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Abstract: Over the last three decades, many educational systems for programming have been developed
to support learning/teaching programming. In this paper, feedback types that are supported by
existing educational systems for programming are classified. In order to be able to provide feedback,
educational systems for programming deployed various approaches to analyzing students’ programs.
This paper identifies analysis approaches for programs and introduces a classification for adaptive
feedback supported by educational systems for programming. The classification of feedback is the
contribution of this paper.
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1. Introduction

Programming skills are becoming a core competence for almost every profession [1] and thus,
Computer Science education is being integrated in the curriculum of almost every study subject.
However, it is well-known that programming courses, which constitute an indispensable part of studies
related to Computer Science, are considered a difficult subject by many students [2,3]. Addressing
this problem, various approaches have been proposed to help students learn solving programming
problems. One of the solutions to these problems is to deploy effective technology-enhanced learning
and teaching approaches. As a consequence, researchers have identified this gap and have been
developing various types of educational systems for programming that are able to analyze students’
programs and provide feedback.

Feedback is one of the most powerful ways to enhance learning. In the behavioristic view, through
feedback (stimulus), the behavior (output) of a student can be shaped. In an operant conditioning
learning setting, feedback can serve as positive or negative reinforcement that shapes behaviors and
thus, support learning [4]. In the cybernetic view, which assumes that a monitor compares the state
of a system at various times with some standard and a controller adjusts the system’s behavior, the
aim of feedback is to reduce the gap between the student’s current and desired states of learning [5].
In the constructivist view, which assumes that knowledge is constructed by each individual, feedback
provides help so that each individual student can overcome a problem and progress learning with
individual activity, e.g., [6]. Narciss [7] developed an interactive tutoring feedback (ITF) model based
on the view that a student is an active constructor of knowledge and feedback aims at providing
students with formative or tutoring information on their current state of learning which help them
to regulate their learning process. According to Narciss [7], feedback may have different functions:
acknowledge, confirm, reinforce correct response or high quality learning outcomes, and promote
the acquisition of the knowledge and cognitive operations necessary for accomplishing learning
tasks. In addition, on the motivational level, it can encourage students in maintaining their effort
and persistence.
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Since this paper discusses about adaptive feedback, it is required to review the notions of adaptive
feedback. According to Dempsey and Sales [8], “adaptive feedback, unlike adapted and generic
feedback, is dynamic. As they [learners] work through the instruction, different learners will receive
different information from the computer. The determination of what feedback is provided, when, and
to whom is made by the designer after careful consideration of all available information” ([8], p. 166).
This notion of adaptive feedback has a broad sense. That is, instead of giving a feedback such as
“wrong” for different incorrect answers and “correct” for different correct answers, adaptive feedback
would not only verify the correctness of an answer, but also should provide different information
for different answers. Also in this broad sense, feedback is considered adaptive when “different
learners receive different information” [9]. For example, in the programming domain, individual
information in a feedback could be the location of the erroneous program code, the explanation of the
wrongly applied programming concept, an individual hint for improving the student’s solution such as
“the program is wrong because the code line X violates the concept Y”. That means, in order to be able
to provide adaptive feedback in the broad sense, an educational system needs to have the intelligent
capability to analyze the error(s) in the student’s solutions. The representative educational systems
for programming that support adaptive feedback in this sense include FIT Java Tutor [10], ITAP [11].
Some other researchers proposed another notion of adaptive feedback. “Learners differ from each other
in many ways including prior knowledge, meta-cognitive skills, motivational and affective state, or
learning strategies and styles. Thus, these are many individual factors that may influence how feedback
is processed by each learner. Consequently, a variety of individual factors can be used to support
the design of personalized feedback strategies and implementation of AESs (Adaptive Educational
Systems) which can deliver feedback messages that are tailored to the characteristics of an individual
learner or a category of learners” ([12], p. 59). In this sense, adaptive feedback is generated by an
adaptive educational system that requires a student model to represent the student’s characteristics
(e.g., knowledge, meta-cognitive skills, affective state, learning strategies and styles) and the student
model serves to distinguish the level among different students [13]. This is a strict sense of adaptive
feedback and, according to this notion, an adaptive educational system may provide adaptive feedback
on the correctness or quality of a response (e.g., correct/incorrect; excellent/poor) or an elaborated
feedback (in terms of the feedback classification proposed by Narciss [7]) depending on the student’s
model. The student model and its adaptation algorithm determine the type of feedback as well as the
feedback strategy. This notion of adaptive feedback is also referred to as “personalized feedback” [12].
The representative educational systems for programming that support adaptive feedback in this sense
include efforts that gradually provide appropriate feedback information adapting to the students’
needs, e.g., [12], and systems that provides feedback based on students’ individual knowledge level,
e.g., [14] or gender, e.g., [15].

In this paper, both senses of adaptive feedback are adopted to consider educational systems for
programming. That is, adaptive feedback is provided differently for individual students by analyzing
the student’s action (e.g., student’s solution attempt) and/or adaptive feedback may be provided by
an education system that is based ona student model. Existing educational systems for programming
are reviewed and feedback types supported by these systems are classified. The classification of
adaptive feedback used in educational systems for programming distinguishes from the generic
feedback classifications (e.g., Fleming and Levie [16], Economides [17], Narciss [7]) in that it serves
only researchers and developers in the domain of programming to focus on specific types of feedback.

The remainder of this paper is structured as follows. The next section presents the method of
identifying specific feedback types supported by educational systems for programming. A classification
of feedback types for educational systems for learning programming is classified in Section 3.
The impact of different feedback types is discussed in Section 4. Findings in the review of feedback
types are summarized and the developed classification of feedback types for programming is compared
with related works in Section 5. In addition, research directions are proposed in this section.
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2. Method

With the purpose of classifying specific feedback types that are supported by educational systems
for programming, scientific reports of systems that have been published since 1999 at scientific
workshops, conferences, and in journals related to the areas learning science and computer technology
for education are searched on the Internet. In addition, technical reports, Master’s theses, and PhD
dissertations that have passed the internal review process and have been published by their universities
were taken into consideration. In addition to searching publications on the Internet, authors of the
collected publications were contacted to ask for their latest evaluation reports. Only publications
since 1999 were collected, because Deek and McHugh [18] published in 1998 a detailed survey on
educational systems for programming.

For the collected publications, there are two criteria: (1) publications from 1999 to 2009 have
to show an evidence of practical use in courses or a scientific evaluation of the proposed system;
and (2) recent publications from 2010 have to document either an implementation or a scientific study
of the proposed approach. The first criterion for publications assures that only systems that have been
demonstrated in a practical or lab setting are taken into account. The second criterion allows us to
consider recently developed systems.

In addition to criteria for publications, several criteria with respect to functionality have been
specified to shape the space of reviewed systems. First, the functionality of reviewed systems has
to be beyond how compilers (e.g., providing (detailed) information about syntactical mistakes),
and integrated programming environments (e.g., supporting syntax highlighting such as Eclipse) work.
This criterion filters out two types of systems, compilers and integrated programming environments.
In addition, the systems to be reviewed must have at least one interactive functionality. Interactive
activity means that the students have the option to produce something (e.g., an answer or a program)
rather to consume something. That is, the systems have to offer students more interactive experiences
than simply providing online learning materials and test items.

With respect to the learning objectives, educational systems for programming that deal with
program code, either by accepting student’s solutions written as source code, or by using source code
as templates (e.g., implementing a fill-in-the-gap strategy), were considered. That means, this criterion
selects only systems that focus on the coding phase of programming and opts out those systems that
support students pursue other learning objectives in the analysis, planning/design, and test phases of
programming, for example, [19–22].

The last criterion is selecting only educational systems that support adaptive feedback in either
the strict sense or the broad sense discussed in the previous section.

In summary, in addition to technical reports, Master and PhD dissertations, publications from the
following conference/workshop proceedings, journals, or books were collected:

‚ Conference on Intelligent Tutoring Systems
‚ ACM Conference on Innovation and Technology in Computer Science Education
‚ IEEE International Conference on Computational Intelligence and Multimedia Applications
‚ IEEE International Conference on Advanced Learning Technologies
‚ European Conference on Technology Enhanced Learning
‚ Central European Conference on Information and Intelligent Systems
‚ Workshop on Adaptive and Intelligent Web-based Education Systems
‚ International Journal of Human-Computer Studies
‚ International Journal of Artificial Intelligence in Education
‚ ACM Journal on Educational Resources in Computing
‚ Journal Machine Learning
‚ Journal of Systemics, Cybernetics and Informatics
‚ inroads—The SIGCSE Bulletin
‚ Book: Advances in Learning Processes
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3. A Classification of Adaptive Feedback in Educational Systems for Programming

Before a specific adaptive feedback type used in educational systems for programming is specified,
classifications of generic feedback are briefly reviewed. Based on those classifications, the specific
classification of adaptive feedback in educational systems for programming is developed. Fleming and
Levie [16] classified five types of feedback based on the function dimension. Confirmation feedback
indicates whether a solution is correct or incorrect. Corrective feedback provides information about a
possible correct response. Explanatory feedback explains why a response is incorrect. Diagnostic feedback
attempts to identify misconceptions by comparing the student’s solution with common errors. Elaborative
feedback provides additional related information. While Fleming and Levie [16] were based on the function
dimension to classify feedback, Economides [17] was based on the content of feedback and distinguished
seven types of (cognitive) feedback (actually, Economides [17] included a class of “no feedback” in the
classification of feedback. We do not mention this class because feedback of this class does not contain
any content): (1) Yes/No feedback; (2) answer until correct (feedback asks the student to try again until
she answers correctly); (3) correct answer (feedback indicates the correct answer); (4) topic contingent
(feedback elaborates on the general topic); (5) response contingent (feedback gives explanation);
(6) bug related (feedback presents common errors made by students); and (7) attribute isolation
(feedback highlights the central attributes of the target concept). Narciss [7] also classified feedback
types based on the content dimension: (1) knowledge of performance (e.g., percentage of correctly
solved tasks; number of errors; grade); (2) knowledge of result (information about the correctness
(e.g., “correct”/“incorrect”) or quality of the actual answer or outcome); (3) knowledge of the correct
response (feedback content is a correct response or a sample solution to a given task); and (4) elaborated
feedback (containing additional information besides knowledge of result or knowledge of the correct
response (e.g., hints, guiding questions, explanations, worked examples)). The last feedback type
(elaborated feedback) is divided into at least five sub-types, according to Narciss [7], depending on the
content of elaborated feedback: (a) knowledge about task constraints; (b) knowledge about concepts;
(c) knowledge about mistakes; (d) knowledge about how to process the task; and (e) knowledge
about meta-cognition. Some of these subtypes of elaborated feedback proposed by Narciss [7] are in
accordance with the feedback types 4–7 of the feedback classification proposed by Economides [17].
Across the three classifications, there are commonalities as Table 1 indicates.

Table 1. Commonalities between the three classifications of feedback.

Fleming and Levie [16] Economides [17] Narciss [7]

Confirmation Yes/No Knowledge of result
Corrective feedback Correct answer Knowledge of the correct response

Explanatory feedback Response contingent Elaborated feedback
Diagnostic feedback Bug related Elaborated feedback
Elaborative feedback Topic contingent Elaborated feedback

Are these types of feedback adaptive? If we adopt the broad sense of adaptive feedback, then
corrective, explanatory and diagnostic feedback may be considered adaptive, because its information
could be different for different students’ solutions and confirmation feedback is not adaptive. If we
adopt the strict sense of adaptive feedback, i.e., an educational system is able to adapt different types
of feedback according to individual student’s preferences, knowledge level or learning style, then
confirmation feedback could also be considered adaptive, because the educational system may have a
student model that represents the preferences, the knowledge level or the learning style of a student.

In each of the following subsections, educational systems for programming that support a specific
type of feedback are reviewed. The review of each system consists of two parts: an example of
feedback (if an example of feedback supported by each system is available in the literature) and a brief
description of the analysis technique that was developed to provide feedback. In Table 2, educational
systems for programming that are mentioned in this paper are summarized and a representative
reference for each system is cited (because each system may have been reported in several papers).
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Table 2. Impact of the educational systems on students’ programming.

Evaluation Feedback Types

System Method Result Yes/No Syntax Semantic Layout Quality

Ask-Elle [23] Qualitative evaluation +
“the feedback services are adequate” Y Y, I, C

ELM-ART Weber and
Brusilovsky ([14])

Quantitative and
qualitative

+
“learners without previous programming knowledge
profited more from the learning system in the ELM-ART
group than . . . ”

Y, C

ELP [24] Qualitative evaluation
+
“the system would help them [students] in thinking
abstractly and develop their problem solving skills”

Y Y

FIT Java Tutor [10] Technical evaluation Y, C

Goshi’s ist [25] Qualitative evaluation
+
“More than 60% students thought these 3 functions
[advice, detail, colour] help”

Y, C

Hong’s PROLOG [26] Technical evaluation Y, I, C

INCOM [27] Quantitative and
qualitative

+
“the system did contribute to the improvement of the
students’ programming skills”

Y, I, C

ITAP [11] Technical evaluation Y, C

JACK [28] Quantitative and
qualitative

+
“Students and tutors got quickly used to use the traces
at least for a short glance when reading the
feedback messages”

Y, C

JavaBugs [29] Technical evaluation Y, I, C

JITS [30] Qualitative evaluation

+
“Feedback mechanism – It provides hints quickly and to
the point”, “JITS helps students solve syntax and logic
errors while developing a solution to a problem”

Y, C
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Table 2. Cont.

Evaluation Feedback Types

System Method Result Yes/No Syntax Semantic Layout Quality

J-Latte [31] Quantitative and
qualitative

+
“The participants’ knowledge did improve while
interacting with the system, and the subjective data
collected shows that students like the interaction style
and value the feedback obtained”

Y, C

jTutor [32] Technical evaluation Y, C

Ludwig [33] Quantitative and
qualitative

+
“Seven students were able to finish the problem, one
was almost completed, and two students were
somewhat flummoxed and did not complete it”,
“7 students thought that the style checker was an
“excellent” idea; 2 thought it was a “good” idea;
1 thought it was an “okay” idea.”

Y Y

MEDD [34] Technical evaluation Y, I, C

M-PLAT [35] Technical evaluation Y

QuizJet [36] Quantitative
evaluation

+
“working with the system students were able to
improve their scores on in-class weekly quizzes”

Y

QuizPack [37] Quantitative
evaluation

+
“The students’ work with QuizPACK significantly
improved their knowledge of semantics and positively
affected higher-level knowledge and skills”

Y

Radosevic’s system [38] Quantitative
evaluation

+
“the tools for program analyses and debugging help
them to find the cause of their errors”

Y, C

VC PROLOG [39] Technical evaluation Y Y, I, C Y
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3.1. Yes/No Feedback

The scarcest feedback type is confirmation feedback. Typical systems that provide this feedback
type include QuizJet [36], QuizPack [37], and M-PLAT [35]. QuizJet and QuizPack provide
individualized assessment questions in Java and C, respectively. “QuizJET [ . . . ] was designed as a
generic system to author, deliver, and assess a range of parameterized questions for Java programming
language. QuizJET can work in both assessment and self-assessment modes and is able to cover a
whole spectrum of Java topics from Java language basics, to such critical topics as objects, classes,
interfaces, inheritance, and exceptions.” [36]. QuizJET generates an individual Java program using the
generic system and asks the student a question of analyzing the presented program to find the result
for a specific variable, for instance, “What is the final value of RESULT?” (RESULT is a variable name
in the given program). Then, QuizJET evaluates the student’s answer and presents a confirmation
message “Wrong/Correct” and corrective feedback “Your answer is XXX. Correct answer is YYY” [36].
QuizPack works also in the same principle for the programming language C. Since both QuizJET and
QuizPack are able to generate parameterized questions, the systems provide adaptive feedback.

M-PLAT does not provide multiple-choice test or fill-in-slot exercises, rather the system requests
students to submit a whole program, then the system evaluates the student’s program and returns
whether the student’s program is successful or not. Using M-PLAT to develop a program, “when a
student has finished its program, the source code is sent to the server to be compiled and evaluated.
Then, a response with the results is sent back to client-side application. After that, the student
will receive one of the following messages: “Compilation errors have been found”, “There are no
compilation errors, but the provided program is not correct”, “The program is correct” ([40], p. 128).
Such feedback messages are of type confirmation feedback. Since M-PLAT is an adaptive educational
system as the authors claimed “M-PLAT will adapt the level of requirements to the learning pace of
each student” ([40], p. 127), the feedback messages are provided individually to students.

The common analysis technique deployed by the educational systems for programming reviewed
above is that they compare the student’s solutions with pre-specified correct values. If the student’s
solution does not match pre-specified correct values, then the system will indicate that the student’s
solution is not successful. Otherwise, the system will present a feedback message indicating that the
student’s solution is correct.

3.2. Syntax Feedback

Syntax feedback is based on the compiler’s output. Most systems just return the compiler’s
messages to students without additional explanation, e.g., Ludwig [33], Ask-Elle [23], and ELP [24].
“When the student offers the program for analysis, the system [Ludwig] will first attempt to compile
and link the program; if this step fails, then the compilation failure messages will be displayed to the
student” [33]. Ask-Elle presents “a syntax-error message generated by the Helium compiler” to the
student in case there is a compilation error [41]. Using ELP, “if there are syntax errors, compiler error
messages are returned to the student” [42].

Instead of solely returning compiler’s feedback, VC PROLOG [39] provides detailed syntactic
error explanation that is associated with a concept in the defined ontology of Prolog. For example,
VC PROLOG displays the following explanations for syntax errors instead of showing the compiler’s
output: “Probably a closing bracket is missing in this list” indicates that the student has forgotten a
bracket; “A variable ‘X’ was written lower case, therefore it is interpreted as a constant” explains how
the system interprets the lower case “x” ([39], p. 72). Gross and colleagues [43] argued that students
are often not able to write programs on their own (e.g., on paper) and do not understand the cause of
errors produced by a compiler. Thus, the authors proposed a new tutoring approach, which initiates a
dialogue-based discourse between a student and an intelligent tutor in case of a syntactic error.
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3.3. Semantic Feedback

Feedback on this level points to an error in the student’s program with respect to fulfilling
the requirements of a programming task. An educational system that supports semantic feedback
does not necessarily presuppose a structured problem solving activity. Problem solving can take
place in an exploratory learning manner. Feedback messages of this type can be divided into two
levels: intention analysis and code analysis. Analysis on the intention level means identifying or
hypothesizing the solution strategy intended by the student and giving feedback based on the identified
and hypothesized solution strategy. Code analysis is meant identifying erroneous code, which does
not fulfill the requirements of a given programming exercise. Some systems are able to provide both
intention-based and code-based feedback that is referred to as two-level feedback. Other systems
are only able to support only code-based feedback. In the following, these two types of semantic
feedback are elaborated. Since semantic feedback results from the analysis of an individual student’s
program, semantic feedback can fall into one of the classes: explanatory feedback, diagnostic feedback,
elaborative feedback in the classification of Fleming and Levie [16]; response contingent, bug-related,
or topic contingent feedback in the classification of Economides [17]; or elaborated feedback in the
classification of Narciss [7].

3.3.1. Two-Level Feedback: Intention-Based and Code-Based

On the intention-based level, Hong’s PROLOG “tries to recognize programming techniques
in the hierarchy of relevant programming techniques, which have been used in the student
program” ([26], p. 519). Hong used grammar rules to model Prolog programming techniques, which
serve to identify the intention (in terms of programming techniques) of the student. The system
iteratively uses the sets of grammar rules to parse the student’s program. If the parsing procedure
does not finish successfully, that means, the selected set of grammar rules has not been completely
exploited and the strategy of the student’s program cannot be identified. In this case, the system uses
one of the possible solution strategies (in terms of programming techniques) specified for a given
programming problem to guide the student. Otherwise, the solution strategy has been identified, and
the system diagnoses errors in the student’s program. The system uses the same set of grammar rules,
with which the solution strategy has been identified, to parse a corresponding reference program.
For each possible solution strategy specified for a problem, there is a corresponding reference program.
The parse tree of the student’s program is compared against the parse tree of the reference program.
Hong’s PROLOG is able to analyze a student’s program not only on the intention level, but also on
the code level. The system’s domain model contains not only domain’s knowledge on the intention
level (i.e., sets of programming technique represented by grammar rules for each class of programs),
but also coding-related knowledge, which is represented by reference programs for each anticipated
programming technique. For example, the system returns the following code-based feedback to the
student: “You have used an appropriate programming technique for this exercise. The base case in
your program is, however, not quite right. It is supposed to say that reversing an empty list gets the
empty list itself. The second argument of your base case, List, is a variable but it is supposed to be an
empty list, []. Now can you correct your base case?” ([26], p. 523).

For JavaBugs [29], unfortunately, sample feedback messages were not available in literature.
However, feedback may be reasoned from the following excerpt: “The task of automatic bug library
construction entails detecting the most similar correct program (intention expressed as reference
programs), extracting the superficial differences (discrepancies) between the student’s and the correct
program and forming misconception definitions (error hierarchies) described by discrepancies based
on similarity and causality heuristics.” ([29], p. 185). The authors applied a multi-strategy machine
learning approach to automatically construct a library of Java errors, which novice programmers
often make. Using this bug library, the developed educational system is able to examine “small”
Java programs. The intention of the student is identified by comparing the student’s program to a
set of reference programs. After the student’s intention has been identified, differences between the
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reference program and the student’s solution are extracted. Misconceptions are learned based on the
discrepancies identified in the first phase. These misconceptions are used to update the error library
and to return appropriate feedback to the student.

Applying the similar multi-strategy machine learning approach for constructing a library of errors,
while JavaBugs was developed to support Java learning, MEDD [34] is able to identify the student’s
intention in a Prolog program. Intentions are defined by specific reference programs. The similarity
between the student’s program and the reference programs is determined by matching surface as
well as abstract features. Both JavaBugs and MEDD use a bug library, which is built automatically by
learning from incorrect solutions in order to provide feedback on code analysis. Based on discrepancies
between the incorrect student’s program and its associated reference program, the systems provide
semantic feedback on the code analysis level to students.

Ask-Elle [23] is able to derive the intention of the student using a set of pre-specified reference
programs. Then, using the identified programming strategy of the reference program, many program
variants are generated. All generated solutions are normalized before they are used to compare with
the student’s program. Through the comparison between the student’s program and the generated
program variants, the system not only has the ability of analyzing the student’s intention underlying a
program, but also is able to analyze the student’s program on the code level. The system is able to
provide different types of feedback based on the identified intention of the student. It can provide a
description of a particular reference program, propose an implementation for a function, or emphasize
one particular implementation method. For instance, Ask-Elle shows an elaborative feedback such as
“Unexpected right hand side of f on line 3” ([41], p. 252), this feedback indicates the location of the
error in the student’s program (on the right hand side of the function f ).

VC PROLOG is also able to provide semantic feedback by comparing between the student’s
program and one or more reference programs. Unfortunately, an example for intention-based feedback
provided by VC PROLOG could not be found in literature. Only code-based feedback was presented:
“A clause was terminated with a colon instead of a period, which causes the following fact to be
interpreted as an addition goal.” ([39], p. 72). The process of analyzing a student’s program consists
of three phases. First, a parser analyzes the student’s program. In case there are syntax errors, they
are marked and corrected. If there are several possible interpretations, the analyzer will produce all
alternatives. Second, the syntactically correct student’s program is semantically analyzed. That is,
the meaning of the student’s program is compared against the meaning of the reference program.
Through this phase, the system is able to derive the intention of the student’s strategy and to give
feedback not only on the intention level, but also on the code analysis level. The third phase is
analyzing the layout and the structure of the student’s program based on the reference program.

INCOM [27] is also able to provide intention-based feedback: “INCOM favours to formulate
feedback messages in terms of programming techniques to help students develop the skills of using
high level programming concepts in logic programming.” ([27], p. 106). The author of INCOM
proposed a weighted constraint-based model (WCBM) to hypothesize the solution strategy intended
in the student’s program. First, on the strategy level, the system generates hypotheses about the
student’s intention by iteratively matching the student’s solution against the solution strategies that are
specified in the semantic table. Next, once a solution strategy has been matched, the process initiates
hypotheses about the student’s solution variant by matching components of the student’s solution
against corresponding components of the selected solution strategy. As the final step, hypotheses
generated on the solution variant level are evaluated, and the most plausible variant of the student’s
solution (within a strategy) is chosen. Using the best hypothesis on the strategy level and the best
hypothesis on the solution variant level, the errors in the student’s solution are identified.

We note that many systems used programming techniques, correct solutions, specific exemplars,
model solution, or example solutions to examine the semantic fulfillment of students’ solutions.
All these terms convey the notion of a reference program that captures semantic requirements of a
programming exercise.
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3.3.2. Code Level Feedback

There is another class of systems that only support code-based feedback without analyzing the
intention of students. J-Latte provides feedback on the code-based level, for example, “All statements
require a semi-colon at the end (to say the statement is finished)” ([31], p. 59). The system uses
pre-specified constraints that represent the principles of the Java domain in order to check the
correctness of students’ programs.

JITS [30], which is based on the ACT-R cognitive theory [44], is able to display erroneous code
of “small” Java programs for a specific programming problem. Although JITS also analyzes the
intention of the student using the Intent Recognition module first, then analyzes the programming
code, this system only provides code-based feedback like “I think you meant the keyword ‘for’. Is this
correct?” ([45], p. 617).

ELM-ART [14] provides exercises for problem solving. The domain knowledge of ELM-ART
consists of a hierarchy of concepts and rules. Using this type of knowledge, the system is able to
analyze the student’s program on the code level as the authors described: “The system gives feedback
by providing a sequence of help messages with increasingly detailed explanation of the error or
suboptimal solution.” ([46], pp. 368–369).

jTutors [32] allows instructors to author exercises in form of quizzes by specifying correct values
and hints. Using these pre-specified correct values and hint messages, the system is able to test student’s
knowledge by requesting him/her to fill the blanks in a quiz with correct values. If incorrect values are
detected, instructor’s authored hint message will be provided. Or, “if the student struggles to answer
a quiz, jTutors will provide an example or another quiz with lower difficulty level.” ([32], p. 12).

Radosevic and colleagues [38] developed a specific learning interface for C++. They introduced the
notion of semaphore, which represents a number of new programming lines after the last compilation.
Radosevic’s learning programming interface provides feedback not in textual form, rather using three
colors: green, yellow, and red. Semaphore works in a way that each new programming line and each
semicolon are enumerated. If a semaphore has 0–4 new lines, then the student’s program is inside
green light. If the semaphore of the student’s program has 5–10 new lines, then it is yellow. If the light
is red, the student’s program cannot be compiled and the student has to reduce number of lines. It is
not clear that this type of feedback is adaptive because many students may get the same color (green,
yellow or red) as feedback.

Goshi’s ITS for Hoare Logic [25] is able to provide appropriate advice or information on the code
analysis level as the author stated: “This feedback may include appropriate advice or information in
addition to indicating whether the answer supplied was correct or incorrect” [25]. This kind of advice
of information is based on accessing the student’s behavior sequence.

JACK [28] follows a special way of providing feedback. The authors of JACK used automated
trace generation for supporting students. A trace of a program execution is a list of single execution
steps that are indicated by the system states in terms of variable values. The authors claimed that
reading the trace of a program execution, a student could understand how a program works, i.e.,
the system state evolves from the given input to the final state. However, students do not need to read
a trace from the beginning to the end. A trace may indicate the erroneous location in the student’s
program and the student needs to “search for program steps that directly affected the final erroneous
output. This way, students can try to identify the reasons for the erroneous output and correct the
related program statements” ([28], p. 304). This way, the trace of the student’s program execution is
a kind of feedback. Since the trace is different for different students’ programs, feedback in form of
traces is adaptive.

FIT Java Tutor [10] and ITAP [11] deployed the data-driven approach to diagnose errors in the
student’s solution. That is, a mass of correct and incorrect students’ solutions for a programming
problem is collected and used for analyzing a submitted student’s solution. FIT Java Tutor is able
to provide code-based feedback by comparing the student’s solution with one of the pre-specified
reference programs or students’ correct solutions. The students’ correct solutions have been collected
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in advance (maybe in previous courses) and should solve a given programming problem correctly.
The students’ solution attempts enhance the solution space of correct solutions for a programming
problem. For example, the following feedback message indicates that the student’s solution has been
matched to one of the pre-specified reference programs or students’ solution attempts: “The system has
determined a certain similarity between your program and the program shown above. Compare the
two programs and modify your program if necessary.” ([10], p. 26). To provide automated feedback,
the authors applied machine learning methods that compare the similarity between the student’s
solution and the pre-specified reference programs (or the collected students’ correct solutions).

ITAP is able to provide code-based feedback, e.g., “in line 1 replace ‘saturday’ with ‘Saturday’
in the right side of the comparison operation” ([11], p. 17). In order to be able to provide feedback,
the system requires two kinds knowledge: (1) at least one reference program for a given programming
problem; and (2) a test method that can score, e.g., pairs of expected input and output of code. Based on
the reference program, the system constructs a solution space for a problem. The authors defined a
solution space as a graph of intermediate states that the student passes through as he/she works on a
given problem. Each state is represented by the student’s current code. The system starts the process
of path construction by inserting new “correct” states into the solution space. The correct states are
checked by the test methods. These “correct” states serve to define the optimal path of actions to solve
a given problem and to generate feedback by recommending the action a student should take to move
from their incorrect state to a correct one.

3.4. Layout Feedback

Layout feedback is intended to help students write a code according a specific coding convention
so that the student himself/herself and peers can understand the student’s code easier. The second
purpose of layout feedback is to help students have a clear code so that they can find errors easier if
their code is erroneous. Feedback on the layout level is only supported by few existing systems, e.g.,
Ludwig and VC PROLOG. Ludwig can perform stylistic analysis on a student’s program. The stylistic
analysis includes: proper indentation, cyclometric complexity, global variables, etc. The authors stated
that the stylistic tests could be individually enabled by the instructor because not all instructors would
need them ([33], p. 58). Whereas Ludwig focuses on stylistic analysis, VC PROLOG provides layout
feedback by comparing the layout and the structure of the student’s program with a reference program.

In principle, if there were a coding convention for every programming language, a component for
checking style for that specific programming language can be developed and integrated into a learning
environment. It may help students structure and debug their programs easily. Unfortunately, most of
the systems reviewed in this paper did not implement layout analysis. A possible explanation for the
rare support of layout feedback in educational systems for programming is that most researchers focus
on instructing syntax and semantic issues of a programming language, while the layout of a program
is a secondary issue.

3.5. Quality Feedback

ELP and JACK are the systems among the reviewed ones that support quality analysis based
on the metrics for software engineering. Quality analysis focuses on how a program is executed
efficiently by a corresponding machine model of a programming language. Quality analysis not only
checks whether an algorithm works, but also whether that algorithm is efficient in terms of time and
memory resource. For example, ELP is able to assess that the expression “if (a==true){}” is a poor
programming practice and the expression “if (a){ }” is a good programming practice ([24], p. 114).
ELP’s quality analysis includes two phases: structural similarity analysis and software engineering
analysis. Structural similarity analysis indicates the location of codes that have high complexity,
lengthy, or poor programming practice by comparing the student’s program with a set of reference
programs. Software engineering analysis also serves to identify the location of complex or poor codes.
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The author intended to apply both analysis approaches in order to enhance the analysis accuracy, i.e.,
results of the structural similarity analysis is used to verify results of the software engineering analysis.

In addition to providing semantic feedback, JACK [28] is also able to provide quality analysis
based on generated trace. The system compares the trace of a reference program with the trace of the
student’s program. If the trace of the student’s program is longer than the reference program, “in this
case, the solution seems to be unnecessarily complicated. The code executed during the trace steps
without alignment are consequently most likely superfluous” ([28], p. 306). Thus, the length of the
trace is an indicator for the quality of the student’s program.

It seems that the issue of quality analysis is not the primary goal of the majority of programming
novices. As a result, not many educational systems for programming focused on this issue.

4. Impact of Adaptive Feedback

In this section, the impact of adaptive feedback on supporting students in developing their
programming skills is investigated. For this purpose, the evaluation studies that have been conducted
for the systems were taken into account.

The objectives of the evaluation studies conducted for the educational systems for programming
were very various. In general, two classes of evaluation objectives for those systems are distinguished:
(1) pedagogical evaluation studies that investigated the impact of systems on learning on cognitive,
meta-cognitive and motivational dimensions; and (2) technical evaluation studies that investigated
technical properties of a system (e.g., regarding the algorithms’ accuracy, validity of test cases,
and system’s performance) and its usability. For example, Hong evaluated his PROLOG Tutor
regarding the recognition ability of programming techniques applied in students’ solutions and
error analysis based on identified programming techniques. MEDD’s performance was evaluated
regarding: (1) program classification; and (2) error discovery. JavaBugs’ library for detecting bugs
in students’ Java programs was evaluated regarding its accuracy in identifying correct and incorrect
students’ programs, respectively (cf. Table 2). The methods for pedagogical evaluation studies that
have been conducted for educational systems can be divided into quantitative and qualitative classes.
Qualitative evaluation studies rate the systems by asking users’ attitudes using questionnaires or
conducting interviews. Quantitative evaluation studies are usually conducted in labors or in real
class settings where students are requested to use to the educational systems. Data collected from
interactions between the students and the systems serve to analyze the systems’ effectiveness.

Table 2 lists educational systems for programming that have been reviewed in this paper.
In the case that a pedagogical evaluation study for an educational system has been conducted and
demonstrated positive results, then it is marked as “+” in the column “Result” and a quote is cited
from the corresponding literature to prove this. If there was only technical evaluation for a system,
no results with respect to learning effectiveness were available and thus, the column “Result” is empty.
In addition, Table 2 also summarizes the feedback types that are supported by an educational system.
“Y” indicates that a specific feedback type is supported. “I” and “C” stand for intention-based feedback
and code-based feedback, respectively.

5. Summary, Related Work, and Research Directions

Five types of feedback that are supported by educational systems for programming have been
identified: Yes/No feedback, syntax feedback, semantic feedback, layout feedback, and quality
feedback. Semantic feedback can be divided into two levels: intention-based and code-based
feedback. While Yes/No feedback and semantic feedback are in accordance with the generic feedback
classifications [7,16,17], syntax feedback, layout feedback, and quality feedback are specific in the
domain of programming. Thus, the classification of feedback types that have been identified in
reviewed educational systems for programming can be clearly distinguished from those generic
feedback classifications.
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The first lesson we can learn is that there are various forms of feedback. Most systems support
textual feedback, while few other systems provide feedback in special forms: e.g., execution trace of a
program (e.g., JACK) or semaphores (red, yellow, and green, e.g., Radosevic’s system). To the best
of my knowledge, no study has been conducted to compare the effectiveness of different feedback
forms yet.

With respect to feedback types, we can learn that numerous systems support semantic feedback,
while only three systems (QuizJET, QuizPack, and Radosevic’s system) provide Yes/No feedback for
improving programming skills of students. Interestingly, there are several systems that support both
semantic feedback and syntax feedback/layout feedback. Due to the specified selection criteria of the
systems (cf. Section 2), any educational system for programming that supports syntax feedback must
provide more information than a compiler, all reviewed systems that support syntax feedback must
also provide semantic feedback, or layout feedback (e.g., VC PROLOG, Ludwig), or quality feedback
(e.g., ELP). To the best of my knowledge, in literature no study has investigated the effectiveness of
syntax feedback in isolation yet. Among the systems that support semantic feedback, several program
analysis approaches (Ask-Elle, Hong’s PROLOG, INCOM, JavaBugs, MEDD, VC PROLOG) are able
to analyze the student’s intention. Another open question to be investigated is whether systems that
support intention-based feedback in addition to code-based feedback are better than systems that
provide only feedback on the code level.

In order to diagnose errors in student’s solutions and to provide appropriate feedback, various
program analysis techniques have been developed: approach using pre-specified correct values
(QuizJET, QuizPack, M-PLAT), syntax analysis using programming language compilers (Ludwig,
Ask-Elle, ELP), approach using concept ontology (VC PROLOG), program analysis using grammar
rules (Hong’s PROLOG), approach using multi-strategy machine learning (JavaBugs, MEDD),
approach using program transformation (Ask-Elle), approaches based on cognitive learning theories
(model-tracing (JITS), constraint-based modeling (J-Latte), weighted constraint-based model (INCOM)),
and data-driven approach (ITAP, FIT Java Tutor). An interesting finding is that although many various
modeling techniques have been devised, each modeling technique has been deployed in a single
system. That is, the developed modeling techniques do not have widespread use in practice or
across several tools for programming education. Several reasons for this phenomenon can be derived.
First, each developed modeling technique might be applicable for a specific programming concept or
for a specific programming language, whereas the number of programming concepts of a programming
paradigm is high and the number of programming languages is not predictable. Second, time required
for devising a modeling technique for a programming language or a programming concept might be
very high, so that researchers, after having tested a devised modeling technique, may not have human
and time resources for testing the applicability of devised modeling techniques in a new programming
language or with a new programming concept. One thing in common between the program analysis
approaches is that they use a reference program to compare the difference between a reference program
and a student’s program (e.g., Ask-Elle, ELP, and Ludwig), or they deploy an abstract representation
capturing required components to analyze students’ programs (e.g., Hong’s PROLOG, INCOM,
and VC PROLOG). The reference program and the abstract representation of required components are
required to understand a student’s program and to detect errors in a student’s program.

From the evaluation studies of the reviewed educational systems for programming (Table 2),
we can learn that most systems have been evaluated and demonstrated their pedagogical effectiveness.
To my best knowledge, no study has been conducted to compare the effectiveness of each feedback type
nor has a between-system study been carried out to compare the effectiveness of adaptive feedback
yet. This can be explained by the fact that the positive impact of an educational system is contributed
by many features of the whole system: e.g., adaptive feedback, usability, and algorithms’ accuracy.

The review being presented in this paper addresses adaptive feedback types that are supported
by existing educational system for programming and this purpose has not been focused by other
existing reviews.
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In 1988, Ducassé and Emde [47] reviewed 18 environments and classified them into: (1) systems
related to tutoring task; (2) general purposes debugging systems; and (3) enhanced Prolog tracers.
Although the purpose of this review was to classify debugging knowledge and techniques deployed
in these systems, there were only seven systems for educational purposes.

One decade later, Deek and McHugh [18] published a survey in 1998 that reviewed
29 computer-supported systems for learning programming and identified four categories of tools:
(1) programming environments; (2) debugging aids; (3) intelligent tutoring systems; and (4) intelligent
programming environments. Since the detailed survey of Deek and McHugh [18], there were
several other surveys on computer-supported systems for learning programming, however, most
of them focused on specific aspects. For instance, Deek and colleagues [48] reviewed web-based
environments for program development. Guzdial [49] investigated programming environments for
novices. Douce and colleagues [50] reviewed computer-supported systems that automatically assess
students’ programming assignments. While these surveys focused on intelligent features (e.g., program
analysis and assessment of programming assignments) of systems for supporting students, it is worth
noting, on the contrary, Gomez-Albarran [51] focused their survey on less sophisticated and less
intelligent approaches. That is, those approaches to learning/teaching programming do not support
automatic program analysis nor automatic diagnosis of errors in student’s programs. Gomez-Albarran
reviewed nearly 20 “most outstanding” tools of the following types: (1) tools including a reduced
development environment (e.g., BlueJ [52]); (2) example-based environments (e.g., ELM-ART [14]);
(3) tools based on visualization and animation (e.g., ANIMAL [53]); and (4) simulation environments
(e.g., Karel++ [54]). In another survey, Le and colleagues [55] reviewed AI-supported instructional
approaches for learning programming and classified them into: example-based, simulation-based,
collaboration-based, dialogue-based, program analysis-based, and feedback-based approaches.

The review being presented in this paper focuses on the aspect of adaptive feedback in educational
systems for programming. It is now the right time to investigate feedback types and analysis techniques
that have been deployed in existing educational systems for programming due to two reasons.
First, feedback is one of the most important features of educational systems (especially for the domain
of programming). It is used by programming learners to revise a solution for a programming problem.
Second, over the last three decades, not only have new systems been developed, new program analysis
approaches have also been proposed to enhance the diagnosis accuracy, while most conducted surveys
of educational systems for programming rather focused on classifying the systems ([18,47,51]).

The classification of adaptive feedback that has been developed in this review serves researchers
and developers of educational systems for programming two purposes. First, it helps researchers and
developers apply and advance existing programming analysis techniques that have been evaluated
and validated. They may enhance these analysis techniques by optimizing the analysis accuracy.
Second, the classification of adaptive feedback provides researchers and developers a means to focus
on specific feedback types when developing an educational system for programming that is intended
to support adaptive feedback.
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