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Abstract: Complex systems are composed of a large number of individual components. Many of
these systems are separable, i.e., they can be split into two coupled subsystems: one with foreground
components and another with background components. The former leads to narrow peaks in the
frequency spectrum of the system and the latter gives the broad-band part. There is coupling between
the two subsystems, but they can be studied separately for purposes of modeling and for analysis of
experimental data. Examples from the literature are given from the area of mechanical vibrations, but
the approach is quite general and can be adapted to other kinds of problems.
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1. Introduction

Complex systems are composed of a large number of individual components or elements. If any
measurements are made, the measuring instruments are also part of it and contribute to the complexity
of the system. Individually, the components of the dynamic system may be easy to model, but taken
together they give rise to a large number of coupled equations that become virtually intractable. This
is the main reason why the dynamic behavior of a complex system is often obtained experimentally.
An example of a complex mechanical system is an automobile. Vibrations at one or more points on the
vehicle can be measured using accelerometers while it is being driven along the road. The output of
the system are the vibrations of the automobile, while the roughness of the road surface, combined
with the vehicle’s motion is the input.

Generally, in the dynamics of physical input-output systems it is common for time responses to be
measured, from which the frequency spectrum is then calculated. We will consider complex systems,
that we will denote as separable, for which the spectrum has narrow- and broad-band parts as shown
schematically in Figure 1. Separated spectra can be observed in published data in many mechanical
vibration experiments. As examples, one can cite vibrations in the body [1], seat [2], gearbox [3] and
external mirrors [4] of automobiles, cavitation in pumps [5], in ship-borne antennas [6], in operating
wind turbines [7], in heat exchanger tube banks [8] and in vortex-induced vibrations in tensioned
steel risers [9]. There are of course many other examples. The difference between the narrow- and
broad-band parts of an experimentally-measured spectrum can be clearly seen in some situations such
as vortex shedding due to flow. The narrow-band spikes are due to the vortex shedding itself and the
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broad-band due to background turbulence; wall pressure measurements clearly show the difference
between the two [10].
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Figure 1. Typical frequency spectrum of separable system; P( f ) = power spectral density,
f = frequency.

There are even some low-dimensional mathematical models that show both types of spectra.
For instance, the Rössler equations, ẋ = −y − z, ẏ = x + 0.2 y, ż = 0.2 + xz − Cz, have been analyzed
in [11], and for C = 4.60 one can see that the spectrum has both narrow- as well as broad-band
characteristics. In fact the authors observe that “A remarkable feature ... is the presence of sharp
frequency components in a chaotic attractor [and] ... the spectrum retains a peak which appears to be
instrumentally sharp. We believe this to be a feature of some attractors whose branched manifolds are
simply connected ...‘’.

It is proposed here that, in a separable complex system, the system can be divided into at least
two coupled subsystems: one has components that are in the foreground and the other are those in
the background. The foreground components provide a frequency response that has a small number
of sharp, narrow peaks, while the background has a broad-band spectrum. The system can then
be schematically separated into subsystems as illustrated in Figure 2. The dashed lines are the two
subsystems with a coupling between them. It must be remembered that the separation is merely
conceptual for modeling and data-analysis purposes, and may not be truly physical. The conceptual
advantage of the separation is that the foreground and background components and subsystems
can be studied and understood separately. They may have completely different physical and thus
mathematical representations.
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Figure 2. Separation of complex systems. S = system, I = input to system, O = output of system,
F = foreground subsystem, B = background subsystem, C = coupling between subsystems.
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2. System Separation

2.1. Foreground Subsystem

The components in these subsystems are few and easily identifiable. One of the main
characteristics of these components are their natural frequencies, and hence the possibility of resonances
with external forcing. Another feature is in-phase or out-of-phase synchronization between the
components [12–14]. The foreground can be studied by a single- or multiple-degree of freedom
oscillatory analysis such as aẍ + bẋ + cx = F(t). Resonant frequencies and time responses to external
forcing can be determined.

One can also use the principle of separation to analyze experimental data obtained from the
dynamic response of a complex system. In fact, this is implicitly the way that complex systems are
commonly studied. For instance, if one is interested in the foreground components, the broad-band
part of the spectrum is usually filtered out as noise. It must be remembered, however, that the
response of the foreground components is appropriately affected by energy transfer within the
background components.

2.2. Background Subsystem

The response of the background components is sometimes dismissed as noise, especially if one is
interested in the foreground components. Referring to the generic sketch in Figure 1, it can be seen that
the background amplitudes that are responsible for energy transfer can be quite low and hence easily
confused with noise. However, even in this context, the background components may transfer energy
between the foreground modes and thus feed their growth. The transfer of energy between frequencies
in the background subsystem is, in principle, nonlinear. The background model can be either equations
with self-generated nonlinear chaos [15] or linear equations with stochastic inputs [16].

With experimental data, if one is interested in the background components, then the response of
the foreground components can be filtered out. Again, the foreground components serve as a sink
for background energy and in this fashion participate in the process of mechanical vibrations of the
entire system.

2.3. Coupling

A linear or nonlinear coupling between the foreground and background subsystems is essential
for the transfer of energy between them; otherwise the two subsystems would be decoupled
and independent.

In the modeling process the coupling may be zeroed out until the behavior of the two subsystems
is properly understood. In the Rössler equations, for example, the −z term in the first equation is
the coupling. Removing it we get ẋ = −y, ẏ = x + 0.2y for the first two equations which is a linear,
decoupled, foreground model. This can be simplified to ÿ − 0.2ẏ + y = 0, which is responsible for
negatively damped, growing, foreground oscillations. The background is the third nonlinear equation
which—if there is coupling—saturates the foreground oscillations by draining energy from it.

In experiments, on the other hand, it may be hard to identify the coupling, but it is usually
present and unchangeable. In custom-designed experiments, however, it is possible to introduce
variable coupling.

3. Data Analysis

Given a complex system and data from that system, the first step is to see whether the system
is separable. The response to varying input frequencies is useful in this regard. The hypothesis of
separation is easiest to apply in a complex mechanical system such as the vibration of a multi-degree
of freedom machine.

The following is an example of data analysis from actual vibrations in an automobile that
illustrates the physical understanding that separation provides. Measurements were made by
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González-Cruz et al. [14] by placing accelerometers at specific locations in an automobile going down
the road at a constant speed (details are in that paper). The automobile responds to the roughness of
the road surface. This is the background subsystem that gives a broad-band spectrum. In addition,
however, every component in the automobile has its own natural frequency or frequencies of vibration
that will be picked out by a sensor placed there. For an accelerometer located on the inside of a door,
for example, the door itself is a foreground subsystem that contributes peaks that correspond to its
natural frequencies. Figure 3 shows a log-log plot of the power spectral density from one such test run
obtained from the raw unfiltered data with the mean subtracted out (compare with the ideal spectrum
of Figure 1). A major peak can be clearly seen; this is due to the foreground subsystem that is the
component where the accelerometer was located. Aside from this, the broad-band part of the spectrum
is due to the background subsystem. On discarding the background, for instance, the foreground can
be modeled by a low-dimensional set of differential equations. Separation enables the mechanics of
the foreground and the background to be independently analyzed and physically understood.
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Figure 3. Power spectral density P( f ) of an accelerometer placed on an automobile, where f is
the frequency. The axes are in arbitrary units.

It is easy in this instance to visually judge whether the spectrum consists of peaks plus a
broad-band part. Sometimes it may not be so simple. In such cases a numerical criterion, like
the ratio of the maximum value Pmax to the average value P, i.e., Pmax/P, can be used to find the peaks.

4. Conclusions

The dynamics of some complex systems can be conveniently analyzed by separating them into
two subsystems, one consisting of foreground and the other of background components. The two
subsystems are coupled but can be modeled and analyzed separately. This separation enables each
subsystem to be studied in isolation. The physics in each subsystem and the mechanisms for energy
transport may be quite different.

Although the examples cited here are of mechanical systems and their vibrations, the approach
is very general and may be applicable to other types of complex systems. Of course there are
many non-mechanical examples of complex systems in the physical [17], biological [18], and social
sciences [19,20], and there is no obvious reason that the principle of separation will be universally
applicable, though it is certainly possible. This type of analysis should thus be viewed only as a
possible hypothesis for future work on other kinds of systems which have to be considered on a case
by case basis.

Conflicts of Interest: The authors declare no conflicts of interest.



Systems 2016, 4, 27 5 of 5

References

1. Jáuregui-Correa, J.; López-Cajún, C.; Sen, M. Analysis of experimental data from complex multibody system.
In Multibody Mechatronic Systems; Ceccarelli, M., Hernandez, E., Eds.; Springer: Cham, Switzerland, 2015;
pp. 211–218.

2. Rakheja, S.; Stiharu, I.; Zhang, H.; Boileau, P.E. Seated occupant interactions with seat backrest and pan,
and biodynamic responses under vertical vibration. J. Sound Vib. 2006, 298, 651–671.

3. Liu, B.; Riemenschneider, S.; Xu, Y. Gearbox fault diagnosis using empirical mode decomposition and
Hilbert spectrum. Mech. Syst. Signal Process. 2006, 20, 718–734.

4. Watkins, S.; Oswald, G. The flow field of automobile add-ons–with particular reference to the vibration of
external mirrors. J. Wind Eng. Ind. Aerodyn. 1999, 83, 541–554.
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