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Abstract: In this paper, we present a modelling experiment developed to study systems of
cities and processes of urbanisation in large territories over long time spans. Building on
geographical theories of urban evolution, we rely on agent-based models to 1) formalise
complementary and alternative hypotheses of urbanisation and 2) explore their ability to
simulate observed patterns in a virtual laboratory. The paper is therefore divided into two
sections : an overview of the mechanisms implemented to represent competing hypotheses
used to simulate urban evolution; and an evaluation of the resulting model structures in
their ability to simulate—efficiently and parsimoniously—a system of cities (between 1000
and 2000 cities in the Former Soviet Union) over several periods of time (before and after
the crash of the USSR). We do so using a modular framework of model-building and
evolutionary algorithms for the calibration of several model structures. This project aims at
tackling equifinality in systems dynamics by confronting different mechanisms with similar
evaluation criteria. It enables the identification of the best-performing models with respect
to the chosen criteria by scanning automatically the parameter space along with the space of
model structures (the different combinations of mechanisms).
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1. Introduction

Simulation models of urban systems were first developed in the 1950s and 1960s as a way to
understand the complexity of cities and to forecast trends and consequences of planning policies. Several
formalisms (thermodynamics, general systems theory, synergetic, microsimulation) were used [1],
following fashions as well as opportunities arisen from access to new technologies [2,3]. Each of the
methods cited have their specific advantages and drawbacks, that we will not discuss here, but all of
them provide a similar opportunity and a similar challenge that is linked to simulation and has not
changed as the formalisms evolved. The opportunity that we focus on in this paper is the function of
a virtual laboratory that a computerised simulation model enables [4], which is of paramount interest
for human and social sciences, where in vivo experiments are impossible. By allowing to implement
competing and/or complementary hypotheses into generative mechanisms (that is, a set of interaction
activities performed by entities (cities) producing emergent patterns [5]) in a model testable against
empirical data, this function of virtual laboratory makes the model a framework for the evaluation of
the plausibility of different theories. However, simulation as a method and an epistemological way of
testing theories gives way to a limitation known since von Bertalanffy [6] as equifinality. It describes
the fact that even when a model is performing well, one cannot infer that the underlying combination
of mechanisms is the one operating “in real life”, because several models can lead to the same results
(many-to-one) and the same process can lead to several qualitatively different results (one-to-many) [7].
The problem of adequacy assessment of the model with real life (also known as ontological adequacy
testing, cf. [8]) is twofold. First, many effective (or “real”) processes can lead to the same observed
situation within the target system that we aim to model. Second, inadequate mechanisms implemented
in the model can simulate in a satisfying way the situation under study. The challenge of identifying
the actual causal mechanisms is a recurrent problem in social simulation [9,10], but one that is usually
overlooked at the stage of results’ analysis.

We have tried in a previous study [11] to tackle the one-to-many part of the challenge within
the model, using an evolutionary algorithm to look for the maximum diversity in patterns produced
by a given set of mechanisms in a model of systems of cities. What we present here relies to the
multiplicity of possible causes leading to the single historical trajectory observed empirically. We present
a multimodelling framework which allows to combine different mechanisms into a modular model
evaluated against a unique set of evaluation criteria, enabling for the comparison of the performance
of different model structures to simulate urbanisation and the evolution of cities in a territorial system.

More precisely, we are interested in simulating the co-evolution of cities encompassed in a territorial
system (typically a nation or a continent) and to reproduce their hierarchical and spatial patterns. In other
words, we want to obtain simulations that produce the stylised facts [12] generalised from the empirical
observation of various systems of cities: their hierarchy, spacing and functional differentiation [13].
Section 2 presents the patterns we aim to reproduce and the catalogue of theories and mechanisms on
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which we draw to compose the model. Section 3 describes the multi-model and its implementation
in our study case, the evolution of the Soviet and post-Soviet system of cities (around 2000 cities).
Section 4 exposes the results of its exploration through multi-calibration. This exploration aims to
explore the performance of different hypotheses in explaining the evolution of Soviet and post-Soviet
cities. Section 5 concludes on the study case and the method.

2. A Catalogue of Possible Mechanisms of Urbanisation

“It may also be useful to think of complex geographical models as extensions of thought
experiments, where the necessary and contingent implications of theories can be examined.
Further, admitting that “all models are wrong” is akin to the realisation in post-structural
social science that multiple competing accounts of the same settings are possible, and that
faced with a diversity of accounts the context and intent of each must be an important
element in the evaluation process” ([7] p. 291).

A large bunch of theories in geography, economics and the natural sciences have tried to provide an
account of the regularity of urbanisation processes and the structuration of a system of cities, through
models and narratives. Keeping in mind the equifinality challenge, this means that we already have
a strong theoretical basis and several causal model candidates to confront with empirical regularities.
Without being exhaustive on these theories, we try to provide an overview of the mechanisms that have
been proposed in the literature. We then expose the kind of results that are achieved by statistical models
using empirical data, and present the particularity of our study case.

2.1. Competing Theories

To describe the structure of a system of cities, one focuses on three macro properties (patterns) of the
system: the hierarchy of city sizes, their regular spacing and the functional differentiation of cities [13].
The first one of these macro properties has fostered the larger body of research and will be our main
criterion for stating the performance of a simulation model, whereas the other two remain hard to
formalise and to compare over time and space with respect to the availability of urban information at
a local level. Consequently, we present in larger details the competing theories aiming at explaining the
regularity of city size distribution and its evolution over time, and quickly review theories of location
and functional specialisation.

The hierarchical organisation of city sizes represents a “mystery” [14] that has intrigued many
researchers, because of its regularity and simplicity of description (the rank-size “rule”) despite the
complexity of urban functioning and interactions (for reviews, cf. [15,16]). Auerbach, Lotka and
Singer [17–19] are known to be the first to formalise this regularity, leading to the famous rule that the
size of a city is a power law function of its rank in the hierarchy, a rule particularized by [20] arguing that
the Pareto exponent is expected to be −1. Alternative mathematical descriptions have been proposed,
for instance the lognormal distribution [21–23]. The two distributions, however, are close and tend to
coincide in the middle-upper part of the hierarchy [24,25].

Because of this regularity, generative models of power laws and lognormal distributions have
logically been considered as candidate explanations [24,25]. The most famous one is Gibrat’s law [23],
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which generates a lognormal distribution by a process of “proportional effect”. This model
of multiplicative growth allocates randomly average population growth rates from independent
distributions, at each short time step, to cities independently from their size. It is thus considered
close to a random walk. It results in amplifications of urban growth and decline leading to a lognormal
distribution. The Simon model of preferential attachment [26] applied to cities generates power laws of
city sizes by simulating an incremental creation of new urban blocks attached to existing urban clusters
with a probability dependent on the block size [27]. Those two models are elegantly simple enough to
generate hierarchical distributions, but they lack an explaining power to help understand urbanisation
processes: “Scaling laws often are viewed as over-identified: they can be generated by a wide range of
distinct models. It is essential to select specifications that integrate in the model a significant part of
the existing knowledge about towns and cities” ([28] p. 1). Some attempts were made to characterise
them in terms of exogenous shocks and contingent local policies (for example in Gabaix’s model [29]),
but random growth models seem to miss the causal power of mechanism-based simulation models [5].

Other accounts of urban growth models leading to the observed stylised hierarchical structure and
evolution (deterministic in Dimou and Schaffar’s typology [30], by opposition to random models)
range into two broad categories: equilibrium models of externalities (such as [31,32]) and evolutionary
models of spatial interactions (such as [33–35]). The former type of models formalises a balance
of centripetal (sharing, matching, learning in the labour market for example) and centrifugal forces
(pollution and congestion) resulting in optimal sizes for cities given the current technology. The latter
type of models rely on attractivity and spatial interactions of cities to explain the dynamic of competition
and cooperation resulting in a regular hierarchy in the urban system.

Location theories of cities typically build on two concepts to explain the regular spacing and empirical
distribution of cities in space: site and/or situation advantages [13,32,36,37]. Site advantages refer to
natural features available at an absolute location (natural resources, harbour conditions, etc.), whereas
situation advantages refer to centrality in a transportation network or an interface relative position for
example. All the theories mentioned above rely necessarily on relations with (consistent) territories
providing resources or distance constraints for instance, in order to explain the urban co-evolution.

Theories of urban specialisation inherit from trade theories (via comparative and competitive
advantages) and theories of product and innovation cycles. They state that cities have different features
(size, situation, site, former specialisation) that make them akin to be more competitive and thus
specialise in one economic sector in comparison with other cities, or to adopt an innovation sooner
or later than their neighbours. Depending on the current cycle of the product, those specialisations affect
not only the sectoral composition of the active population and its economic output but also confers an
advantage to early adopters and defines further options for specialisation and growth [38,39].

Finally, political factors and singular policies are usually considered necessary to explain
differentiated urban growth (through administrative functions or investment policies targeting specific
cities at a given moment in time).

We compose our catalogue with mechanisms that formalise the theories cited above. They fall into
five broad classes of generative mechanisms potentially accounting for the emergence of a structured
system of cities:



Systems 2015, 3 352

• Spatial Interactions and diffusion allow for the exchange of informations, monies, goods and
people. It thus makes cities co-evolve in time and adapt collectively to changing economic and
innovation cycles through competition and cooperation, resulting in some complementarity of their
specialisation. These local interactions and their consequences on the regular organisation of the
system as a whole under spatial constraints could be thought of as “complex systems effects”.

• Size effects like agglomeration economies and urbanisation externalities illustrate a very direct
and self-reinforcing cause for hierarchical differentiation.

• Site effects explain the spatial location of growth processes around resource-rich areas for the
related innovation cycle.

• Situation effects illustrate the importance of the neighbouring relational environment (potential
field, network accessibility, etc.) on a city’s pattern of growth.

• Territorial effects account for some exogenous (policy) shocks and the solidarity of urban
trajectories in a common political space (through redistributive processes for example).

2.2. Empirical Results from the Literature

We look for statistical evidences of these factors of urbanisation in the empirical literature before
turning to our case study experiment, where we propose an implementation and evaluate the power of
each of the five mechanisms into an agent-based (multi-) model.

• Spatial Interactions are tricky to measure because of the variety and non-commensurability
of flows circulating between cities at various temporalities. Until recently, the diffusion of
innovations (agricultural techniques [40], telephone lines [41] or newspapers [42]) served as a
proxy for these interactions. Since the development of various volumes of high velocity data,
actual interactions (like phone calls [43]) have confirmed for example the relevance of the gravity
model to describe inter-city interactions.

• Size effects on urban growth and differentiation were revealed by a persistent empirical correlation
between growth rates and city sizes over long periods of time. All over the 19th century,
Robson ([41] p. 79) measured a positive coefficient between the log of English and Welsh cities’
population and their gross ten-year growth rates (from a minimum of +1.47 between 1861 and
1871 to a maximum of +8.53 points in percentage between 1821 and 1831). This correlation is
found for French cities as well [44]. The size effect finally relates to the stability of the rank
position of large cities (by comparison with the fluctuations of smaller cities).

• Site effects were classically approached by estimating the surplus of growth associated with a
localised resource (typically, deposits of natural materials, such as coal or gas). In the Soviet urban
system of the 1920s–1930s, the location of a city on a coal deposit was associated with a surplus of
1.15 points in percentage of average demographic growth per annum, everything else being equal.
A surplus over 0.5 point is observed nowadays (1989–2010) for oil and gas deposits [45]. In the
USA, Black and Henderson [46] estimate that the coastal location (e.g., a resource for tourism) is
associated with a significantly higher ten-year growth rates of three to five points.

• Situation effects can be revealed by the spatial autocorrelation of growth or the co-evolution
between transportation networks and urban networks. In the first case, Hernando et al. [47] found a
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characteristic distance for spatial autocorrelation of growth rates of 215 km for American counties
and of 80 km for Spanish cities. As for transportation dynamics, Bretagnolle [48] measured the
correlation between accessibility and growth rates for French cities in the last two centuries. She
finds that cities that were weakly connected (by any transportation network: road, rail or air) in
1900 and stayed isolated in 2002 grew slower (0.94% on average per annum between 1900 and
2002) than cities that became motorway nodes (1.21%) or multimodal hubs (1.69%). Likewise,
well connected cities at the beginning of the period tended to grow faster than the first category.

• Territorial effects can be approached empirically by relating political statuses to dynamics of
growth. In developing countries, regional capitals were found to grow significantly faster by 0.5
to 1 point of annual average growth rate in the 1960s [49] and the 1990s [50]. In the Former
Soviet Union, the regional status of capital has proven important to predict urban growth [51],
the coefficient regressed against growth rates over time ranges from +0.24 point between 1989 and
2002 to +1.88 between 1926 and 1939 [45]. Besides, cities that belong to the same territory have
shown an increased pattern of synchronicity in their growth and decline trajectories from the 1980s
on, suggesting evidence of both political shocks and territorial solidarity in the spatial distribution
of urban growth.

Despite the corroboration of theories provided by the numbers cited above, statistical correlations do
not prove any causal chain and fail to explain the processes at work. Moreover, they are not adapted to
model dynamic, non-linear and complex evolutions and interactions. This is a recurrent problem that
has led social scientists to promote a combination of statistical methods with generative (simulation)
modelling [52,53].

2.3. A Case Study : The Former Soviet Union

We applied such a mixed methodology to the case study of the urban Former Soviet Union (FSU) of
the last 50 years [45,54]. This system of cities is mainly interesting to us because it has the reputation of
having been a controlled economic, political and social system aiming at reaching equalisation (of city
size for example) and yet, while observing its evolution with generic urban models, the urban trends
appear very classic [45,55]. By this, we mean for instance that the evolution of the percentage of
urban population follows a very classical logistic function of urban transition, that the rank-size slope is
close to the value expected with respect to the time of settlement of the different parts of the territory,
and that it has increased over time, indicating an increase of inequality of city sizes (despite anti-urban
political discourses). The monographic explanation of urban growth in the Former Soviet Union has
been dominant in urban geography, and we argue that it might have hidden very generic processes of
urbanisation in this system of cities.

Our modelling experiment aims at testing the genericity of the Soviet and post-Soviet urbanisation
by simulating generic mechanisms and comparing their results with harmonised historical data.
The database used in this study (DARIUS: Demography of Agglomerations in the perimeter of Imperial
Russia and the former Soviet Union [56]) consists of open demographic, territorial and site informations
on 1929 agglomerations of the FSU between 1840 and 2010.
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We analyse and compare the explaining power of generic mechanisms in a simulation of the period
before (1959–1989) and the period after (1989–2010) the dislocation of the Soviet Union. The agent-based
model framework of this experiment is called MARIUS (Models of Agglomerations in the perimeter of
Imperial Russia and the former Soviet Union. For further details, see [54]). In this model, cities interact
as collective agents [34] and we evaluate every simulations with three evaluation criteria. The first two
criteria are boolean indicators of the “realism” of the microdynamics of the simulation: we only analyse
simulations in which the number of cities with a nil wealth and the number of cities producing more
output in one year than their stock of wealth is 0. These codified “controlling” criteria help filtering
implausible sets of parameters from the exploration, in the manner of patterns in Pattern-Oriented
Modelling (POM) [57,58]. Once they are met, we try to minimise the distance δ between the simulated
population Ps and the observed population Po of each city i at each date t for which we have census
information, as stated in Equation (1) (cf. [54]).

δ =
∑
t

(
∑
i

(log(Po,i,t)− log(Ps,i,t))
2) (1)

This criterion ensures that a “perfect” model (achieved for δ = 0) would predict the right amount of
urban growth and its exact location in the different cities over time. In order to compare different time
periods, we normalise δ by the number of cities and the number of censuses used in a given period.

3. Modular Multimodelling Experiment

The incentive to implement competing and complementary theories into different models evaluated
against one another is a recurrent plea in the simulation literature [7,59,60,62,82]. It reveals how tricky its
implementation and automatic evaluation might be, besides the epistemological challenge of equifinality
and the kind of conclusions one can draw from this confrontation. Indeed, thirty years after the
“Automated Modeling System to Explore a Universe of Spatial Interaction Models” by Openshaw [61],
there are no standard tools nor formal methodology for theory testing with simulation models. Indeed,
Openshaw’s automated way to explore model structures, being a pure optimisation way of discovering
model structures, is impressive methodologically but it does not suit our goal of theory testing in a virtual
laboratory, because it can result in optimal models that are impossible to interpret. Instead, we think
that the first step should be to gather a catalogue of theoretical processes and mechanistic hypotheses
working as potential explanations. This usually precedes the mixed-modelling step [63,64] and prevents
from endlessly building models “from scratch” [62]; it allows to build on previous work and experience.

Following the ODD protocol [65], we briefly present an overview of the model (O, Section 3.1),
its design concepts (D, Section 3.2) and implementation details (D, Section 3.3). More specifically,
we distinguish between a baseline model of urban interactions and the hypotheses implementing our
catalogue of mechanisms as modular blocks, that can be activated or discarded to compose a family of
simulation models (Section 3.3).

3.1. Overview

This family of models aims at simulating the demographic growth of cities of the Former Soviet
Union, in terms of magnitude, rhythm and spatial location. The concept of model family points to the
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fact that we consider several mechanisms as candidates for explaining the historical processes observed,
and we aim to test and compare their ability to simulate the (post-)Soviet urban growth.

Agents in the model are collective entities: cities. We model between 1145 and 1822 such cities
(depending on the modelling period) for each simulation. This number corresponds to the number of
urban agglomerations recorded at the initial date for the period under enquiry in the Soviet Union [56].
Two periods are considered: a Soviet simulation (from 1959 to 1989, in 30 time steps of one year)
and a post-Soviet one (1989 to 2010, based on Russian census dates). A city (low level) is described
by a location (absolute and relative, such as the belonging to a region), a population and quantities
of production, consumption and total wealth. The system of cities (high-level) is described by the
distribution of city sizes.

At each step:

• Each city updates its economic variables based on its current population;
• Cities interact (i.e., exchange product) with other cities according to they supply, demand

and distance;
• Each city updates its wealth based on the results of its interactions;
• A simulation step ends when each city updates its population.

This baseline schedule is modified when additional mechanisms are activated in the model
structure. We detail these modifications in the following detailed description of additional mechanisms
(Section 3.3).

3.2. Design Concepts

The family of models includes a weak concept of emergence [66]. This means that no surprising
pattern emerges from cities’ interactions, but that they organise so as to produce patterns of increasing
(or decreasing) [11] levels of hierarchy of their size distribution. Cities adapt to their interaction network
by adjusting their (population) size. They sense their environment in two additional mechanisms,
when they can benefit from underground resources or regional rural migrations. Their interactions
are monetary as cities do not exchange residents: they trade production value (either bilaterally in the
baseline model or through the mutual redistribution of taxes in the redistribution mechanism). Cities
are part of regional collectives when the redistribution or urban transition mechanisms are activated.
No fitness is computed at the city level: we keep this term for the calibration, to qualify the fitness
between the simulated size distribution and the historical one over time. The model finally involves
neither prediction nor stochasticity.

3.3. Implementing Mechanisms as Building Blocks (Details)

The multi-model is composed of the baseline model and additional modules of mechanisms that
override the sequence of agents’ rules when they are activated. In the following sections, we detail
the baseline model and the modular blocks of mechanisms that are added incrementally to the original
equations. For further informations, the baseline model and the first two additional mechanisms were
described and evaluated in details in [54].
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3.3.1. The Baseline Model

The baseline model relies on the assumption that population and wealth are the basic descriptors of
cities and the engine of their co-evolution. It therefore models exclusively size effects of population on
wealth and spatial interactions.

At initialization, each city i of the Former Soviet Union is setup with its historical population Pi

at the beginning date of simulation, and located at its empirical coordinates, enabling site, situation
and distance to play in the same geometry as in the target system. An estimated value of wealth Wi

(expressed in a fictive unit) is determined for each city with respect to its size, following Equation (2).

Wi = P populationToWealth
i (2)

populationToWealth ≥ 1 (3)

This first mechanism is a first possibility of implementing the theoretical hypothesis of agglomeration
economies. Wealth is indeed distributed superlinearly for each value of populationToWealth

significantly greater than 1. Time is modelled as discrete steps, each of which represents a time period
of one year, during which interactions occur in a synchronous way. At each step:

• Each city i updates its economic variables: a global supply Si Equation (4) and a global demand
Di Equation (7), according to its population Pi and three parameters (economicMultiplier,
sizeEffectOnSupply and sizeEffectOnDemand).

Si = economicMultiplier × P sizeEffectOnSupply
i (4)

economicMultiplier > 0 (5)

sizeEffectOnSupply ≥ 1 (6)

Di = economicMultiplier × P sizeEffectOnDemand
i (7)

sizeEffectOnDemand ≥ 1 (8)

• Each city interacts with other cities according to the intensity of their potential IP Equation (9).
For two distinct cities i and j, the computation of the interaction potential IPij consists in
confronting the supply of i Equation (11) to the demand of j with an equation borrowed to the
gravity model Equation (12).

IPij =
Si ×Dj

ddistanceDecay
ij

(9)

distanceDecay ≥ 0 (10)

with dij a measure of distance between i and j.
Interactions of cities i and j based on their potential IPij result in a transaction Tij from i to j

Equation (13).

Sij = Si ×
IPij∑
k IPik

(11)

Dij = Di ×
IPji∑
k IPki

(12)

Tij = min[Sij, Dji] (13)
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• Each city updates its wealth Wi according to the results of its transactions T (unsold supply
USi Equation (15) and unsatisfied demand UDi Equation (16)) in which it was committed
Equation (14).

Wi,t = Wi,t−1 + Si −Di − USi + UDi (14)

USi = Si −
∑
j

Tij (15)

UDi = Di −
∑
j

Tji (16)

• A simulation step ends when each city updates its population according to its new resulting
wealth Equation (17) :

Pi,t = Pi,t−1 +
WwealthToPopulation

i,t −WwealthToPopulation
i,t−1

economicMultiplier
(17)

3.3.2. Mechanism Increments

• The mechanism that accounts for interactions benefits at the intercity level is the one called
bonus. It

“[...] features a non-zero sum game [...], rewarding cities who effectively interact with others
rather than internally. We assume that the exchange of any unit of value is more profitable
when it is done with another city, because of the potential spillovers of technology and
information [54].”

This bonus Bi depends on the volume of transactions and the diversity of partners Ji the city i has
exchanged with Equation (18). It is added to the wealth at the end of each step Equation (19), following
Equation (14):

Bi = bonusMultiplier ×
(
∑

j Tij +
∑

j Tji)× Ji

n
(18)

n being the total number of cities in the system (i.e., 1145 for a simulation beginning in 1959, 1822 for
a simulation beginning in 1989), and Ji the number of partners with which i has engaged in the current
simulation step.

Wi,t = Wi,t +Bi (19)

• A mechanism related to situation advantages is called fixed costs. It ensures that the situation
of each city in the system is taken into account in its interactions with other cities.

“Every interurban exchange generates a fixed cost (the value of which is described by the
free parameter fixedCost). This implies two features that make the model more realistic:
first, no exchange will take place between two cities if the potential transacted value is under
a certain threshold ; second, cities will select only profitable partners and not exchange with
every other cities. This mechanism plays the role of a condition before the exchange” [54].
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The interaction potential between city i and city j will be positive only if the potential value that i is
willing to sell to j is superior to the fixed value it costs it to negotiate, prepare and send the transaction
Equation (20):

IPij =

IPij if Sij > fixedCost,

0 otherwise.
(20)

Therefore, each transaction of a city i gives way to a fixed cost. Their sum is subtracted from the
wealth of city i at the end of each step Equation (21), following Equation (14):

Wi,t = Wi,t − Ji × fixedCost (21)

• Site effects are targeted by the resource mechanism: site advantages are particularised in this
model by natural resource deposits (more specifically: coal deposits C on the one hand, and oil
and gas deposits O on the other hand). The assumption is made that if the city i is located on
some coal or oil deposits (Ci = 1 or Oi = 1), the city benefits from the advantage granted by the
extraction activity. The capacity of extraction depends on the capital (wealth) of the city and takes
the form of a wealth multiplier for each resource Equation (22) after Equation (14):

Wi,t = Wi,t × (1 +

coalEffect if Ci = 1,

oilAndGasEffect if Oi = 1
) (22)

• Territorial and political effects are formalised by the redistribution mechanism. It allows for a
redistribution of wealth between cities of the same territoryR (region or State). To do so, territorial
taxes ttk are collected in each city kR, as a proportion territorialTaxes of their wealth. The total
amount of taxes collected is TTR Equation (23):

TTR =
∑
i

tti,R =
∑
i

territorialTaxes×Wi,R (23)

From this taxes, the administrative status of the territory R (denoted by CCi,R, set to 1 if i is the
capital city of the region and 0 otherwise) allows the capital city to take a share CS for its administration
needs Equation (24):

CSR = capitalShareOfTaxes× TTR (24)

The rest of the taxes is redistributed to cities of region. Each city iR receives a share tri,R that is
proportionate to its population Equation (25):

tri,R = (TTR − CSR)×
Pi,R∑
k Pk,R

(25)

The balance of the territorial redistribution is added to the wealth of a city Equation (26) after
Equation (14):

Wi,t = Wi,t − tti,R + tri,R +

CSR if CCi,R = 1,

0 otherwise
(26)
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• Finally, territorial and situation explanations are mixed in the urban transition mechanism.
To account for the different opportunities of cities to attract rural migrants in the different regions,
we model the evolution of the urban transition curves over time. As shown empirically [45],
100 out of the 108 regions of the Former Soviet Union have followed the scheme of the urban
transition. It means that their urbanisation rate UR (in %) has followed a logistic function over
time t Equation (27):

UR,t =
100

1 + e−urbanisationSpeed×t
(27)

The parameter urbanisationSpeed is not a free parameter, thus it will not be calibrated. It has been
empirically determined as the “mean” transition regime that minimises the error of logistic adjustment
performed on data depicting the urbanisation rate over time for each region of the post-Soviet Union [45].
This was done to position every region on a single urbanisation curve with respect to the historical time
lags their urban transition. Indeed, western regions were already mainly urban in the 1960s whereas
some central asian countries (Tajikistan, Kirghizstan) are still dominantly rural nowadays. This imply
strong disparities in migration opportunities from the cities. In order to model a generic process of urban
transition, we located the different regions at different stages of the same transition curve instead of
considering a specific urbanisation curve for each region. The consequence of this initialisation process
is that each region will move one step further on the urbanisation curve (leading eventually to 100%) at
each simulation step, but that the rural potential to migrate in cities will depend on its current position
on the urban transition curve (high potential for weakly urbanised regions, small potential for regions
already very urban). The migration potential of each city i in territory R is built as a multiplier TMR

specific to each region for each time step Equation (28):

TMR,t = 1 + (1− UR,t × ruralMultiplier) (28)

This extra population growth is added Equation (29) after Equation (17) and the new urbanisation
rates of regions are updated for t+ 1 Equation (27):

Pi,R,t = Pi,R,t × (1 + TMR,t) (29)

Because we want to evaluate the contribution of each theoretical mechanism to the simulation of
urbanisation and its interactions with other mechanisms, we need the modules to be easily activated and
de-activated dynamically in the model. To that extent, we leveraged the mixin-methods system of the
Scala programming language [67]. The mixins were first proposed at the beginning of the 90 s in the
Jigsaw programming language [68]. They are now adopted in mainstream languages such as Scala. It has
been established as a powerful way to perform type-safe dependency injection framework [69], which is
a powerful paradigm to achieve modularity. The mixin pattern allows to achieve type safe dependency
injection. Mixins are therefore a suited tool to achieve modularity in model implementations, which we
use to implement MARIUS in Scala language (to access the source code, cf. [70]).
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3.4. Technical Modular Implementation

The mixin-methods concept [71,72] generalizes object-oriented programming to enable feature-oriented
programming [73]. It makes the definition of class hierarchy more flexible [74]. Variations of isolated
features (such as the different update functions of city wealth and population in our model) are defined
in separate modules and mixed-in with each other at the object instantiation point, also called mixin
application. The advantage of mixins (or trait) over classical object-oriented programming is the
possibility of defining numerous variations of several features without increasing exponentially the
number of specialized class.

For instance, let us consider a class C implementing two methods a and b. We could think of class C as
the interaction potential function, a representing the basic implementation of Equation (9) and b the fixed
cost selection of Equation (20). To define alternative implementations of those methods in the classical
object-oriented paradigm, one would implement subclasses of C and override the implementations
of a and b in each subclass. For instance, in the Listing 1, the class C1 specialises C and defines
implementations for the methods a and b.

Listing 1: Object oriented specialisation.

a b s t r a c t c l a s s C e x t e n d s A wi th B {
d e f a ( x : Double ) : Double
d e f b ( x : Double ) : Double
d e f c ( x : Double ) = /∗ Compute some th ing u s i n g a and b ∗ /

}

c l a s s C1 e x t e n d s C {
d e f a ( x : Double ) = /∗ Some i m p l e m e n t a t i o n o f a ∗ /
d e f b ( x : Double ) = /∗ Some i m p l e m e n t a t i o n o f b ∗ /

}

This pattern achieves a very low level of code reusability. Let a and b have 10 possible
implementations, then 100 specialised implementations of C would be required. The mixins method
solves the problems of combinatorial explosion of the number of implementations by delaying the
entanglement of the class components at the instantiation site. Listing 2 exposes an implementation
based on mixins providing alternative implementations of A and B and the corresponding parameter
specifications. The implementation choice is delayed until the instantiation point (last lines of Listing 2)
at which a mixin is defined.

Listing 2: Mixin in Scala.

t r a i t A {
d e f a ( x : Double ) : Double

}

t r a i t B {
d e f b ( x : Double ) : Double
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}

t r a i t C e x t e n d s A wi th B {
d e f c ( x : Double ) = /∗ Compute some th ing u s i n g a and b ∗ /

}

/ / I m p l e m e n t a t i o n 1 of t r a i t A
t r a i t A1 e x t e n d s A {

d e f a ( x : Double ) = /∗ Some i m p l e m e n t a t i o n ∗ /
}

/ / I m p l e m e n t a t i o n 2 of t r a i t A
t r a i t A2 e x t e n d s A {

/ / P a r a m e t e r p0 used i n t h i s v e r s i o n o f a
d e f p0 : Double
d e f a ( x : Double ) = /∗ Some i m p l e m e n t a t i o n u s i n g p0 ∗ /

}

/ / I m p l e m e n t a t i o n 1 of t r a i t B
t r a i t B1 e x t e n d s B {

d e f b ( x : Double ) = /∗ Some i m p l e m e n t a t i o n ∗ /
}

/ / I m p l e m e n t a t i o n 2 of t r a i t B
t r a i t B2 e x t e n d s B {

d e f b ( x : Double ) = /∗ Some i m p l e m e n t a t i o n ∗ /
}

v a l i n s t a n c e 1 =
new C wi th A1 wi th B2 {}

v a l i n s t a n c e 2 =
new C wi th A2 wi th B2 {

/ / Value f o r p a r a m e t e r p0 of t r a i t A2
d e f p0 = 1 . 0

}

Scala traits expressiveness can be leveraged to implement modular evolutive type-safe modelling
frameworks proposing alternative model features, feature composability and the formalisation of the
feature dependencies. The implementation of alternative behaviours in several traits provides the
isolation of model component implementations and explicit dependencies between these components.
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Each component defines free parameters that have to be set at the model instantiation site, otherwise it
won’t compile.

In this experiment, we defined each alternative model mechanism in a particular trait. The executable
model has to be composed by picking the traits we wanted to test. In order to evaluate concurrently all the
alternative mechanisms, we generated all the possible models (or combination of mechanisms). It was
achieved using a code generation algorithm which produces all the possible models implementations by
generating a Scala source code containing all the possible traits combinations, such as the one shown on
Listing 3.

Listing 3: Example of generated code.

d e f model ( i n d e x : I n t , p a r a m e t e r s : Seq [ Double ] ) =
i n d e x match {

c a s e 0 =>
new Model wi th T11 wi th T21 wi th . . . {

d e f p0 = p a r a m e t e r s ( 0 )
d e f p1 = p a r a m e t e r s ( 1 )
. . .

}
c a s e 1 =>

new Model wi th T11 wi th T22 wi th . . . {
d e f p0 = p a r a m e t e r s ( 0 )
d e f p1 = p a r a m e t e r s ( 1 )
. . .

}
c a s e 2 => . . .

}

This generated source code implements a single function encapsulating all the model alternatives.
This function takes two arguments: an index of the implementation that shall be executed and a vector
of parameters to set for the model (for this work, we calibrated only double precision floating points
values). Note that the vector has a fixed size which does not depends on the model instantiated. A given
model implementation generally does not use all the parameters: instead it will use only some of them
and ignore the others (Figure 1).
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Figure 1. Multi-Calibration Protocol. This schema proposes a simplified graphic description
of the modular model building (top row) together with the empirical evaluation process
(middle row) and the iterative genetic calibration of the model structures (bottom row).

3.5. Calibrating a Multi-Model

“Whatever changes occur in the institutional, political and social context of computational
models, the question of how to learn from models remains. It is clear that assessment of
the accuracy of a model as a representation must rest on argument about how competing
theories are represented in its workings, with calibration and fitting procedures acting as a
check on reasoning” ([7] p. 291).
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In order to evaluate the capacity of the models to reproduce the historical trajectory of urbanisation
in the Former Soviet Union, we rely on an automated calibration. This procedure is part of the model
evaluation [75,76,78]. Its aim is to find the values of parameters for which the model results match
the fitness criteria (here: δ, the lowest possible distance to the data, once the realism criteria are met).
If the model can be calibrated, then it is shown that the mechanisms included in the model are sufficient to
simulate the urban trajectory (that does not prove yet that they are all necessary). If there are no parameter
value for which the fitness criterion is met, then the combination of mechanisms is not sufficient to model
urbanisation under the current implementation.

In order to calibrate all the models at once, we designed a variant of the NSGAII genetic algorithm that
includes a niching mechanism [79]. Niching methods aim at preserving suboptimal solutions to preserve
diversity. Our niching algorithm divided the population of parameterised models (that is, one model
with one vector of parameter values) into sub-populations, each sub-population containing one model
alternative (every model in the sub-population have the same mechanism structure). The genome of each
individual (an individual corresponds to a vector of parameter values and structure index that defines the
model under evaluation) contains two parts. The first part is an integer value that corresponds to the
index of the model alternative on which the genome is evaluated. The second part is a vector of double
values containing the values of all the parameters for the model.

In order to evaluate a genome, we designed a fitness function. This function calls the generated
function described above, runs the model and evaluates its dynamics using the fitness function described
in Section 2.3 (i.e., the criteria of realism of micro-dynamics and the distance δ between simulated and
observed population data for each city at each census date, Figure 1).

In NGSAII, the elitism operation preserves the best individuals among the whole population.
The evaluation algorithm we applied has the exact same elitism strategy for each sub-population.
No global elitism strategy was performed; instead, we kept the 50 best-performing individuals in each
sub-population (or model combination of mechanisms). In order to speed up the convergence of the
algorithm, we also tweaked the mutation operation: it had a 10% chance of mutating the “model index”
part of the genome. The new value for the “model index” was drawn uniformly among the possible
model indexes. This allowed to periodically test on other models, some parameter values that were
performing well on a given model.

We then distributed this algorithm on the European Grid Infrasctructure (EGI) using the technique
known as the “island model” in the same way as we described in [76]. We ran 200,000 jobs of 2 h. One
model execution being of 40 s on average, this experiment corresponds to approximately 72 million
evaluations of parameterised models. The set we analyse in the following section corresponds, for
each of the 32 different structures of models (64 in fact because the model can be instantiated for two
different time periods: 1959–1989 and 1989–2010), to the 50 vectors of parameter values that resulted
in the smallest distance to empirical data, so altogether 3200 performant parameter sets associated with a
model structure and a performance measure (Figure 1). Instantiated model structures can be for example:
baseline model + 1959–1989, baseline model + fixed cost + 1989–2010, baseline model + urban
transition + resources + 1989–2010, baseline model + redistribution + urban transition + 1959–1989,
baseline model + fixed cost + bonus + resources + 1959–1989, etc.. Those are part of the 64 instantiated
model structures for which 50 parameter sets were analysed.
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4. Results: Hypothesis Testing to Explain Urbanisation in the Former Soviet Union

The analysis of calibration results consists in relating the performance of these calibrated models (in
terms of distance between simulated and observed growth hierarchically and spatially) to their structure
(their mix of mechanism) and the values of parameters associated with each activated mechanism. We
detail each analysis below, and invite the reader to replicate them using the interactive application
VARIUS, built to explore those results online [77]. We present the results of this exploration in the
form of three questions at the macro, meso and micro scale of the city-system.

1 Which is the most parsimonious model to simulate the evolution of cities before and after the
collapse of the Soviet Union? A way to answer this question is to restrict the set of results to the
five model structures that correspond to the a mix of two mechanisms: the baseline model + one
additional mechanism (for example: resource extraction). That leaves us with 50 × 5 = 250

parameter sets and 250 performance values δ for each time period analysed. We look at the lowest
distance to empirical data achieved in this set of results, and identify the corresponding model
structure (the additional mechanism involved) and parameter values as the best performing ones.

For simulations starting in 1959 up to 1989 (the Soviet Union actually came to an end in December
1991 but the last Census of the Soviet Union was performed in 1989), the most performant parameterised
model with only one additional mechanism is composed of the baseline model plus the mechanism
of urban transition (cf. Table 1). It is characterised by significant economies of agglomeration
(sizeEffectOnSupply = 1.05) but a linear function of demand with size. The rural multiplier is
equal to 3.5% and allows to simulate fast urbanising regions of Siberia and Central Asia (cf. Figure 2).
However, the population of a majority of cities is under-estimated in the simulation, especially in the
upper part of the hierarchy, around Moscow and in eastern Ukraine (or more generally in the Western
part of the Former Soviet Union. See question 3 for an hypothesis as to why that might be.).

Table 1. Parameter values of the best performing simple model before the political transition.

Parameter Name Value Mechanism

economicMultiplier 0.002193758 Baseline
populationToWealth 1.000184755 Baseline
sizeEffectOnSupply 1.053943022 Baseline

sizeEffectOnDemand 1.000000000 Baseline
wealthToPopulation 0.203567639 Baseline

distanceDecay 1.872702086 Baseline
ruralMultiplier 0.034975771 UrbanTransition
Normalized δ n cities Time steps
0.01423387 1145 30
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Figure 2. Spatial distribution of residuals for the parsimonious models. Only cities largely
over- and under-estimated by the simulation are mapped in this figure. The size of the circles
indicate the population of the city as simulated at the end of the period. Dark colours
indicate large discrepancy: overestimation of the population in blue (negative residual)
and underestimation in orange (positive residual). N.B.: To reproduce those maps on the
application VARIUS, run the corresponding model and choose a residual cutoff of 0.3.

After the (political) transition, the best calibrated model with one additional mechanism includes site
advantages for cities. This model has two additional parameters and meets the evaluation criteria (per city
per census) twice better than the best model for the previous period (0.005 vs. 0.01, cf. Tables 1 and 2).
The analysis of the parameters fits the empirical observations of faster growing cities located on oil and
gas deposits (oilAndGasEffect = 0.02), and declining cities in the Donbass and Kuzbass coal regions
(coalEffect = −0.01). This model’s specifications include very low size effects and a very uneven
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wealth distribution amongst cities at initialisation (populationToWealth = 1.12). The residuals are
distributed roughly symmetrically (Figure 3), but without any mechanism of urban transition, the model
clearly underestimates the post-1989 growth of all the rapidly growing cities of Central Asia.

Table 2. Parameter values of the best performing simple model after the political transition.

Parameter Name Value Mechanism

economicMultiplier 0.502616330 Baseline
populationToWealth 1.124963276 Baseline
sizeEffectOnSupply 1.002982515 Baseline

sizeEffectOnDemand 1.000808442 Baseline
wealthToPopulation 0.699943763 Baseline

distanceDecay 1.475836151 Baseline
oilAndGazEffect 0.017066495 Resources

coalEffect −0.011792670 Resources
Normalized δ n cities Time steps
0.005180008 1822 21

(a) (b)

Figure 3. Distribution of residuals for the parsimonious models. (a) Urban Transition model.
1959–1989; (b) Resource Extraction model. 1989–2010.

To summarise, situation effects and territorial effects seem to be the dominant candidates for
explaining the specific part of the trajectories of cities in the Soviet era, while site effects seem to
have taken over since 1991, the transition to capitalism and the rise of oil prices in the world markets.
Moreover, the better fit of the latter model could be an indication of the “normalisation” of the urban
processes in the post-Soviet space, compared to a more singular pattern of Soviet urbanisation.

2 Which are the mechanisms (and mechanisms’ interactions) that are essential to model the
Soviet and post-Soviet urbanisation patterns? To address this question, we statistically analyse
the results of the multicalibration (3200 sets of parameters, the best 50 of each model structure
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for each time period) to evaluate the contribution of each mechanism (everything else being equal
in the model structure) to the reduction of distance between simulated and observed demographic
data for each city. More specifically, we regress the distance to data δ against the mechanism
composition of the model, following Equation (30):

δi = a+ b1 ∗BONUSi + b2 ∗ FIXEDCOSTi + b3 ∗RESOURCEi + b4 ∗REDISTRIBUTIONi+

b5 ∗ URBANTRANSITIONi + b6 ∗ PERIODi + εi
(30)

with δ the distance between simulated and observed trajectories, i one of the 3200 parameterised models
considered, BONUSi = 0 if the model includes the bonus mechanism, etc..., PERIODi = 0 if the
model is run between 1989 and 2010, PERIODi = 1 if the model is run between 1959 and 1989.

The estimated coefficients (b1, b2, b3, b4, b5, b6) associated with each mechanism correspond to the
average contribution of the mechanism to the distance δ when activated, everything else being equal.
They are represented in Figure 4, along with the intercept (a), that is the average δ of the baseline model
between 1989 and 2010.

Figure 4. Contribution of mechanisms to a simulation that reduces the distance to observed
data. N.B.: Estimated coefficients (a = “(intercept)′′, b1 = “Bonus′′, b2 = “Cost′′, b3 =

“Resources′′, b4 = “Redistribution′′, b5 = “Transition′′, b6 = “X1959 − 1989′′) are
considered significant for p-values inferior to 0.005. A negative coefficient indicates that the
mechanism contributes to reducing the distance to data, on average, when activated in the
model (the mechanism is thus called “essential” to simulate the urban hierarchical evolution
of the Former Soviet Union). A positive coefficient indicates that the mechanism increases
the distance to data, on average, when activated in the model (and is therefore harmful to a
realistic simulation of cities growth). A non-significant coefficient can indicate two things:
either the mechanism is neutral in the simulation, either its contribution to reducing the
distance to data depends on the presence of other mechanisms.
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We find that on average, the bonus, fixed costs and urban transition mechanisms tend to reduce the
simulation error significantly (cf. Figure 4). The transition and bonus mechanisms are identified to be
the most effective ones. By contrast, the resource mechanism is correlated significantly with a change
in the evaluation criteria but tends to increase the error when it is activated (compared with model
structures without this mechanism). This counter-intuitive result might be linked to the weak influence
of resource extraction for the first period of simulation, when there is a diversity of urban trajectories
within resource-rich regions. The redistribution mechanisms does not appear significant on average in
this analysis, as it plays a minor role in the reduction of error when activated.

Finally, we confirm the observation that our models work better to simulate the urban evolution
following the dismantlement of the Soviet Union. Indeed, as shown in Figure 4, the value of normalized
δ is greater by 0.01 point on average when the model is specified for the first period. This could be an
expression of “normalisation” or simplification of the urban processes in the post-Soviet space after the
political and economic transition of the 1990s.

3 What are the cities that resist modelling? In other words, what are the cities that are too
specific to be modelled by any of the mechanisms implemented? To answer this last question,
we statistically analyse the difference between the log of the population observed and the log of the
population simulated at the last evaluation Census date for cities included in the simulation, with
respect to their locational and functional attributes. The models for which we present the results
below contains all the implemented mechanisms, and are applied to the two periods of enquiry.

For the two periods, we find that our models persistently and significantly under-estimate the growth
of the largest and most western cities of the (Former) Soviet Union, everything else being equal
(cf. Figure 5). Moreover, capital cities appear to have grown less historically than what we can predict
with a complete model of the period 1959–1989. The other urban attributes included in the regressions
(natural resources and mono-functional specialisation) do not seem associated with any systematic
pattern of over- or under-estimation.

The difficulty to reproduce the trajectory of the largest cities has been encountered for a comparable
model of system of cities (Simpop2, see [80]) and solved by the exogenous introduction of innovations
to account for the creative features and higher probability of adoption of new technology and functions
by the largest cities.

The under-estimation of growth in the western part of the territory might be due to its integration
within a larger area (the Eastern Europe) during the periods under study: our hypothesis here is that the
centrality of western (post-)Soviet cities would then be minored in our model because it does not take
into account the interactions with east-European cities (Warsaw, Prague, Bratislava, etc.) which formed
altogether an economic system (even though the integration was always stronger within the FSU).



Systems 2015, 3 370

(a) (b)

Figure 5. Profiles of residuals. Estimated coefficients are considered significant for p-values
inferior to 0.01. These graphs should be read similarly to Figure 4: negative coefficients
indicate that, on average, cities with the attribute under consideration are overestimated
by the simulation, whereas positive coefficients indicate average underestimation of the
population of cities with the attribute in the simulation. The attribute “log(population)”
is the only quantitative one and the coefficient indicate the increase of residual value for
an increase of 1 of the log of population (in thousands). Finally the intercept coefficient
indicates the average residual value of cities with none of the attribute considered and a
population of 1000. (a) Complete model. Simulation 1959–1989; (b) Complete model.
Simulation 1989–2010.

Finally, some individual cities appear as clear outliers of the model, and could correspond to a profile
that is too specific to be modelled by any generic mechanism. For the first period, (cf. Table 3), the most
obvious examples of singular trajectories are the cities which grew much faster than what was expected
from their site, situation or interaction attributes. Indeed, Naberezhnye Tchelny, Volgodonsk, Toljatti or
Bratsk owe their sudden development to political decisions to implement flagship projects: automobile
industry mega-plants in Naberezhnye Tchelny (trucks) and Toljatti (cars), energy production sites in
Volgodonsk (atomic power) and Bratsk (hydroelectric power station). These economic policies of the
1950s and 1960s led those cities to be four times as populated 30 years later than what was expected
from their interactions, resource or regional characteristics.

For the second period, (cf. Table 4), Astana is a good example of a similar singular trajectory that
we would not aim to simulate with generic urbanisation mechanisms, as it owes its booming growth to
the decision of the Kazakh newly independent State to locate its headquarters in this city more central to
the country (compared to Almaty). On the contrary, Baikonyr, also in Kazakhstan, has suffered from the
cuts in the space industry (non-predictable at the urban level of our mechanisms). Other shrinking cities
like Aleksandrovsk-Sahalinsk, Krasnozavodsk or Uglegorsk would require more detailed mechanisms
of demographics (lack of birth and emigration) and economic cycles to be simulated adequately.
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Table 3. Observed and Simulated populations of urban outliers in 1989.

Positive Residuals
City Observed Pop. Simulated Pop.

Naberezhnye Tchelny 500,000 30,000
Volgodonsk 191,000 36,000
Chajkovskij 86,000 19,000

Toljatti 685,000 158,000
Bratsk 285,000 73,000

Balakovo 197,000 52,000
Tihvin 71,000 20,000

Chervonograd 72,000 21,000
Obninsk 111,000 32,000

Staryjoskol 174,000 53,000

Negative Residuals
City Observed Pop. Simulated Pop.

Zaozernyj 16,000 54,000
Gremjachnsk 21,000 56,000
Atakent/Ilitch 15,000 38,000

Kizel 37,000 88,000
Cheremhovo 74,000 172,000

Ilanskij 18,000 42,000
Gornoaltajsk 46,000 102,000

Volchansk 15,000 32,000
Zujevka 16,000 35,000

Taldykorgai 138,000 296,000

Table 4. Observed and Simulated populations of urban outliers in 2010.

Positive Residuals
City Observed Pop. Simulated Pop.

Mirnyja 41,000 12,000
Sertolovo 48,000 16,000

Beineu 32,000 11,000
Govurdak 76,000 28,000

Serdar/Gyzylarbat 98,000 37,000
Bayramaly 131,000 53,000

Sarov 92,000 39,000
Turkmenabat/Tchardjou 427,000 185,000

Astana/Tselinograd 613,000 278,000
Dashougouz 275,000 126,000
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Table 4. Cont.

Negative Residuals
City Observed Pop. Simulated Pop.

Sovetabad 11,000 33,000
Zhanatas 21,000 50,000

Krasnozavodsk 13,000 31,000
Gagra 11,000 25,000

Nevelsk 12,000 26,000
Arkalyk 28,000 59,000
Chyatura 14,000 28,000

Aleksandrovsk Sahalinsk 11,000 21,000
Uglegorsk 10,000 20,000
Baikonyr 36,000 67,000

To summarise, there are particular types of urban trajectories that are not simulated well by the model
because of its simplicity, and trajectories that are too specific to be modelled. We find that the exploration
of our models, their calibration and the analysis of residuals has helped to identify those cities and to
suggest some missing mechanisms.

5. Discussion

“Despite the fact that the experience of individual cities has become more varied
internationally (at least within what might be called the mature economies) there is stronger
evidence of a predictable pattern of change, determined by common causal factors, than
might be expected given the diversity and variety of cities” ([15] p. 1342).

Systems of cities have attracted a lot of attention from social modellers because of the regularity
of their patterns. Instead of regarding the profusion of competing theories as a source of confusion
(or suspicion) [81], we proposed a framework to integrate complementary accounts of urbanisation
processes into a modular agent-based model. This work of synthesis and testing within a virtual
laboratory has been made possible by its automation and the extensive use of computation resources to
calibrate sixty-four models structures with empirical data on almost two thousands cities in the Former
Soviet Union over the last fifty years. The model provides a basis for comparison of the different theories
that can be augmented by new or alternative implementations of mechanisms. It could also be applied to
different systems of cities (in space or time).

In the present study, we showed that the multi-modelling approach has helped identify and order
the mechanisms that most probably generated the urban pattern or Soviet and post-Soviet urbanisation:
situation effects of urban transition before 1991 and resource extraction afterwards. The intuitive
mechanism of redistribution, however, has proved insignificant. This method was finally useful to spot
the most singular trajectories of cities that we interpret with empirical and monographic knowledge to
refine the model.
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As signaled in [57], the full exploration of the parameter space of the model carries the risk of included
implausible combinations that can lead to misleading conclusions, especially because the models are
quite generic. Another limit to this work lies in the fact that the exploration of the parameter space and
the exploration of the model structure are performed alongside, although the same model structure can
lead to a large diversity of patterns [11]. A current direction of this work is indeed to look at the output
space produced by different model structures, and to compare their potential diversity in modelling
alternative trajectories.

6. Conclusions

To conclude, modelling experiments perform a radical compression of reality and an extreme
simplification of individual trajectories, events and persons into synthetic aggregates. The ontological
adequacy of the model to real life is therefore necessarily evaluated at an aggregated level that creates
the problem of equifinality. No simulation model can elude this question, but everything should be tried
to reduce its impact on what can be learned from the modelling experience.
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