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Abstract: Urban water supply systems may be managed through supply-side and demand-side 

strategies, which focus on water source expansion and demand reductions, respectively. 

Supply-side strategies bear infrastructure and energy costs, while demand-side strategies 

bear costs of implementation and inconvenience to consumers. To evaluate the performance 

of demand-side strategies, the participation and water use adaptations of consumers should 

be simulated. In this study, a Complex Adaptive Systems (CAS) framework is developed to 

simulate consumer agents that change their consumption to affect the withdrawal from the 

water supply system, which, in turn influences operational policies and long-term resource 

planning. Agent-based models are encoded to represent consumers and a policy maker agent 

and are coupled with water resources system simulation models. The CAS framework is 

coupled with an evolutionary computation-based multi-objective methodology to explore 

tradeoffs in cost, inconvenience to consumers, and environmental impacts for both  

supply-side and demand-side strategies. Decisions are identified to specify storage levels in 

a reservoir that trigger: (1) increases in the volume of water pumped through inter-basin 

transfers from an external reservoir; and (2) drought stages, which restrict the volume of 

water that is allowed for residential outdoor uses. The proposed methodology is demonstrated 

for Arlington, Texas, water supply system to identify non-dominated strategies for an 

historic drought decade. Results demonstrate that pumping costs associated with maximizing 
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environmental reliability exceed pumping costs associated with minimizing restrictions on 

consumer water use. 

Keywords: agent-based modeling; complex adaptive systems analysis; multi-objective 

optimization; urban water resources management; sustainability 

 

1. Introduction 

Urban water management can specify supply-side infrastructure and demand-side policies to balance 

water resources for municipal and environmental needs. Early water management initiatives focused on 

supply-side management through the expansion of water infrastructure systems and acquisition of new 

sources to meet domestic, agricultural, and industrial needs [1,2]. Due to population growth, urbanization, 

and climate change, water supplies have become increasingly stressed, and water utilities have turned to 

demand-side management through implementation of water conservation activities, including promoting 

water use efficiency, encouraging indoor and outdoor conservation, setting water prices, recycling and 

reusing water, and identifying leaks [3,4]. Supply-side management options may result in significant 

environmental degradation by diverting water from ecosystem requirements, and large infrastructure 

projects may bear enormous costs. By reducing demands for freshwater, demand-side strategies may 

better protect environmental systems, but the cost and performance of demand management strategies 

are uncertain. Incentives to use less water through pricing may have limited application and require 

institutional frameworks to implement. Water use standards, such as new appliances and water 

restrictions, may increase awareness of water issues and result in more water savings; however, they 

have typically been cost-ineffective in implementation [5]. Demand management may have unintended 

social effects and create an imbalance in environmental justice, as consumers in diverse socioeconomic 

groups may experience water shortages and price increases differently [6]. Other social effects may 

emerge due to excessive water use restrictions that affect property values or frustrate residents [7]. Water 

use reductions may be highly unpredictable; low response rates may not conserve adequate water 

supplies, while high response rates may reduce water utility revenue [8]. 

Many water management studies developed tools and frameworks to evaluate the performance of 

supply-side management options. The performance of demand-side strategies, however, is the outcome 

of the decisions and behaviors of consumers and is not easily simulated through readily available 

engineering models. To capture the feedbacks among water resources, consumers, and decision-makers, 

a modeling approach is developed and applied here to represent the comprehensive water resources 

system as a Complex Adaptive System (CAS). A CAS is a system of agents that update decentralized 

decisions based on dynamic feedback from a shared environment and the decisions of other agents.  

A CAS framework is developed by using agent-based models (ABM) to represent a policy maker that 

manages water resources and residential households that consume water and select water conservation 

practices. The policy maker agent subsidizes appliance replacements, implements year-round water 

restriction ordinances, and allocates inter-basin transfers. Residential agents respond to messages from 

the policy maker agent and communicate about water use and conservation. The shared water resources 

environment is characterized as a system of reservoirs, surface water systems, and watershed processes.  
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The CAS modeling framework was developed to simulate urban water resources [9,10] and is 

extended in this research to explore the sustainability of using demand-side and supply-side management 

for water resources through a multi-objective approach. The CAS framework is coupled with an evolutionary 

computation-based multi-objective optimization methodology, the non-dominated sorting genetic 

algorithm II (NSGA-II) [11]. An optimization model is developed to identify optimal inter-basin transfer 

pumping schedules and water restriction policies for a large-scale water resources system. Supply-side 

and demand-side management policies are evaluated based on the tradeoffs among cost to the utility, 

inconvenience to consumers, and environmental impacts. The proposed methodology is applied and 

demonstrated for the water supply system for the city of Arlington (TX, USA). 

2. Problem Description 

Managing urban water resources is inherently a multi-criteria problem, as utilities must balance the 

needs of residential, industrial/commercial, and environmental water users. Over the last several decades, 

various optimization models have been developed in assessing and managing urban water resources.  

A number of studies focused on supply-side management decisions through initiating inter-basin 

transfers, expanding reservoir capacity, and installing desalination plants to minimize operation and 

maintenance costs [12–17]. The majority of these studies confirm a tradeoff between management cost 

and water supply reliability. In an effort to evaluate demand reduction through water conservation 

activities, several studies simulated demand-side management decisions, such as plumbing fixture 

replacements, outdoor watering restrictions, and water rationing to minimize management costs [18–22]. 

While these studies acknowledged that the interaction between supply-side and demand-side options 

affects optimal management decisions, the simulation-optimization approaches focused on supply-side 

or demand-side decisions in isolation. Further, these studies neglected feedbacks among consumers, 

policy makers, and natural resources that can alter the performance of management strategies. 

In exploring and simulating demand-side strategies, scholars and water managers have developed  

a range of techniques to estimate of demand projections, which is typically accomplished through the 

use of time series and econometric models [23]. Total demand may be influenced by changes in water 

pricing, conservation policies, and climate change, which drive consumer behaviors, such as the adoption 

of water-consuming appliances; lawn and gardening practices; and conservation. Thus demand is a 

dynamic process, which emerges due to interactions among consumers, policy makers, and the water 

use environment. This type of dynamic and adaptive system can be simulated using an ABM approach 

where agents represent individual reactive and autonomous decision-making units, including human 

actors, and are capable of adapting to inputs from other agents and a shared environment through a set 

of logical and mathematical rules that specify behavioral decisions [24–26]. Several studies of urban 

water management used ABM approaches and focused primarily on demand-side management through 

pricing [27,28] and non-pricing [2,29–31] conservation measures; none of these studies, however, 

incorporated supply-side decisions. Giacomoni et al. [9] developed an ABM framework to simulate the 

dynamics of land use change, population growth, and adaptations of water demands and the effects on 

water sustainability. The framework was applied to simulate alternative demand-side management 

strategies, including outdoor watering restrictions, a rainwater harvesting rebate program, and a high-density 

land-use change policy [32]. Kanta and Zechman [10] extended this framework to explore both  
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supply-side management and demand-side management through inter-basin transfers and water conservation 

options to explore scenario-based adaptive water management strategies. This investigation showed that 

supply-side policy decisions, such as pumping water from an external basin, are not independent of 

demand-side management options, such as indoor-outdoor water use restrictions. Thus, further investigation 

is needed to evaluate optimal supply-side and demand-side water management strategies, including 

inter-basin transfers, drought management plans, and indoor incentive-based strategies to minimize 

management costs. 

3. Overview of CAS Framework 

A CAS framework was developed to simulate non-linear feedbacks among consumers, policy makers, 

and the water resources system [10]. The framework consists of three major components: an ABM of 

residential consumers, an ABM of a policy maker, and a mechanistic water resources model. Consumer 

demands vary based on seasonal needs for watering lawns, adoption of water conservation technologies, 

and compliance with water use restrictions. A policy maker agent implements drought management 

plans, which include outdoor water use restrictions based on the current reservoir storage, and fixture 

incentive programs, such as replacing appliances with low-flow toilets, low-flow showers, and efficient 

washing machines. Historic climatic data that include the drought-of-record are simulated to explore the 

dynamic interactions among conservation, drought management, and inter-basin transfers and to evaluate 

adaptive water management strategies. The CAS framework is developed using AnyLogic 6.5 simulation 

software [33]. A detailed description can be found in Kanta and Zechman [10]; however, a brief description 

of the model is provided here. 

3.1. Agent-Based Model of Residential Consumers 

Each household in a water district is represented as an agent who demonstrates heterogeneous and 

adaptive water use behavior. Agent’s heterogeneity is introduced through month specific demand, year 

of house built, and lot size. The monthly demand for each household is estimated based on the water 

district’s billing data which contains customer specific water usage volume per month for a long time 

horizon. From the statistical analysis of the water consumption data, a gamma distribution is chosen as 

a best fit to model the water use of agents [10] which stochastically satisfies the following relation: 

𝐸𝑚(𝐷𝑒𝑚𝑎𝑛𝑑) = 𝐸𝑚{𝑈𝑠𝑎𝑔𝑒|𝑃𝑟(𝑋 ≤ 𝑥)} (1) 

where Em(Demand) = expected demand for month m (m3/month); Em{Usage | Pr (X ≤ x)} = expected 

value of water usage for month m from gamma fitted distribution with a given probability of  

non-exceedance (m3/month); X = a uniform random variable [0, 1]; and x = a possible value of X. The 

gamma fitted stochastic model ensures agent’s heterogeneity in terms of water use at the beginning of 

the simulation period which may change if an agent adopts a water efficient technology or complies with 

any water use restrictions imposed by the water district. 

Each agent is also associated with three indoor end-uses, including toilet, shower head, and washing 

machine, and one outdoor end-use, the sprinkler system. The build year of the house determines if the 

existing appliances are old (water-inefficient) or new (relatively water-efficient). The lot size determines 



Systems 2015, 3 291 

 

 

the possible size of gardens and lawns for each household. Both the indoor end-uses and outdoor 

sprinkler demand are modeled after Jacobs and Haarhoff [34]: 

𝐴𝑀𝐷𝐷𝑖,𝑒,𝑚 = 𝑎𝑒,𝑚 × 𝑏𝑒 × 𝑛 (2) 

𝐴𝑀𝐷𝐷𝑜,𝑚 = (𝑓𝑚 × 𝑠)
(𝑘𝑚 × 𝐸𝑉𝑚) − 𝑃𝑚

𝑑𝑚
 (3) 

𝑃𝑚 = {

𝑅𝑚; 𝑓𝑜𝑟 𝑅𝑚 < 25 𝑚𝑚

0.504𝑅𝑚 + 12.4;  𝑓𝑜𝑟 25 𝑚𝑚 ≤ 𝑅𝑚 < 152 𝑚𝑚
89.0;  𝑓𝑜𝑟 𝑅𝑚 ≥ 152 𝑚𝑚

} (4) 

where AMDDi,e,m = average monthly daily demand for indoor appliance e during month m (L/day);  

ae,m = volume parameter of indoor appliance e during month m (L/event); be = frequency parameter of 

indoor appliance e (number of events/person/day); n = household size; AMDDo,m = average monthly 

daily outdoor demand during month m (L/day); fm = a model parameter representing a household’s 

behavioral choice of over- or under-watering the lawn with respect to the ideal water requirement 

(unitless); s = surface area of garden and lawn (m2), which is a function of lot size; km = crop factor 

during month m (unitless); EVm = pan evaporation during month m (mm/month); Pm = the portion of 

rainfall that penetrates into the soil during month m (mm/month); dm = number of days in month m 

(days/month); and Rm = rainfall during month m (mm/month). The factor 𝑘𝑚 × 𝐸𝑉𝑚  represents 

evapotranspiration from the lawn or garden. The volume parameter (ae,m), frequency parameter (be), and 

household’s behavioral choice (fm) values are adopted from Jacobs and Haarhoff [34]. 

A social communication model, or word-of-mouth framework [10], is developed based on  

Watts-Strogatz model [35] to simulate agents’ communication about technology adoption. The 

parameters of this model are cluster size, degree of connection, and the technology adoption threshold. 

Each agent is initialized randomly as a member of a cluster at the beginning of simulation period. Each 

Agent also has a user defined number of connections. When a policy maker agent offers incentive based 

programs, such as toilet/shower head/washing machine replacement rebate, the consumer agents adopts 

the new water efficient appliances and send information about technology adoption to their corresponding 

social network through the connections. The initial adoption of technology is determined randomly, 

without incorporation of a consumer price model. A threshold based decision rule is used to model 

voluntary adoption of water efficient technology, regardless of incentives offered by the policy maker 

agent. An agent adopts voluntarily once a certain portion of its social network has adopted. A detailed 

sensitivity analysis of word-of-mouth framework was done by Kanta and Zechman [10], which concludes 

that the model is more sensitive to cluster size and threshold value; the number of connections, on the other 

hand, does not have any significant effect on the rate of voluntary adoption. 

All consumers begin with old or new appliances based on the age of their corresponding houses.  

Each year, the policy maker agent offers a rebate to a specified number of randomly selected agents, 

which accept the rebate and replace existing appliances with water-efficient appliances. The reduction 

in demand for each appliance is modeled using end-use model (Equation (2)) with a reduced value of 

the volume parameter, ae,m. Agents who reduce demands through adopting water efficient technologies, 

send information to their peers. Based on the information received from a social network, consumers may 

voluntarily adopt water efficient appliances, an aggregation of which may also result in demand reduction. 



Systems 2015, 3 292 

 

 

The outdoor demand is a function of climatic data (EVm and Rm in Equations (3) and (4), respectively), 

size of lawns and gardens (s in Equation (3)), and affinity of a household to over- or under-water in 

maintaining gardens and lawns (fm in Equation (3)). Agents reduce outdoor demands based on outdoor 

watering restrictions. All agents are initialized with fm = 2.0 in Equation (3), which represents a frequency 

of outdoor watering at five times per week. It is assumed that all outdoor watering restrictions are 

mandatory. When a restriction is implemented, the outdoor demand is reduced based on the watering 

restrictions as twice per week (corresponding to drought stage 1 and fm = 1.0), once per week (drought 

stage 2 and fm = 0.5), and banned completely (drought stage 3 and fm = 0.0). The total demand for each 

agent is calculated as a sum of indoor and outdoor demand with reduction at the above four end-uses. 

3.2. Agent-Based Model of Policy Makers 

The utility manager is modeled as a policy maker agent that offers incentive-based conservation 

programs, imposes water use restrictions, and allocates inter-basin transfers. Both the incentive-based 

appliance replacement program and outdoor watering restriction options are adopted from the water 

district’s current conservation plan, and data is not included describing the water district’s price data and 

consumer specific income data. At the beginning of each month, the policy agent evaluates the level of 

the reservoir compared to the conservation pool, selects inter-basin transfer volumes, and imposes 

conservation and restrictions accordingly. The conservation pool of a reservoir represents the water 

surface elevation whose equivalent storage is allocated for the purposes of water supply, irrigation, 

recreation, and hydropower generation. The policy maker agent implements drought stages based on the 

volume of water stored in a reservoir at each month. The policy maker agent also determines the volume 

of water supplied through inter-basin transfers based on the reservoir storage. For months when the total 

demand is greater than the supply, and the demand cannot be met, the policy agent restricts outdoor 

water use completely. Each year, the policy agent implements monthly toilet, shower, and washing machine 

replacement rebate programs for the residential consumers. 

3.3. Water Resources Model 

The water resources model simulates the hydrologic processes of a watershed and the reservoir. 

Runoff from the watershed is calculated using the Rational Method [36] to generate inflow to the 

reservoir. The reservoir receives additional inflows from inter-basin transfers, and outflows include 

customer withdraws, evaporation, and reservoir spills. Due to changes in both inflows and outflows 

throughout the year, the reservoir storage and surface level vary with time. The water balance equation 

is used to calculate reservoir storage as follows: 

𝑆𝑡 =  𝑆𝑡−1 + 𝑅𝑂𝑡 + 𝐼𝐵𝑇𝑡 −  𝐷𝑡 − 𝐿𝐸𝑡 −  𝑅𝑡 (5) 

where St = reservoir storage volume at current month t (m3); St-1 = reservoir storage volume at the 

previous month t − 1 (m3); ROt = runoff from the watershed into the reservoir at current month t (m3); 

IBTt = inter-basin transfer volume to the reservoir at current month t (m3); Dt = residential demand at 

current month t (m3); LEt = lake evaporation at current month t (m3); and Rt = reservoir release at current 

month t (m3). Reservoir releases are set at the required instream flow volume if storage volume does not 

exceed reservoir capacity. The instream flow for environmental/ecological purposes can be estimated as 
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10% to 15% of average annual runoff from the watershed, as suggested by Cai and Rosegrant [37]. When 

storage volume exceeds reservoir capacity, reservoir releases are calculated as the excess volume of 

water beyond the reservoir capacity. 

4. Optimization Model for Urban Water Resources Management 

4.1. Model Formulation 

The water resources problem posed here explores tradeoffs among three objectives, including the 

minimization of pumping cost (Equation (6)), minimization of water use restrictions (Equation (7)), and 

maximization of provision of water for environmental flows (Equation (8)). The multi-objective 

optimization model is formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 = ∑ 𝐶𝑜𝑠𝑡_𝐼𝐵𝑇𝑡

𝑚

𝑡=0

 (6) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂𝑊𝑅 = ∑ 𝑁𝑆1

𝑚

𝑡=0

+  ∑ 𝑁𝑆2

𝑚

𝑡=0

+  ∑ 𝑁𝑆3

𝑚

𝑡=0

 (7) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑅 =  
∑ 𝑅𝑡

𝑚
𝑡=0

∑ 𝐼𝐹𝑅𝑡
𝑚
𝑡=0

 (8) 

Subject to: 

∑ 𝑆𝐻𝑡

𝑚

𝑡=0

 ≤ 0.0 (9) 

𝑅𝑡 ≥ 𝐼𝐹𝑅𝑡 (10) 

where 𝐶𝑜𝑠𝑡_𝐼𝐵𝑇t = pumping cost for month t for inter-basin transfers ($); t = simulation period or month; 

m = total number of months in the simulation period; OWR = outdoor watering restrictions (days);  

𝑁𝑆1
 = number of days when stage-1 outdoor water use is restricted (days); 𝑁𝑆2

 = number of days when 

stage-2 outdoor water use is restricted (days); 𝑁𝑆3
 = number of days when stage-3 outdoor water use is 

restricted (days); ER = environmental reliability for the water resources system (unitless); Rt = reservoir 

release at month t (m3); IFRt = instream flow requirement at month t (m3); and SHt = shortage volume 

during month t (m3). Equation (7) represents a quantitative measure of restrictions is the total number of 

days when outdoor watering restrictions are imposed. A stage-1 outdoor water use restriction specifies 

that lawn watering should be reduced to twice per week; a stage-2 outdoor water use restriction specified 

that lawn watering should be reduced to once per week; and a stage-3 restriction bans lawn watering 

altogether. Equation (9) ensures that consumer demand will be met during the simulation period. The 

constraint represented by Equation (10) ensures that the instream flow requirement is maintained year 

round, even during severe drought.  

  



Systems 2015, 3 294 

 

 

4.2. Model Decision Variables 

Eight decision variables are identified for the optimization problem, which are grouped into two 

categories: supply-side decision variables and demand-side decision variables. The supply-side decision 

variables include: (1) pumping triggers to initiate inter-basin transfers (represented as the percentage of 

reservoir conservation storage) and (2) volume of inter-basin transfers at each month (m3/month). The 

demand-side decision variables are drought triggers (represented as a percentage of reservoir 

conservation storage). Table 1 shows the list of decision variables. Note that although both the pumping 

triggers and the drought triggers are a function of reservoir conservation storage, the two triggers are 

simulated independently. 

Table 1. List of model decision variables. 

Decision Variable Description Range Decision Variable Type 

X Level 1 pumping trigger 0–1 Supply side 

Y Level 2 pumping trigger 0–1 Supply side 

P1 Level 1 IBT volume 0–12.3 billion·m3 Supply side 

P2 Level 2 IBT volume 0–12.3 billion·m3 Supply side 

P3 Level 3 IBT volume 0–12.3 billion·m3 Supply side 

S1 Stage 1 drought trigger 0–1 Demand side 

S2 Stage 2 drought trigger 0–1 Demand side 

S3 Stage 3 drought trigger 0–1 Demand side 

4.3. Non-Dominated Sorting Genetic Algorithm-II 

A simulation-optimization framework is developed by coupling the CAS framework with an evolutionary 

computation-based multi-objective methodology, NSGA-II, within AnyLogic 6.5 simulation software. 

NSGA-II is a genetic algorithm (GA) [38] based multi-objective approach. NSGA-II provides a 

population-based approach to search for a set of Pareto-optimal or non-dominated solutions. Each 

solution (or individual) in a population consists of a set of genes that represent the decision variables. 

The performance of each individual is evaluated using the CAS model, which initializes consumer 

agents, implements conservation and restriction policies imposed by a policy maker agent, simulates 

social communication between consumer agents, and calculates demands, reservoir storage, and 

objective function values. NSGA-II uses non-dominated sorting and a crowding distance operator in 

addition to typical GA operators of crossover, mutation, and selection. The operators are designed to 

ensure that the population will converge close to the true Pareto front and that solutions will be spread 

uniformly across the front. 

The steps of the simulation-optimization procedure are as follows: 

1. Generate an initial population of decision vectors of size N. 

2. Apply section, crossover, and mutation operators to create a new population of size N. 

3. Combine the parent and children population to generate a population of size 2N. 

4. Execute CAS model to evaluate each decision vector and assign a value for each objective function. 

5. Sort the population (decision vectors) into non-dominated fronts based on objective  

function vectors. 
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6. For each front, calculate the crowding distance. 

7. Select N solutions based on crowding distance. 

8. Repeat steps 2 to 7 until stopping criterion is satisfied. 

5. Case Study: Arlington Water System 

Arlington, located in North Central Texas, is selected to demonstrate the selection of demand-side 

and supply-side management strategies for urban water resources. The city of Arlington serves a 

population of over 3.6 million and is projected to grow to over 5 million by the year 2060 [39]. Arlington 

purchases raw water from Tarrant Regional Water District (TRWD) for storage in Lake Arlington. This 

study explores the selection of appropriate pumping triggers and drought stage triggers for Lake Arlington. 

Selection of high pumping triggers may result in a greater chance of reservoir spillage; on the other hand, 

selection of low pumping triggers may increase the severity of droughts. Similarly, lowering drought 

stage triggers for stage-1 during the period of water shortage may increase the chance of experiencing 

stage-3 restriction over a prolonged period.  

TRWD pumps water to Arlington from two reservoirs, Cedar Creek (firm yield = 216 million m3/year) 

and Richland-Chambers (firm yield = 259 million·m3/year) during low demand periods and stores  

the water in Lake Arlington (maximum capacity = 56.4 million·m3 with conservation storage  

capacity = 47.8 million·m3) for use during high demand periods. Lake Arlington supplies water to City 

of Arlington’s Pierce Burch Water Treatment Plant (PB WTP) and two major external customers. PB 

WTP serves approximately 55% of Arlington population with a current demand of 46.7 million·m3/year. 

Currently, the City of Arlington offers a plumbing fixture replacement rebate program and implements 

three drought stages (stage-1, water watch; stage-2, water warning; and stage-3, emergency water use) based 

on Lake Arlington capacities. Cedar Creek and Richland-Chambers Reservoirs are modeled as infinite 

reservoirs (due to high storage capacity volumes), without limitations on supply capacity. Residential 

agents are initialized to represent 50,600 households, which are served by the Lake Arlington. At the 

end of each year, new agents are created based on a population growth rate of 2.6%, which is a 

representative value for this area, based on historic data and population projections [40]. Each agent is 

also initialized as a member of a cluster of size 100 with eight social connections and threshold value of 

50%. A realistic conservation program, consisting of 2000 toilets, 2000 shower heads, and 2000 washing 

machines replacement rebate per year, imposed by the policy agent is applied throughout the simulation 

period. It is assumed that each household that responds to the appliance rebate program or 

communication via word-of-mouth replaces toilets, shower heads, and washing machine simultaneously. 

A schematic diagram of the Arlington water system is shown in Figure 1. 

5.1. Pumping Costs 

Monthly pumping data including pumping volume from Tarrant reservoirs to Lake Arlington and unit 

cost of pumping from the year 2000 to 2010 were collected from TRWD. Due to seasonal variation of 

energy cost, the pumping data were first grouped by months (January to December). A linear regression 

model was then applied to estimate cost of pumping for each month based on pumping volume. Table 2 

lists the regression model coefficients in calculating monthly pumping costs. 
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Figure 1. Schematic diagram of Arlington Water System with arrows indicating inflows to 

and outflows from Lake Arlington. 

Table 2. Regression Model Coefficients. 

Month Slope ($/m3) Y-axis Intercept ($) R2 

January 0.0613 −23,720 0.89 

February 0.0513 8113 0.79 

March 0.0520 −11,031 0.88 

April 0.0504 −24,463 0.91 

May 0.0297 27,827 0.68 

June 0.0459 5701 0.49 

July 0.0376 16,952 0.30 

August 0.0276 95,504 0.31 

September 0.0422 5155 0.70 

October 0.0540 −23,045 0.82 

November 0.0663 −56,266 0.86 

December 0.0670 −35,984 0.91 

5.2. Instream Flow Calculation 

To calculate the instream flow requirement downstream of Lake Arlington, historical monthly rainfall 

data from 1999 to 2008 were collected from Texas Water Development Board (TWDB); it is assumed 

that this period represents an average decade. Runoff time series from the watershed was calculated 

using Rational Method, and the monthly instream flow requirement was calculated as 10% of the runoff 

for the corresponding month. The 10-year average instream flow is estimated as the required instream flow. 
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5.3. Optimization Scenarios 

Two optimization scenarios are developed to explore water management strategies. In Scenario-1, the 

cost and outdoor watering restriction objectives are included in the model (Equations (6) and (7).  

In Scenario-2, the cost and environmental reliability objectives are included in the model  

(Equations (6) and (8)). For both scenarios, constraints are applied to ensure that total demand is met 

during the simulation period (Equation (9)). The constraint is formulated as a penalty function, which 

adds a large value to each objective function for a solution that results in shortages. A shortage occurs 

when demand exceeds the system’s capacity. In reality, there has never been a temporary shutdown of 

the water system due to water shortage during drought; the water district implements stage-3 outdoor 

watering restriction for prolonged period of time. The instream flow requirement (Equation (10)) is 

applied for Scenario-2 alone. To ensure that the instream flow requirement is met, for any month in 

which the reservoir release was zero, the reservoir release is simulated as the volume specified by the 

instream flow requirement. Inter-basin transfers and water use restrictions are initiated based on water 

levels falling in Lake Arlington, and the precipitation data is simulated as the rainfall records from 1948 

to 1957, representing a historical drought decade in Texas. For both scenarios, a set of non-dominated 

optimal management policies are identified, and it is assumed that a non-dominated policy for a drought 

year would also be suitable for an average year. 

6. Results 

6.1. Preliminary Results and Algorithm Performance 

A set of preliminary trials was simulated to identify algorithmic parameters settings for NSGA-II. 

The convergence of the algorithm was measured in terms of hypervolume [41], which measures the 

extent of the non-dominated solutions in the objective space. The hypervolume value increases when 

solutions move to more diverse sections of the Pareto front and when the set of non-dominated solutions 

moves further away from the worst point in solution space. The global worst point for this problem was 

identified as $51,388,500 as pumping cost, 3164 days as outdoor watering restrictions, and 0 as 

environmental reliability. For a set of preliminary trials, parameter settings that performed best based on 

the maximum value of hypervolume are: mutation rate of 0.01, crossover rate of 1.0, population size of 

100, and generations of 100.  

The CAS framework was executed for 10 independent random trials for both Scenario-1 and 

Scenario-2. Figures 2 and 3 show the convergence of NSGA-II in terms of hypervolume for the best trial 

for Scenario-1 and Scenario-2, respectively. For each trial, the hypervolume increases over the generations 

and reaches a plateau before 100 generations. The fluctuations in hypervolume values at the initial 

generations indicate a loss in fitness quality; this behavior is not surprising because the hypervolume is 

measured here, not optimized. 
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Figure 2. Hypervolume metric for multi-objective water resources system problem for 

Scenario 1. 

 

Figure 3. Hypervolume metric for multi-objective water resources system problem for 

Scenario 2. 

6.2. Scenario-1: Optimizing Cost and Outdoor Watering Restrictions 

The set of solutions from the best of 10 trials for Scenario-1 is shown in Figure 4, in which each point 

represents a non-dominated solution indicating the cost of inter-basin transfers and number of days when 

outdoor watering was restricted. In the figure, both the axes represent a minimization objective; thus the 

Pareto front is oriented from upper left to lower right with sub-optimal regions above and right of the 

front. In this scenario, the demand was met at all times with no environmental release constraints. 
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Figure 4. Pareto front for Arlington Water System after 100 generations: Scenario-1. 

To examine the tradeoff between the conflicting objectives, three non-dominated solutions (A, B, and C) 

are selected from the set of non-dominated solutions (Figure 4). These solutions are chosen deliberately 

based on their diversity on the Pareto front. The objective function values and decision values of the 

selected solutions are listed in Table 3. Solution-A is a high cost policy with low drought triggers, which 

results in less frequent implementation of outdoor watering restrictions. Solution-B is a moderate cost 

policy, which applies a more frequent stages 1 and 2 outdoor watering restrictions, however, the pumping 

triggers are at and below 11% of the conservation storage; this results in low volumes of water pumped. 

Solution-C is a low cost, high restriction policy, which implements stage 2 restrictions 32 times and 

stage 3 restrictions 74 times during the drought decade. Due to stringent restrictions, as well as moderate 

pumping throughout the drought decade, this policy maintains a low cost. Figure 5 shows the monthly 

storage of Lake Arlington resulting from the above three policy decisions (A, B and C) during the 

simulation period (1948–1957). It is observed that during this historical drought, the system does not run 

dry. This is due to several reasons: first, the system was optimized assuming the residential demand is 

met; second, there were no pumping restrictions for inter-basin transfers; and finally, there were no 

environmental release requirements. As a result, the range of cost values among the non-dominated 

solutions are relatively similar; however, the solutions provide diversity in outdoor watering restriction 

options over the simulation period. 
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Table 3. Summary of selected solutions on Pareto fronts of Scenario-1 (Solutions A, B, and 

C in Figure 4) and Scenario-2 (Solutions D, E, and F in Figure 6). 

 
Scenario-1 Solutions Scenario-2 Solutions 

A B C D E F 

Objectives       

Cost ($) 12,512,735 11,713,345 10,546,044 16,895,344 23,053,146 30,321,941 

Restriction (days) 68 1868 3000 - - - 

Environmental - - - 1.01 3.50 5.56 

Reliability       

Decision Variables       

X (%) 24 11 24 88 97 81 

Y (%) 11 6 17 46 79 56 

P1 (ac-ft) 39 150 101 175 996 6777 

P2 (ac-ft) 429 1291 966 219 1500 9569 

P3 (ac-ft) 7841 7981 6987 9528 9801 9754 

S1 (%) 18 44 92 91 58 41 

S2 (%) 13 29 66 75 21 15 

S3 (%) 9 21 49 67 15 12 

Pumping Volume (ac-ft) 253,792 242,979 217,813 342,355 453,935 560,903 

Drought Stages (no.)       

Stage-1 2 39 8 40 0 0 

Stage-2 0 29 32 20 0 0 

Stage-3 1 14 74 39 0 0 

 

Figure 5. Simulated reservoir storage for Scenario-1 during drought decade. 

6.3. Scenario-2: Minimization of Cost and Maximization of Environmental Reliability 

The non-dominated front of the final solutions from the best of the 10 trials for Scenario-2 is shown 

in Figure 6. In this figure, the horizontal axis represents maximization of environmental reliability and 

the vertical axis represents minimization of cost; the Pareto front is oriented from upper right to lower 
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left with sub-optimal regions above and left of the front. In this scenario, the reservoir releases were 

maintained at or above the instream flow requirements and demands were satisfied (no shortages were 

allowed in solutions). 

 

Figure 6. Pareto front for Arlington Water System after 100 generations: Scenario-2. 

Three non-dominated solutions (D, E and F) are compared for their conflicting objectives  

(Figure 6). The corresponding values of the objective functions as well as the decision variables of the 

above solutions are listed in Table 3. Solution D represents a low cost solution with environmental 

reliability just above 1.0. There is relatively low pumping during the simulated periods, and this solution 

results in 2372 days without lawn watering while maintaining both consumer demand and instream flow 

requirements. Solutions E and F are moderate and high cost solutions, respectively, with higher values for 

environmental reliability. These solutions do not apply any outdoor watering restrictions during the 

simulation period, but pump large volumes of water. Figure 7 shows that the monthly storage of Lake 

Arlington for the three solutions (D, E and F) remains nearly full during the simulation period. With the 

low cost policy (Solution-D) the reservoir level is close to conservation pool level; with moderate to 

high cost policies (Solution-E and Solution-F), the reservoir level remains above the conservation pool. 

In this scenario, the volume of inter-basin transfers is increased in order to meet both civic and environmental 

requirements. This results in no implementation of restrictions, which, in turn, causes a higher range of 

costs compared to that of Scenario 1. This may be a good strategy for water districts where protection of 

endangered marine species is critical. 
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Figure 7. Simulated reservoir storage for Scenario-2 during drought decade. 

7. Discussion 

Two optimization scenarios have been demonstrated here to develop optimal management policies 

for Arlington Water System. The scenarios are mapped to address sustainable water management in 

terms of two metrics, in addition to cost: outdoor watering restrictions (in Scenario-1) and environmental 

reliability (in Scenario-2). Although the model decision variables remain the same for both scenarios, 

the model generated different non-dominated solutions based on the above metrics. Figures 8 and 9 show 

the average values of supply side decision variables from the non-dominated solutions on the Pareto 

fronts for both the scenarios; the error bars represent corresponding standard deviations. Referring to 

Table 1 and Figure 8, the pumping trigger levels (X and Y) are relatively low for Scenario-1 than that for 

Scenario-2, with smaller standard deviations for both the scenarios. Lower pumping trigger levels ensure 

less inter-basin transfer volumes (P1 and P2) when reservoir water surface elevation is below 

conservation pool level (CPL) but greater than X% of CPL and also between X% and Y% of CPL (Figure 9). 

The low values of pumping triggers as well as transfer volumes allow the reservoir levels to drop below 

the conservation pool (Figure 5). When the reservoir water surface elevation goes below Y% of CPL, the 

solutions allow higher volumes of inter-basin transfers (P3) (Figure 9) to meet the consumer demand 

during historical drought. This is realistic because Scenario-1 satisfies the “no shortage” in demand condition 

without satisfying the instream flow requirements. Scenario-2, on the other hand, satisfies both the above 

constraints and hence, the inter-basin transfer volumes (P1, P2, and P3) are much larger than those in 

Scenario-1 (Figure 9). The high settings for pumping triggers (Figure 8) and high inter-basin transfer 

volumes (Figure 9) assures that the environmental release constraint is satisfied while meeting the 

consumer demands. Thus, this scenario also maintains reservoir storage close or above the conservation 

storage during the simulation period (Figure 7). 
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Figure 8. Pareto-optimal pumping trigger levels for Scenario-1 and Scenario-2. 

 

Figure 9. Pareto-optimal inter-basin transfer volumes for Scenario-1 and Scenario-2. 

The average values of demand-side decision variables with corresponding standard deviations  

are shown in Figure 10 for both Scenario-1 and Scenario-2. The lower average values of drought stage 

triggers (S1, S2, and S3) for Scenario-1 along with the nearness in their respective values represent that 

when the demand is stressed, this scenario implements drought stage triggers frequently to avoid possible 

drought. The larger values in standard deviation of drought stage triggers along with higher volumes of 

level 3 inter-basin transfers (P3) help bring the system into balance. For Scenario-2, the non-dominated 

drought stage triggers (S1, S2, and S3) show higher values than that of Scenario-1 but higher standard 

deviation values similar to Scenario-1 results (Figure 10). Compared to the pumping trigger values (X 

and Y in Figure 8), this scenario implements smaller values of drought triggers (S1, S2, and S3), which 

results in low or no days without lawn watering.  
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Figure 10. Pareto-optimal drought stage trigger levels for Scenario-1 and Scenario-2. 

8. Conclusions 

In this study, a simulation-optimization methodology is developed by coupling a CAS modeling 

framework with NSGA-II optimization methodology, and the model is demonstrated to identify optimal 

supply-side and demand-side management strategies for an urban water resources system. The major 

contribution of this research is modeling feedback loops among consumers, policy makers, and natural 

water resources while evaluating optimal management policies based on the tradeoffs between  

supply-side and demand-side options. Arlington Water System is used as a case study to investigate  

non-dominated policies of inter-basin transfers and outdoor watering restrictions. 

Urban water resources systems are typically planned and operated to meet consumer demands even 

during severe droughts. Due to population growth, urbanization, and climate change, water may become 

scarce, and water resources require careful planning to sustainably meet demands while reducing water 

stress on environmental and ecological systems. Although demand is greatly influenced by climate 

change, conservation policies, and consumer behaviors, existing water management methods ignore the 

interactions between consumers and policy makers in developing optimal management strategies. This 

study explicitly addresses the interaction between consumers and policy makers in managing a water 

resources system. The simulation-optimization model incorporates population growth, word of mouth 

communication, and several conservation-based policies, including retrofitting plumbing fixtures while 

optimizing the system for minimum cost and maximum drought security. 

In this study, two scenarios are developed to generate non-dominated solutions. The first scenario 

explores tradeoffs between outdoor watering restrictions and cost of inter-basin water transfers; the 

second scenario explores tradeoffs in environmental reliability and pumping costs. In both the scenarios, 

the model ensures that there are no water shortages experienced by residential consumers. When outdoor 

watering restrictions are minimized in Scenario-1, the solutions are identified that are characterized by 

low pumping triggers and high drought triggers, resulting in more frequent implementation of outdoor 

watering restrictions and less frequent inter-basin transfers. Thus the reservoir storage stayed below the 

conservation storage level, without running completely dry, during the simulation period. In Scenario-2, 
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environmental reliability is maximized with an additional constraint of instream flow requirements 

downstream of the reservoir. Due to this constraint, the model generates solutions with high pumping 

triggers as well as high drought triggers, which result in frequent inter-basin transfers and outdoor 

watering restrictions. In this case, the reservoir storage for most solutions remained close to the 

conservation storage. 

While minimizing the cost of inter-basin transfers, the Pareto-optimal solutions from Scenario-1 show 

a narrow range in cost. This is mainly because of three reasons: (1) Lake Arlington has a limited storage 

capacity; (2) inter-basin transfer strategies are influenced by climate and demand; and (3) there is no 

minimum release or instream flow requirements. For Scenario-2, due to both instream flow requirements 

and no restrictions in pumping, the non-dominated solutions show a wide range in cost. A study of a 

third scenario with minimization of cost, minimization of outdoor watering restrictions, and maximization 

of instream flow requirements could be done for regions where instream flows are vital for the ecosystem. 

Currently, the coupled CAS and NSGA-II framework requires 64.5 h to execute one trial (100 generations) 

in a Core 2 Quad CPU with a 2.83 GHz processor and 8.00 GB RAM. 

A few operations of the real system could not be represented through the ABM. Although the model 

was able to demonstrate successful demand management through outdoor conservation, the model 

assumes all outdoor watering restrictions are mandatory; hence all agents comply, resulting in frequent 

implementation of restrictions during Scenario-1. Moreover, the model parameter values representing 

households behavioral choice of watering the lawns (f = 2.0, 1.0, 0.5, and 0.0) were based on a study in 

South Africa [34], not based on the study area. Calibration of the ABM is outside the scope of this work 

and will be addressed in future studies.  

In conclusion, this case study demonstrated the ability of a coupled CAS and NSGA-II  

simulation-optimization framework to generate management solutions for a complex system subjected 

to changing demographic and climatic conditions. In future research, simulation frameworks can build 

on land use change simulation [9] to explore Pareto-optimal water-use and land-use strategies for sustainable 

management of urban water resources. 
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