decision support systems,
which is evidenced by the many articles and journals entirely dedicated to the subject. However,
the integration of systems into multi-disciplinary analysis tools is lacking. Adding to this, a focus on
standardization by creating an easy to use framework that can accept numerous types of equations to
assist in the decision maker’s ability to create an interactive DSS could be of great benefit. The principles
of visualization, optimization and dynamic analysis are used in many DSSs, and if functionality were
added to make these tools connect to various datasets and engineering models, additional directions
of research could be particularly beneficial to explore in improving decision making.
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