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Abstract: This paper examines a ship routing problem with pickup and delivery and time windows
for maritime oil transportation, motivated by the production and logistics activities of an oil company
operating in the Brazilian coast. The transportation costs from offshore platforms to coastal terminals
are an important issue in the search for operational excellence in the oil industry, involving operations
that demand agile and effective decision support systems. This paper presents an optimization
approach to address this problem, based on a mixed integer programming (MIP) model and a novel
and exploratory application of two tailor-made MIP heuristics, based on relax-and-fix and time
decomposition procedures. The model minimizes fuel costs of a heterogeneous fleet of oil tankers
and costs related to freighting contracts. The model also considers company-specific constraints for
offshore oil transportation. Computational experiments based on the mathematical models and the
related MIP heuristics are presented for a set of real data provided by the company, which confirm
the potential of optimization-based methods to find good solutions for problems of moderate sizes.

Keywords: pickup and delivery with time windows; maritime transportation; oil industry;
relax-and-fix heuristics; time decomposition heuristics

1. Introduction

Maritime transportation plays an important role in moving large volumes of cargo over large
distances, such as cabotage in certain countries or import and export operations. One of the key
economic activities in the Brazilian coast is oil exploration. The country currently presents a daily
production of approximately 2.7 million barrels, with around 80% of this total volume being explored
in offshore mode [1,2]. An important driver for the Brazilian oil industry is the current exploration of
the pre-salt layer, which is a region of rocks located in deep waters of the Brazilian coast and presents
significant potential for oil exploration. This depth can reach over 7000 m; the term “pre” is used
because these rocks were deposited before the salt layer of the ocean floor. Due to the commercialization
boost of oil products and the discovery of new sources for exploration, oil companies in Brazil are
increasingly facing pressure for cost reduction. Therefore, oil companies are seeking higher levels
of agility and efficiency in their decision-making processes, as well as developing strategies to
better organize their activities for enhanced economic outcomes, especially those activities related to
transportation operations of commodities [3–5]. Within this context, the oil sector requires versatile
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operations from the refineries that are receiving oil to be processed, and this, in turn, is reflected in
larger volumes and tight deadline requirements with which logistics are to comply [6,7].

In this paper, we examine a routing and scheduling problem for oil transportation ships from
offshore platforms to coastal terminals, mainly driven by operations of an oil company operating
in Brazil. An optimization approach based on mixed integer programming is presented to properly
represent the oil pickup at the platforms and delivery at the terminals in the context of this company’s
operation. Relax-and-fix and time decomposition heuristics are also presented to solve the problem
using the GAMS/CPLEX optimization package, in order to capture the fundamental business
requirements and specific characteristic of the company’s highly dynamic environment. Furthermore,
we address a problem that falls into the category of industrial operating mode [8,9]. Some recent
applications of emerging solution methods have been also proposed for tramp operating mode [10,11]
and liner operating mode [12,13]. It should be noted that although there are other related works in
the literature in this line of research, we are not aware of other studies exploring models and solution
methods addressing this specific maritime oil pickup and delivery problem with all its particular
operational characteristics.

This study was conducted in close collaboration with an oil company operating on the Brazilian
coast, so that the problem could be well characterized and validated in terms of market environment
and fundamental characteristics of the current operations. The proposed model captures many
important elements of this real system. However, it is difficult to obtain optimal solutions considering
the size of the real problem instances of the company, a fact that also motivated the development
of specific MIP-heuristic procedures based on relax-and-fix and time decomposition approaches.
This paper is structured as follows: Section 2 highlights studies from the relevant literature on pick
and delivery problems, as well as applications of MIP heuristics based on relax-and-fix and time
decompositions; Section 3 describes the problem studied; Section 4 presents the MIP model to represent
the problem; Section 5 describes the heuristic methods based on relax-and-fix and time decomposition;
and Section 6 presents and analyzes the computational results. Finally, some concluding remarks and
future research prospects are presented and discussed in Section 7.

2. Literature Review

The general pickup and delivery problem (PDP) is based on the idea that a set of routes is to be
built in order to meet specific transportations requests [14]. The nodes in the graph are divided
into either pickup or delivery nodes, and a fleet of vehicles is available. A pickup node poses
a specific demand, which must be collected and respectively delivered to the corresponding delivery
node; therefore, in this problem the number of pickups must be equal to the number of deliveries.
Additionally, the pickup nodes are to be visited before the delivery node, and the pickup-delivery
pair must be positioned in the same route [15,16]. The PDP variant that considers time windows,
namely the pickup and delivery problem with time windows (PDPTW), is also widely described in the
literature (e.g., [16,17]). This problem has allowable pickup/delivery time frames assigned to nodes.
The visit at a node is allowed to begin within a time window defined between the earliest and latest
time specified for visiting the node [16]. Furthermore, the works of [7,15,18–23] provide insightful
details on multiple PDP formulations and applications.

Several heuristics have also been proposed to tackle different variants of PDP problems.
For instance, Bent et al. [24] proposes a two-stage heuristic composed of simulated annealing in
the first stage and large neighborhood search in the second stage with a view toward minimizing total
cost. Additionally, Mitrović-Minić et al. [25] addresses the dynamic PDPTW, in which not all of the
requests are known in advance, by proposing a double-horizon (short- and long-term considerations)
heuristic in combination with insertion and improvement heuristics. The work carried forth by [26]
proposes an extension of the large neighborhood search (LNS) that had been traditionally suggested
in the literature for solving vehicle routing problems with time windows; the heuristic framework
is named the adaptive large neighborhood search (ALNS) and is composed of multiple competing
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sub-heuristics, which are selected according to previous performance. Tabu search has also been
explored in the literature. For instance, Nanry et al. [27] suggest a reactive tabu search procedure
focused on the typical precedence and coupling constraints of the PDPTW.

In the last few years, many studies have also developed MIP-based heuristics to solve
complex problems in optimization. The idea is to decompose the main problem and generate
sub-problems that are easier to solve, relaxing complicating constraints or integrality restrictions.
A widely-known MIP heuristic is the relax-and-fix heuristic described in [28,29]. Several studies
that propose a relax-and-fix heuristic to solve optimization problems can be found in the literature.
For example, relax-and-fix-based heuristics for solving lot sizing and scheduling problems were
proposed in [28,30–34]. The study [35] applied a relax-and-fix based heuristic to solve the travelling
umpire problem, whereas Noor-E-Alam et al. [36] applied the method to solve large-scale grid-based
location, and Kjeldsen et al. [37] optimize the production plan for power-generating companies.

With respect to maritime transportation problems, the first attempts towards building good
solutions were based on linear optimization models [38,39]. Since then, a number of exact solution
methods and heuristics were proposed; some recent reviews can be found in [11,40,41]. Among the
reviewed works of the literature, we highlight the study carried out by [42], which presented a maritime
inventory-routing problem for ammonia pickup and delivery with considerations of time windows,
predefined routes, inventory control and the minimization of shipping cost. The work of [42] and
the references therein provide different views on the general modeling of ship routing problems,
which served as a basis for this work.

Furthermore, Al-Khayyal et al. [43] also studied a maritime inventory-routing problem with
heterogeneous fleet and routing cargo, where the ship’s compartments and the decisions of the
quantities to be loaded/unloaded were also explicitly considered. The work of [44] dealt with
an allocation problem of oil in the context of a Brazilian oil company, which determines boarding plans
for tankers to transport oil from platforms to terminals, in addition to the product allocation plans,
which positions the study within an aggregate planning level (tactical), without detailed consideration
of the operations of ship routing and scheduling. Additionally, [7] studied a routing problem in oil
maritime transportation with load separation, which employed a specific procedure for pre-generating
the routes for the tankers to follow.

The LNS heuristic was also applied to maritime transportation by [45] with considerations of split
loads for tramp shipping companies. Additionally, Bakkehaug et al. [46] applies the ANLS heuristic to
a maritime setting, with a focus on fleet deployment and voyage (i.e., sailing on a route) separation.
A multi-start local search heuristic was proposed by [47] for short-term ship scheduling problems in
the tramp mode. The tabu search approach derived by [48] for ship routing and scheduling problems
is tested and benchmarked against the multi-start heuristic [47]; the tabu search heuristic yields better
solutions for large and tightly-constrained instances. Another tabu search method, considering flexible
cargo quantities, is proposed and presented by [49]. On the domain of dynamic and stochastic problems,
Tirado et al. [50] proposes three heuristic procedures—myopic dynamic heuristic, multiple scenario
with consensus and branch-and-regret—for PDP with dynamic requests and stochastic processes for
the arrival of new cargoes. Additionally, Agra et al. [51] proposes a stochastic approach for maritime
inventory routing with uncertainty in sailing and port service times at the archipelago of Cape Verde.

In this paper, we propose two MIP heuristics. The first one is a relax-and-fix heuristic, and the
second one is a time-based decomposition heuristic. Although these types of heuristics have been
consistently applied towards tackling a number of problems in production planning and control,
as previously described in this section, we emphasize that the only study found in the literature
that applied a relax-and-fix method to a routing problem was presented by [52]. In [52], the authors
propose a modification of the relax-and-fix heuristic and apply it to solve the inventory routing problem.
First, they propose a relax-and-fix heuristic based on time decomposition in order to construct an initial
feasible solution. In order to reduce the effort from repeatedly solving many continuous variables at
the end of the model horizon, the authors propose adopting a simplified linear model or completely
omitting this part of the model horizon. After an initial feasible solution is obtained, an improvement
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solution heuristic, also based on relax-and-fix, is applied. The improvement method consists of
dividing the time horizon into intervals and iteratively removing the fixing of the integer variables in
this interval, then re-optimizing. The computational tests show that the proposed method presents
good quality solutions and a reduction in computational time.

While relax-and-fix-based heuristics are successful when applied to many different optimization
problems, the large size of some real-world problems may present a challenge even to the relaxed
model. In this paper, we present a second decomposition-based heuristic where, at each iteration,
just a subset of the variables is included in the model, while the remaining variables are omitted.
In the next iteration, the variables considered in the previous iteration are fixed, and a new subset of
variables is included in the model. This kind of strategy to reduce the number of variables was also
used in [35,52].

3. Characterization of the Problem

Some of the fundamental characteristics of the particular problem examined in this paper include
a heterogeneous ship fleet and highly-scattered offshore platforms and terminals along the coast. One of
the main issues faced by maritime transportation operations of offshore oil exploration is the scheduling
of ships to meet a set of move requests with origins, destinations and pre-established amounts of
products, defined by the logistics tactical planning of the company. Pickups at the offshore platforms
and deliveries at coastal (onshore) terminals should be performed within predefined time windows
over a planning horizon (i.e., several days to a few weeks in this particular case). Both platforms and
terminals are called “operating sites”.

It is important to highlight that a ship is allowed to perform more than one ordered pickup on the
same visit to a platform, as well as more than one ordered delivery on the same visit to a terminal,
depending on the respective pickup and delivery time windows and the available capacity of the ship.
Each ship may be in a different location at the start of the planning horizon (with known location
in advance) and may end in a different location at the end of such a horizon (with either unknown
or known location in advance, the latter in the case of scheduled maintenance or other operation
for the ship). Most ships are available during the whole planning horizon; however, there may be
ships available only after the beginning of the horizon. In practice, the problem decisions are taken
in a rolling time horizon basis, in which a ship routing and scheduling plan is determined for the
whole planning horizon, but only the decisions in initial time periods are implemented to protect the
operation against uncertainties in the following periods.

An important aspect of the problem is the consideration of oil inventory both in the platforms
and terminals, which is dealt with implicitly through the use of time windows. These time windows
are defined on a more aggregated planning level, in which the variations and limitations of oil
inventory are considered. Platforms hold their own inventory, which may not exceed a specified
maximum operating limit (popularly called “top” by the operators), since it results in a halt of platform
production and incurs prohibitive opportunity costs. This situation arises as a major concern for
the company’s maritime logistics decision-makers. For example, it is assumed that the tops of the
platforms are directly used to determine the time windows, as well as minimum oil inventory levels
for the platforms. This minimum amount of oil is required to ensure physical stability in the platforms
for safe operations. The minimum oil inventory acts as a ballast for the platform. The openings of
the time windows are calculated based on the predefined size of the batch to be collected, the storage
capacity and the specific platform’s production rate. Figure 1 shows an illustration of a graph with
the inventory levels along time. The time window opens when the oil inventory level in the platform
is large enough to fulfill the demand of the order, and it closes 48 h before it reaches the maximum
inventory level capacity, as a strict safety requirement.

Based on the pickup time window, the respective time window for delivery is calculated by adding
to the opening of the pickup time window: (i) 48 h of service time in the platform; and (ii) the estimated
travel time for the ship to arrive at the terminal. This duration of 48 h for service time was suggested
by company experts, and it includes all time spent in docking operations, such as loading time and



Systems 2016, 4, 31 5 of 21

any additional waiting time. Similarly, the end of the time window for delivery in the terminal is
determined by adding to the end of the pickup time window: (i) 48 h; and (ii) the estimated travel
time for the ship to travel from the platform to the terminal.

The objective is to minimize costs related to fuel consumption and freighting contracts. There are
also berthing costs associated with the operating sites; these costs stimulate multiple ordered pickups
(or deliveries) to be performed on the same visit to a platform (or terminal), if the ship’s available
capacity and time windows of these pickups (or deliveries) allow. Since the visit to a platform is costly
and consecutive visits to different platforms pose additional risks to the berthing operations on the
subsequent platform(s), a penalty is also imposed for consecutive visits at different platforms in the
same itinerary. The increased risks emerge from the fact that, in consecutive visits to different platforms,
the ship performs subsequent visits with oil loads from previous visits already onboard. The ideal
situation for the company’s operation would be to encompass a series of sequential platform-terminal
visits for the ships, instead of making sequential visits to different platforms. However, this ideal
type of ship route might render the problem infeasible in many practical circumstances; therefore, it is
important to penalize consecutive platform visits as a way to build feasible solutions while avoiding
higher costs.

The problem can be represented as a pickup and delivery vehicle routing with time windows,
heterogeneous fleet, multiple depots (initial locations of each ship) and multiple visits to each platform
and terminal throughout the planning horizon, accompanied by additional constraints that include
specificities of the operation in this study. As a starting point for modeling this problem, a well-known
formulation for the pickup and delivery problem with time windows [53] was chosen.
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It is important to highlight that since the origins and destinations are predefined by each
origin-destination pair in the more aggregate system planning of the company, the ordered quantities
are therefore input data for the present problem. The maritime transportation of oil derivatives
(such as gasoline, diesel fuel, jet fuel, etc.) is beyond the scope of this paper. Additionally, the fleet of
oil tankers is highly heterogeneous, with different operating costs, maximum and minimum speeds
and capabilities. Furthermore, ships feature three additional characteristics that define their ability to
berth in certain operating sites: (i) ship draft; (ii) the length or LOA (length overall); and (iii) dynamic
positioning devices.

The draft is defined as the vertical distance, taken on a transversal plane, between the lower
end of the ship and the line determined by the intersection of the surface of the water with the outer
surface of the hull. The draft varies as a function of the load onboard of the ship [54]; therefore, it is
possible to limit the loads as a response to draft constraints that might occur in practice (for further
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details on problems addressing draft issues and constraints, see, e.g., [55–57]). The draft constraints
are highly dependent on the terminal’s access channels and the berth’s characteristics. Additionally,
LOA, also known as “length of wheel to wheel”, refers to the distance between the salient points of the
front and rear of the ship, meaning its total length. The LOA and the draft of the ship may impose
constraints on its approach to a terminal. Figure 2 shows an illustration of these two features.
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Some ships also present a system called dynamic positioning (DP), which, according to [59],
maintains floating structures in a fixed position or pre-defined tracks for marine operation purposes
through the use of active thrusters. About 50 different Brazilian platforms allow berthing of all ships
with dynamic positioning, but only a few platforms allow berthing of conventional ships. Additionally,
there are about 10 terminals along the Brazilian coast, with about 20 berths in total, distributed
heterogeneously across the terminals. The berths are specific locations in the terminals, where ships
dock in order to perform cargo loading and unloading. Each one of the berths presents physical
constraints from draft and LOA that should be respected so that the ships are allowed to berth,
since each ship occupies one single berth. However, in practice, as the draft constraint depends on
the characteristics of the access channels and the berths at the terminals, this is done by limiting the
load onboard the ship to a value lower than the maximum capacity of the ship before berthing at
each terminal.

Since the pairs of pickup and delivery are pre-established by the tactical planning of the company,
the routes and schedules of the ships must be determined, and they are therefore configured as
the main decisions for the problem to support. Most importantly, besides allowing one or more
pickups and deliveries in each ship visit to an operating site, this pickup and delivery problem also
differs from most other industrial cases regarding the typical distances involved. In most cases of
oil exploration around the world, the transportation occurs from several producing companies to
several refineries with different rules for responsibility for the freight, typically dealing with very
large distances. In Brazil’s specific case, the same company produces, refines, plans and operates
the transportation, which considerably increases the potential of gains in the logistics operations.
The offshore oil explorations in both the North Sea and the Gulf of Mexico bear reasonable resemblance
to the Brazilian case.

4. Mathematical Model

The formulation presented in this paper uses a known formulation for the pickup and delivery
problem with time windows presented in [53] as a starting point, as well as specific aspects of the
present problem derived from the company’s business rules. As it is common to have multiple
origin-destination pairs scheduled involving the same platform or terminal depending on the length
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of the planning horizon, the ship collects, at each visit, the ordered amount that was previously
programmed in the batch at the platform and delivers this amount to the corresponding terminal
of the origin-destination pair. The problem is represented by a graph, and for modeling purposes,
each one of the pickups and deliveries is represented by different nodes, even when the pickups and
deliveries are made on the exact same operating site. Therefore, although two nodes in the graph may
represent the same operating site, they refer to distinct ship visits for performing one or more ordered
pickups or deliveries on each visit.

Figure 3 shows a schematic representation in which the red nodes represent artificial depots
(initial and final locations) of the ship, while the black nodes refer to real visits to operating sites.
The artificial nodes also have time windows, and the location of the initial artificial depot is defined by
the user. The opening of the time window for the initial artificial depot does not necessarily have to
correspond to the beginning of the planning horizon; instead, it actually corresponds to the moment at
which the ship becomes available for operation. Similarly, the location of the final artificial depot is
also defined by the user, in case the ship has a scheduled maintenance procedure or other operations
to be performed (e.g., transportation of gasoline, diesel fuel, jet fuel, etc.). The beginning of these other
operations corresponds to the end of the time window for the final artificial depot, which, similarly,
does not have to coincide with the end of the planning horizon. Otherwise, if not intendedly defined
by the user, the location of the final artificial depot is assumed to be the same as the last visit of the
ship’s route defined by the model solution; in this case, the distances between the operating sites and
the final artificial depot are simply defined by the user as zero.

It is possible to check the strategy of duplicating the nodes for the scheduled visits in Figure 3.
In this example, a ship leaves the origin artificial depot at Node 1, performs a pickup on a platform at
Node 2 and delivers it to a terminal at Node 3. Later on, the ship visits the same platform for another
pickup, now represented by a new node (Node 4), to deliver the product at the terminal of Node 5 and
finishes its route in the artificial depot, represented as Node 6. Notice that Nodes 2 and 4 refer to the
same operating site, but designate different pickups within the planning horizon.
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It is also noteworthy that the illustrations of the initial and final artificial depots in Figure 3
exhibit an arbitrary placement only for the purpose of diagrammatic representation. In practice,
the ships usually begin and end their work shifts either near terminals or platforms, in areas known
as “anchoring zones”, in which idle ships wait for new requests. However, the modeling approach
applied in this paper also considers situations in which some ships may lie outside of the anchoring
zones at the beginning of the planning horizon, depending on the characteristics of the requests.
It should also be pointed out that the ships travel by routes over the planning horizon, instead of
itineraries, since they do not have to necessarily start and finish at the exact same site (artificial depot).
With that, we can proceed to presenting the mathematical formulation of the proposed model.

The model parameters are:

Indices and sets:

k is an index that refers to ships (k ∈ K). The total number of ships is |K|.
i,j are indices referring to both operating sites (platforms or terminals) and depots.
n is the total number of pickup and delivery pairs (origin-destination pairs).
OP = {1, 2, . . . , n} is the set of nodes where pickups are made (origins).
OD = {n + 1, n + 2, . . . , 2n} is the set of nodes where deliveries are made (destinations); nodes in OD

are labeled as follows: for each i ∈ OP, there is a matching node (i + n), wherein node i ∈ OP refers to
the origin and node (i + n) ∈ OD refers to its destination (i + n). Therefore,

∣∣∣OP
∣∣∣ = ∣∣∣OD

∣∣∣.
O = OP∪OD is the total set of nodes that represent platforms and terminals, |O| = 2n.
S = {s1, s2, . . . , sk} is the set of artificial nodes that indicate the starting node sk of ship k.
E = {e1, e2, . . . , ek} is the set of artificial nodes that indicate the final node ek of ship k.
N = O∪ S∪ E represents all nodes, with |N| = 2n + 2 |K|.
Aik, ∀i ∈ O, ∀k ∈ K is a 0–1 matrix that indicates whether the ship k cannot berth at node i (equal to
one), either due to draft, LOA or other reasons, or if it can berth (equal to zero).
ODP is the set of platforms that only accepts both dynamic positioning ships.
KDP is the set of ships k that feature dynamic positioning.
OFLEX

ik is the set of pairs (i,k), that allow draft flexibility for berthing of ship k.

Parameters:

vk is the average speed of ship k, expressed in knots.
Dist

ij is the distance, expressed in nautical miles, between node i ∈ (S∪O) and node j ∈ (O∪ E).
For representing consecutive pickups or deliveries that are performed in the same operating sites
(either in a platform or terminal), the corresponding distance is set to zero (i.e., Dist

ij = 0).
ts

ik is the service time, in hours, at node i ∈ O serviced by ship k.
[ai, bi] is the time window, in hours, on the start of service at node i ∈ N, in which ai represents its
lower bound and bi the upper bound.
di is the load amount (demand), in m3, to be picked up or delivered at node i ∈ O, which may have a
positive or negative sign. If the demand is positive, it indicates that in operating site i, di units of oil
must be picked up. If this demand is negative, it indicates that in operating site i, di units of product
must be delivered. Note that by convention, di+n = −di.
Cap

k is the capacity of ship k, in m3.
Cs

ijk is the navigation (sailing) cost of ship k between node i and j ($).

CD
j is the fixed cost of berthing in platform or terminal j, in monetary units. If the ship performs

consecutive pickups on the same platform j, the fixed cost is paid only once, when the ship is berthed.
β is a penalty imposed to consecutive visits of the same ship on different platforms in its itinerary,
which is undesirable for the company and should, if possible, be avoided.
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αjk is the percentage of the maximum load allowed for ship k to berth at an operating site j. This value
changes for a ship k berthing at a terminal j ∈ OFLEX

jk ; for a ship k with DP, k ∈ KDP, berthing at a
conventional platform j /∈ ODP; for a ship k with DP, k ∈ KDP, berthing on a platform that accepts only
ships with DP, j ∈ ODP; and for a conventional ship k, k /∈ KDP, berthing at a platform that accepts
conventional ship, j /∈ ODP.
M is a sufficiently large positive integer number used in the linearization of some constraints.

Variables:

xijk is a binary variable that takes a value equal to one if ship k runs through arc (i, j) , i ∈ (S∪O),
j ∈ (O∪ E) and zero, otherwise;
fik is a non-negative real variable that indicates the start time of service on node i ∈ N by ship k.
yik is a non-negative real variable that represents the load amount in ship k at the moment immediately
after the visit at node i ∈ N. In this model, for simplicity, it is assumed that the ship begins and ends
empty within the planning horizon, but the model can be adapted to consider more general situations.

Mathematical model:

Minimize:

∑
i∈(S∪O)

∑
j∈(O∪E)

∑
k∈K

CS
ijkxijk + ∑

i∈(S∪O)
∑

j∈O,Dist
ij >0

∑
k∈K

CD
j xijk + β ∑

i∈OP
∑

j∈OP,j 6=i,Dist
ij >0

∑
k∈K

xijk (1)

subject to:

∑
j∈(O∪E)

∑
k∈K

xijk = 1 ∀i ∈ (O∪ S) (2)

∑
i∈(O∪S)

∑
k∈K

xijk = 1 ∀j ∈ (O∪ E) (3)

∑
j∈(OP∪ek)

xskjk = 1 ∀k ∈ K (4)

∑
i∈(sk∪OD)

xiekk = 1 ∀k ∈ K (5)

∑
i∈N

∑
k∈K

xijk = 0 ∀j ∈ S (6)

∑
j∈N

∑
k∈K

xijk = 0 ∀i ∈ E (7)

∑
i∈(O∪S)

xihk − ∑
j∈(O∪E)

xhjk = 0 ∀h ∈ O; ∀k ∈ K (8)

ai

(
∑
j∈N

xjik

)
≤ fik ≤ bi

(
∑
j∈N

xjik

)
∀i ∈ (O∪ E); ∀k ∈ K (9)

ai

(
∑
j∈N

xskjk

)
≤ fskk ≤ bi

(
∑
j∈N

xskjk

)
∀sk ∈ (S) ; ∀k ∈ K (10)

fjk ≥ fik + ts
ik|Dist

ij >0 +
Dist

ij

vk
+
(
xijk − 1

)
M ∀i ∈ (S∪O) ; ∀j ∈ (E∪O) ; ∀k ∈ K (11)

f(j+n)k ≥ fjk ∀j ∈ OP; ∀k ∈ K (12)

yjk ≥ yik + dj +
(
xijk − 1

)
M ∀i ∈ (S∪O) ; ∀j ∈ (E∪O) ; ∀k ∈ K (13)

yjk ≤ yik + dj +
(
1− xijk

)
M ∀i ∈ (S∪O) ; ∀j ∈ (E∪O) ; ∀k ∈ K (14)
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∑
i∈(S∪O)

xihk = ∑
j∈O

xj(h+n)k ∀h ∈ OP; ∀k ∈ K (15)

yjk ≤ Cap
k ∑

i∈(S∪O)

xijk ∀k ∈ K; ∀j ∈ (O∪ E) (16)

∑
k∈K

yskk + ∑
k∈K

yekk = 0 ∀k ∈ K (17)

xijk = 0 ∀i, k ∈ A (i, k) (18)

yjk ≤
(
αjkCap

k + dj
)
+

1− ∑
i∈(O∪sk)

xijk

M ∀ (j, k) ∈ OFLEX
jk ; ∀ (j, k) ∈ A (j, k) ; ∀k ∈ K (19)

yjk ≤ αjkCap
k + dj +

(
1− αjk

)
Cap

k

1− ∑
i∈(O∪Sk),Dist

ij >0

xijk

 ∀k ∈ KDP; ∀j ∈ OP (20)

yjk ≤ αjkCap
k + dj +

(
1− αjk

)
Cap

k

1− ∑
i∈(O∪Sk),Dist

ij >0

xijk

 ∀k /∈ KDP; ∀j /∈ ODP (21)

∑
i∈(ODP∪Sk)

xijk = 0 ∀k /∈ KDP; ∀j ∈ ODP (22)

xijk ∈ {0, 1} ∀i ∈ (S∪ C) , j ∈ (C∪ E) ; ∀k ∈ K (23)

fik ≥ 0 ∀i ∈ N; ∀k ∈ K (24)

yik ≥ 0 ∀i ∈ N; k ∈ K (25)

The first part of the Objective Function (1) incorporates variable fuel costs incurred during the
movement of the ships; the second part of the function represents the fixed costs of platforms berthing,
and the latest part penalizes consecutive berthings at different platforms due to its high associated cost.
Constraints (2) and (3) ensure that all operating sites are visited exactly once. Constraint (4) ensure
that all ships leave their artificial origin depot, sk. If a ship does not perform any visit, it leaves the
depot and goes directly to its artificial final depot, ek. Constraint (5) ensure that all ships arrive at their
artificial final depot, ek. Constraints (6) and (7) guarantee that no ship enters the artificial initial depot
and no ship goes out of the artificial final depot, respectively.

Constraint (8) ensure that if a ship k has reached a node referring to an operating site, this ship
must leave this node; also known as the flow conservation constraint. Constraint (9) certify that the
upper and lower bounds of the time windows for both the artificial depots and the final operating sites
are met. Similarly, Constraint (10) ensure that the upper and lower bounds of the time windows of
origin artificial depots are met. Constraint (11) limit the exact instant in which ship k, coming from the
operating site i, starts its service at the operating site j (the notation ts

ik|Dist
ij >0

means that parameter ts
ik

is added to the right-hand side of Constraint (11) only if Dist
ij > 0). These constraints avoid a sub-tour

in the model’s solution. Constraint (12) guarantee that a certain load will have its pickup performed
before the respective delivery. Constraints (13) and (14) refer to the load balance of ship k. Note
that these constraints are related to the linearization of the following equality: xijk

(
yik + dj − yjk

)
,

∀i ∈ (S∪O) , j ∈ (O∪ E) , ∀k ∈ K.
Constraint (15) ensure that if ship k picked up a load on node h (platform), then it needs to

perform a visit on node h + n (terminal). Constraint (16) ensure that the capacity of the ship is
respected. The previously stated observation that the ship begins and ends empty is guaranteed
by Constraint (17). Constraint (18) prevents ships from berthing at nodes where there are physical
impediments, whether in draft, LOA or others. This constraint is guaranteed by the previous definition
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of matrix A (i, k). Constraint (19) limit the load in case the terminal presents draft constraints for
berthing ships. Constraint (20) are used for the first case of dynamic positioning, in which there
is a ship with dynamic positioning berthing in platforms. Additionally, Constraint (21) refer to the
second case, in which a conventional ship berths at a platform that allows this type of ship. For the
third case, in which a conventional ship cannot berth in a platform that only accepts ships with
dynamic positioning, Constraint (22) are used. Finally, Constraints (23)–(25) refer to the domains of the
model variables. Models (1)–(25) properly capture a number of important features of the company’s
practical operations. Some of them are: (i) the criteria of costs and penalties to be optimized in the ship
routing; (ii) considerations of fuel consumption in terms of freighting contracts; (iii) the treatment of
the platforms’ inventories (tops) through the use of time windows; (iv) the high heterogeneity of the
fleet and their respective capabilities and limitations; (v) rules of ship berthing at different platforms
and terminals considering flexible drafts and dynamic positioning, among others.

However, there are also some simplifying assumptions that were considered in this mathematical
formulation. For instance, the model does not take into account the compartmentalization of ships in
order to simultaneously transport different products, but considers the ability of the ship in aggregate
form. In some cases, products of different platforms may be mixed in the same compartment of
the ship; some ideas for the proper extension of the model to incorporate such constraints of the
incompatible mixture of products transported in a ship can be seen in [60]. The model also admits that
the time windows of both the platforms and terminals are rigid because they implicitly consider the
inventory constraints of ballast and the tops of the platforms, the demands of terminals, and hence,
penalties for time window violations are not applied. As a result of the origin-destination approach,
split loads are not allowed, a characteristic that would alter the general description and approach of
the problem to a supply-demand fashion, in which the amount to be picked up or delivered at each
visit in operating sites would be modeled as decision variables.

5. MIP Heuristics

5.1. Relax-And-Fix Heuristic

Heuristics based on mathematical programming, also known as MIP heuristics or primal
heuristics, are procedures that can be implemented directly in the solution methods used by
optimization solvers available in commercial software. The main purpose is aimed at creating
alternative paths for finding relatively good integer feasible solutions in situations where exact
methods are not suitable or take too much time to find an optimal solution. A widely-known MIP
heuristics is the relax-and-fix heuristic proposed by [29]. According to [61], the relax-and-fix heuristic
assumes that a set of binary variables y of an MIP can be partitioned into R disjoint sets of decreasing
importance, given by Q1, . . . , QR. Then, the corresponding R MIPs can be solved, denoted by MIPr,
with 1 ≤ r ≤ R, in order to find a heuristic solution to the original MIP. On the first round, MIP1,
an integrality condition is imposed only on variables in Q1, and the constraints of integrality of the
remaining variables in Q2, . . . , QR are relaxed. In the following MIPr, the variables y in Qr−1 are fixed
at their optimal values obtained in MIPr−1, and the integrality constraint is added only to variables
in Qr.

MIP heuristics are widely applied in the contexts of production planning and scheduling, in which
the classical partition of variables is the time index (discretized). However, it is important to emphasize
that when reviewing the literature on the applications of these heuristics in the context of the routing
and scheduling of vehicles, only the study presented by [52] was found. In that paper, the time was
discretized to facilitate the application of the relax-and-fix heuristics, similarly to the procedures
applied in problems of production planning and scheduling. The authors also claimed that they
did not find any other works in the literature exploring the application of these methods in routing
problems, which also motivated the present study with the application of the relax-and-fix heuristic to
the continuous time problem addressed here.
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The strategy adopted to apply the relax-and-fix heuristic is based on the forward time-based
division of the problem, exploited by other implementations of this algorithm in other problems
described in the literature. As Models (1)–(25) deal with continuous time, the time-based division
can be done by arranging the time windows [ai, bi] along the planning horizon. Figure 4 shows
an illustration of the operation of the time-based forward relax-and-fix heuristic with time window
partitioning. Notice that the time intervals 1, 2, . . . , n, are of different sizes, depending on the time
windows chosen. Initially, pickup requests are sorted in increasing order, according to the opening
of the pickup time window (ai). Then, the m first pickup requests are selected. As these pickups are
associated with their respective deliveries, the algorithm enforces the integrality of the variables of the
arcs adjacent to both of these pickups and deliveries and relaxes the integrality of the variables of the
arcs adjacent to the remaining pickups and deliveries, which have not yet been selected and are in the
ordered list. Then, the resulting MIP, smaller than the original problem, is solved, and the variables
of the arcs that are adjacent to previously-selected nodes are fixed to their integer values, except for
those variables related to the arcs that connect the initial and final depots. If there are no variables
with integer values, the decomposed problem is infeasible, and the algorithm stops.
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This procedure is repeated until there are no more pickup requests in the ordered list to be
allocated to ships. This procedure does not fix the variables that connect the initial and final depots of
the ship along the algorithm iterations, so that the heuristic is able to insert nodes at any position of
the route until the last iteration, in which the variables of the arcs of the initial and final depots are
finally set to integer values. A simplified step-by-step description of the algorithm is given below.

Step 1. Sort all pickups in ascending order of ai;
Step 2. Select the m first pickups with the earliest starts ai, which have not been selected before;
Step 3. Enforce the integrality of the xijk variables related to the m pickups selected in Step 2 and
their corresponding m deliveries, including the variables xijk with i ∈ S or j ∈ E related to these
pickups and deliveries;
Step 4. Relax the integrality of the xijk variables related to the pickups still not selected in Step 2,
as well as to their corresponding deliveries;
Step 5. Solve the resulting MIP;
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Step 6. Fix the xijk variables resulting from the MIP solution of Step 5 to their integer values,
except the variables xijk with i ∈ S or j ∈ E related to the m pickups selected in Step 2 and to their
corresponding m deliveries;
Step 7. Repeat Steps 2–6 until there are no remaining pickups in the ordered list.

As is suggested in this paper, the relax-and-fix heuristic resembles the rolling horizon approach
often used in practice (see, for instance, [62]). Other variations of the relax-and-fix heuristic could also
be applied to solve this problem. For example, a variation based on the partition of the group of ships
was also explored in [60], but the results were not better than the forward time-based partition based
on the algorithm above.

5.2. MIP-Heuristic Based on Time Decomposition

Another simple MIP-heuristic was also developed using the same strategy of decomposing the
problem into smaller sub-problems that could be solved faster. In this decomposition approach,
each sub-problem considers all sub-problems of previous iterations and the variables of these
(formerly solved) sub-problems that had already been fixed, just as in the relax-and-fix heuristic
previously described. However, each sub-problem is now solved independently from the sub-problems
of next iterations, whereas in the relax-and-fix heuristic, the future stages of the problem are taken
into account in a relaxed form when solving the current stage. The objective of this decomposition
strategy is to find an integer feasible solution for difficult larger problem instances; this solution may
be improved using it as an initial feasible solution in some other method.

In order to decompose the original problem into several sub-problems, the developed strategy
was also based on time decomposition. The sub-problems are chosen from an organized list according
to the start and end of the pickup time windows in the platforms, with all ships available in each
iteration. As each sub-problem takes into account all sub-problems of previous iterations, it also
considers the routes previously allocated by the procedure to these sub-problems. The pseudocode of
the decomposition approach is presented below.

Step 1. Set the amount of sub-problems W and calculate the amount of pickups in each iteration
w = 1, 2, ..., W using m = |OP|/W;
Step 2. Sort all pickups in ascending order of ai. Break ties by choosing requests with a smaller
value of (bi–ai) first. Set w = 1;
Step 3. Select the first m pickups (and their respective m deliveries) that were not chosen in
previous iterations from the sorted list. For all ships k, add nodes sk and ek;
Step 4. Build the MIP model corresponding to the sub-problem of iteration w, composed of
all pickup-delivery pairs of previously-solved sub-problems (with their routes already fixed
according to Step 6), plus the m pickup-delivery pairs selected in Step 3;
Step 5. Solve this MIP model;
Step 6. Fix all routes corresponding to the solution found in Step 5, except those arcs with variables
xijk with i ∈ S or j ∈ E;
Step 7. Increment w←w + 1. Repeat Steps 3–6 until the last iteration W is executed, when the
variables xijk with i ∈ S or j ∈ E are finally fixed.

Table 1 shows an example of the decomposition of a system with nine pickups and three platforms.
All of the pickups are sorted in ascending order by the opening of time windows (ai). Notice that
pickups numbered 7 and 1 have the same time window opening, so the tie is broken by choosing the
earlier time window end (bi); Pickup 7 has an earlier end is therefore chosen, after which the sequence
of the decomposition is defined. In this case, the nine pickups were divided into three sub-problems
with three pickups each. In the first iteration of the algorithm, the routing problem is composed of all
ships and only the pickups and their respective deliveries of Sub-problem 1. In the second iteration,
the MIP uses the solution of Sub-problem 1 as a fixed solution and defines the pickups and deliveries
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of Sub-problem 2 as variables. The algorithm repeats this process until the last sub-problem is reached.
If the sub-problem is infeasible, the algorithm stops.

Figure 5 presents the time windows of all pickups represented in Table 1. Notice that the colors
show the pickups of each sub-problem used for each iteration of the algorithm.

Table 1. Example of a time decomposition.

# Pickup Opening of Time Windows (ai) End of Time Window (bi) Platform Sub-Problem

2 0 3 P-01 1
5 1 4 P-02 1
7 4 6 P-03 1
1 4 8 P-02 2
3 6 10 P-01 2
4 8 10 P-03 2
6 10 13 P-02 3
8 11 14 P-03 3
9 12 15 P-01 3
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6. Computational Results

The Models (1)–(25) of Section 3, along with the relax-and-fix and decomposition heuristics of
Section 4, were initially tested by solving various problem instances of small sizes. The details of these
experiments can be found in [60]. After verifying the consistency and correctness of both the model
and the two heuristics in these small examples, they were tested to solve larger problem instances with
real data provided by the company, with 16, 22 and 44 pairs of pickup and delivery requests, named,
respectively, N16, N22 and N44, all with |K| = 25 ships. These instances correspond to few days of
operations, depending on the instance: around three days for N16, seven days for N22 and fourteen
days for N44. Table 2 presents the results of the experiments with the model.

For all tests, a Dell Precision T7600 CPU E5-2680 2.70-GHz and 192 GB of RAM workstation
with Windows 7 Professional operating system was used. The codes were implemented in GAMS
24.0 and solved by CPLEX 12.5.0 under academic license and using the default parameter values.
The maximum time limit was set to 18,000 s (5 h), with the 32-core processing option enabled.
Furthermore, other experiments were conducted exploring variations in the CPLEX parameters
beyond the default values, such as: (i) the activation of local branching (LB) and relaxation-induced
neighborhood search (RINS) heuristics; (ii) changes in the solver emphasis from feasibility to optimality;
and (iii) shutdown of the CPLEX preprocessing procedure. However, the results obtained from these
particular experiments did not significantly improve the results of Table 2.
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Table 2. Results of the model using GAMS/CPLEX for problem instances N16, N22 and N44.

# Instance # Ships Used # Constraints
#Variables

Gap (%) CPU Time (s)
Integers Continuous

N16 10 420,930 7793 340,304 0 57
N22 13 589,362 14,482 446,504 0 5280
N44 - 1,454,611 72,543 959,104 - -

For the instance N16, with thousands of variables and constraints, CPLEX was able to obtain
an optimal solution meeting all 16 pickup and delivery requests in less than 1 min of runtime and
using 10 out of the 25 available ships. For the instance N22, CPLEX was also able to obtain an optimal
solution meeting all 22 pickup-delivery requests, but in a considerably longer time, 5280 s (or 1 h and
28 min) and using 13 ships out of the 25. However, increasing the number of pickup-delivery pairs
to N44 (with millions of variables and constraints), CPLEX was not able to find a feasible solution
within the time limit of 5 h of processing. Notice that these larger instances are extremely difficult in
terms of finding a feasible solution in practice, due to the constraints regarding tighter time windows,
berthing incompatibilities of several ships at different operating sites, among others. In fact, it is
difficult for the company to find feasible solutions to these instances in real decision-making situations
without having to partially relax some of the problem constraints.

Figure 6 depicts the variation of the model solution values over time, taking N22 as an example.
Note that the first feasible solution for the model was found within 44 s. An optimal solution was
obtained only after 2255 s of processing, and it was proven optimal only after 3025 s, totaling the 5280 s
of processing in Table 2. This result indicates that CPLEX can find optimal solutions long before it can
actually demonstrate and prove optimality.
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For illustration purposes, Figure 7 depicts the optimal routes found by CPLEX for the N22
example using 13 ships. Notice that the route nodes correspond to pickups in platforms (left-hand side
nodes) and deliveries in terminals (right-hand side nodes), totaling 22 pairs of pickups and deliveries.
Hence, consecutive pickups (deliveries) in the same platform (terminal) in Figure 7 represent in fact
a single visit to the platform or terminal, so that docking costs are incurred only once. The number in
parenthesis that follows the ship number is the ship capacity (in m3), whereas the number at each node
is the oil quantity loaded/unloaded in each platform/terminal. For instance, when collecting 70,000 m3
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of oil at platform 38, Ship 11 cannot be loaded with more than half of its capacity because of the
dynamic positioning Constraints (20)–(22). The solutions obtained with the model were submitted to
the evaluation of company experts, who indicated that the model actually represents realistic decisions
within the company’s operations, and they also emphasized the high potential for practice application.
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6.1. Computational Results from the Relax-and-Fix Heuristic

For tests with the relax-and-fix heuristic, the same problem instances N16, N22 and N44 were
used. For each of them, step values (m) as multiples of the total requests amount (n), were defined, so
that all iterations work with the same number of requests. The optimality gaps were also calculated
based on tests N16 and N22 with the optimal solutions known from Table 2. Table 3 summarizes the
results obtained for these instances with the relax-and-fix heuristic tests.

Table 3. Results of the relax-and-fix heuristic for problem instances N16, N22 and N44.

# Instance # Ships Used Gap (%) CPU Time (s)

N16, m = 8 12 14.36 24
N22, m = 2 14 11.16 646
N22, m = 11 13 1.45 200
N44, m = 2 - - -
N44, m = 4 - - -
N44, m = 11 - - -
N44, m = 22 - - -
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For instances N16 and N22, a time limit of 10 min (600 s) for each iteration of the relax-and-fix
heuristic was established. For instance N16, feasible solutions were found in the last iteration of the
algorithm in short computational times, however with optimality gaps larger than 10%. For instance
N22, although the computational times were much lower than the computational time spent by
CPLEX to optimally solve the N22 model, the optimality gaps were also greater than zero. A point to
notice is that, in each iteration performed by the current implementation of the relax-and-fix heuristic,
the GAMS package spent a certain amount of preprocessing time that is not directly dedicated to
computational processing, accounting for about 2–10 s for each of the iterations, depending on the
size of the problem. These preprocessing times could be reduced by developing a more sophisticated
computational implementation.

These tests show that, as expected, the larger the m, the better the performance, both in terms of
gaps and processing times. This may indicate that it is preferable to use larger steps (m) to minimize
the time of re-processing in each iteration, as well as to prevent the problem from searching for local
optimal solutions, represented by a smaller number of pickup and delivery requests. For the largest
instance N44, no feasible solutions for any size of the partitioned problem were found with the forward
time-based strategy. Since this is a relatively large and constrained problem from the perspectives of
both time windows and berthing incompatibilities, it is very difficult to obtain a feasible solution for
this instance. Time limits of 10, 30, 60 and 90 min for each iteration were also tested, but none of these
tests resulted in feasible solutions.

Aiming at testing the capability of CPLEX to accelerate the convergence to the optimal solution of
Models (1)–(25) when using an initial feasible solution, a new test was performed. The solutions with
smaller gaps obtained for instances N16 and N22, respectively N16 with m = 8 (14.36% gap) and N22
with m = 11 (1.45% gap), were inserted in the CPLEX solver as initial feasible solutions for instances
N16 and N22 and then run for optimality. For instance N16, the CPLEX solver with this initial heuristic
solution took 70 s to find and prove the optimal solution, compared to 57 s (Table 1) required by the
CPLEX solver without using this initial solution. For instance N22, CPLEX found the optimal solution
and proved its optimality in only 22 s, compared to 5.280 s (Table 1). These results indicate that a good
strategy for solving problems of moderate size could be to initially run the relax-and-fix heuristic and
then insert the obtained solution as a starting feasible solution for the model solution via CPLEX.

6.2. Computational Tests from the Time Decomposition Heuristic

Table 4 presents the results for the time decomposition heuristic when solving the same instances
of the relax-and-fix heuristic (N16, N22 and N44). This heuristic was finally capable of finding a feasible
solution for the N44 instance, with m = 11, m = 4 and m = 2. For m = 22, no feasible solution was
found. These solutions from the time decomposition heuristic for N44 were inserted as initial feasible
solutions in Models (1)–(25), but CPLEX was unable to improve these solutions within 5 h. The results
of Table 3 showed that the decomposition heuristic had a performance equal to or better than the
relax-and-fix heuristic, considering that the main objective of both heuristics was to find relatively
good feasible solutions quickly.

Table 4. Computational results for the time decomposition heuristic.

# Instances Number of Iterations # Ships Used Gap (%) CPU Time (s) Objective Function

N16, m = 8 2 10 0.51 23 2169.76
N22, m = 11 2 14 13.42 45 3047.00
N22, m = 2 11 14 10.20 99 2960.70

N44, m = 22 2 - - - -
N44, m = 11 4 21 - 1980 6489.27
N44, m = 4 11 22 - 247 7722.78
N44, m = 2 22 20 - 484 7476.33
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Notice that for experiments with smaller sub-problems (smaller m), the CPU time is significantly
shorter for bigger instances, like N44. The results suggest that is faster to solve bigger instances with
many smaller sub-problems than few bigger sub-problems. However, the objective function has the
opposite behavior for different values of m regarding the N22 and N44 instances. Therefore, the results
suggest that it is necessary to perform experimentation with each instance to find good values for m,
according to the objective value and CPU time.

7. Concluding Remarks

This paper presents an optimization approach to the routing and scheduling problem of ships
for oil cabotage, motivated by the practical problem of an oil company and based on an MIP model,
accompanied by relax-and-fix and time decomposition heuristics. The problem is a pickup and delivery
with time windows, a heterogeneous fleet, multiple depots (initial and final locations of each ship) and
multiple visits at each platform and terminal over the planning horizon. Additional constraints based
on business rules include operation specificities of the case under examination, as constraints related to
ships with flexible drafts and terminals and devices of the dynamic positioning of ships and platforms.
The MIP model captures and appropriately represents important and fundamental features of the
problem within the context of oil cabotage. The model makes use of: (i) predefined time windows to
relieve the oil inventory at the platforms and to meet the oil demands from the terminals; (ii) rules of
berthing at different types of platforms and terminals; and (iii) considerations of fuel consumption.

The MIP model was able to obtain optimal solutions for real problems of small to moderate
sizes using the GAMS/CPLEX optimization package, which is an interesting result of this study and
configures a contribution for the application of such an approach within similar contexts of maritime
transportation. However, the model failed to obtain feasible solutions to larger problem instances.
The relax-and-fix and decomposition heuristics brought advantages in computational processing in
terms of solving the model along with CPLEX and using their feasible solutions as initial solutions to
the CPLEX model, although the gaps obtained with these heuristics may be larger than the expected
gaps from using other heuristics, such as tabu search or ALNS, for similar maritime PDPTW. The results
suggest that the proposed approach has the potential to produce reasonably good solutions to problems
of moderate size in acceptable computational times in practical settings. For larger instances, only the
time decomposition heuristic was capable of finding feasible solutions.

Some perspectives for future research are: (i) improvements in the relax-and-fix heuristic, such as:
implementation of backward and overlapping strategies in the present time-based partition strategy;
implementation of other strategies, such as partitioning ships, based on different criteria for the
ordering of the list of available ships according to their costs and capabilities; (ii) improvements in the
decomposition heuristic, such as: implementations exploring backward scheduling and geographical
decomposition; (iii) the combination of these relax-and-fix and decomposition heuristics with local
search heuristics to improve the integer feasible solutions, such as fix-and-optimize heuristics, in order
to solve larger problem sets; (iv) the exploration of an alternative formulation for the pickup and
delivery problem using discrete time, as opposed to continuous time, and the adaptation of the present
heuristics to this alternative formulation. Additionally, further tests on the heuristics can be carried
out through the use of the existing benchmark instances for maritime PDP.

Another possible future research direction would be to work on alternative modelling approaches
to the problem; for example, through investigating alternative descriptions of the oil supply-demand
setting, in which the oil inventory control across platforms and terminals is explicitly considered
in the model and the oil quantities to be transported become decision variables, characterizing the
problem as an oil inventory-routing problem [42,43,63]. For instance, see also the conversion between
inventory routing problems and cargo routing problems [64]. Furthermore, the integration of this
inventory-routing problem with the refineries’ production planning could be explored, a feature that
would provide the model with a more general characterization in terms of supply chain planning and
scheduling across different decision-making hierarchy levels.
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