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Abstract: The scaling of respiratory metabolism with body size in animals is considered by
many to be a fundamental law of nature. An apparent corollary of this law is the scaling of
physiologic time with body size, implying that physiologic time is separate and distinct from
clock time. However, these are only two of the many allometry relations that emerge from
empirical studies in the physical, social and life sciences. Herein, we present a theory of
allometry that provides a foundation for the allometry relation between a network function
and the size that is entailed by the hypothesis that the fluctuations in the two measures are
described by a scaling of the joint probability density. The dynamics of such networks are
described by the fractional calculus, whose scaling solutions entail the empirically observed
allometry relations.
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1. Background of Allometry

Allometry has been defined in living systems as the study of body size and its consequences both
within a given organism and between species in a given taxon [1,2]. However, the concept of allometry is
not restricted to a physiologic context, but is often argued to be a ubiquitous consequence of complexity.
Therefore, the approach presented herein is intended to provide a theoretical foundation for allometry
that is not mechanism specific, since allometry in biological phenomena has no mechanisms in common
with the similar size dependences of functionality in social or physical phenomena. The strategy we
adopt is to show that the extreme statistical variability of the allometry variables requires a fractional
equation of evolution for the joint probability density function (pdf). The solutions to these fractional
equations scale and, consequently, are shown to entail allometry relations (ARs).
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The application of the fractional calculus in an allometry context is sufficiently new, that I devote
some space to motivating its use, which requires reviewing some familiar material. However, the test
of any new scientific theory or the new application of an existing method is three-fold. First is the
success with which that theory/application predicts/explains experimental/observational data. Second
is its compatibility with the previously existing theory and the ability of the new theory/application to
make compatible previously conflicting interpretations of patterns discerned within the data. Finally is
the ability of the theory/application to suggest new ways to test and verify its predictions to provide
previously unavailable insight into the phenomena being studied.

1.1. The Empirical Equation

D’Arcy Wentworth Thompson began and ended his seminal book On Growth and Form [3] with a
lament on the paucity of his knowledge of mathematics and arguing for its need in the understanding
of the natural sciences. Given his perspective, it might surprise some that he opened his work with a
penetrating discussion of the Principle of Similitude, dimensional analysis and dimensionless constants
in biology. This overview laid the groundwork for the growth of organisms that he addresses in his
second chapter, wherein he connects his scaling arguments to those of Huxley that follow the compound
interest law. In the 1941 edition of his book, Thompson expressed skepticism as to the generality of the
law proposed by Huxley.

Sir Julian Huxley [4] proposed that two parts of the same organism have proportional rates of growth.
In this way if, Y is an observable in a living subnetwork with growth rate ϑ and X is a measure of the size
of a living host network with growth rate γ, then the fractional increase in the two is denoted according
to Huxley by:

dX

γX
=
dY

ϑY
(1)

This equation can be directly integrated to obtain the time-independent AR, where a and b (= ϑ/γ)
are empirically determined parameters:

Y = aXb (2)

By convention, the variable on the right is the measure of the network size, and that on the left denotes
a network function or property. In Section 2, an indication of the sweep of phenomena in which such
empirical relations, as given by Equation (2), emerge, most of which do not satisfy the assumptions made
by Huxley in his “derivation” of the AR. In addition, no empirical AR is free from statistical variability,
and that is not explicitly taken into account in Equation (2).

All complex dynamical networks manifest fluctuations, either due to intrinsic nonlinear dynamics
producing chaos [5,6], or they are the result of the coupling of the network to an infinite dimensional,
albeit unknown environment [7], or both. It should be emphasized that such statistical variability is the
result of complexity and is independent of any question of measurement error. The modeling strategies
adopted to explain ARs in the natural sciences have traditionally taken one of two roads: the statistical
approach in which residual analysis is used to understand statistical patterns and to identify the causes
of variation in the AR [2,8,9]; or the reductionist approach to identify mechanisms that explain specific
values of the allometry parameters [10,11]. We found that neither approach separately can provide a
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complete explanation of all the phenomena described by ARs, and therefore, herein, we adopt a third
approach using the fractional calculus.

1.2. Fractals and Scaling

Scaling is a nearly ubiquitous property of complex networks, indicating that the observables
simultaneously fluctuate over many time and/or space scales. In the physical sciences, such phenomena
have historically been categorized as 1/f noise is a stochastic process with an inverse power-law spectrum
noise [12] or 1/f variability [13]. Mandelbrot [14] was probably the first to recognize the wide-ranging
significance of this 1/f variability with his introduction of fractals into the scientist’s lexicon. The
existence of ARs has been closely tied to fractal geometry by some investigators [11]; others [15] argue
that the origin of AR resides in the scaling of pdfs, that is, the fractal statistics, not necessarily in fractal
geometry. Mandelbrot [14,16] identified a number of ARs masquerading under a variety of empirical
‘laws’ and argued that they were a consequence of complex phenomena not having characteristic scales.

A dynamic variable, Z(t), scales if for a positive constant, λ, it satisfies the homogeneity relation:

Z(λt) = λβZ(t) (3)

Modifying the units of the independent variable therefore changes the overall observable by a
multiplicative factor; this is the property of self-affinity. The function is concave if β > 1 and convex if
β < 1.Note that scaling alone is not sufficient to prove that a mathematical function is fractal, but if such
a function is fractal, it does scale in this way. Changes in the network size, X, control (regulate) changes
in the network property of interest, Y, in complex networks through such a homogeneous scaling relation.

Fractal statistics are inhomogeneous in space and intermittent in time, and it is the statistical scaling
that is evident at increasing levels of resolution. In the phase space description of the dynamics of
statistical fractals, the phase space variables (z, t) replace the dynamic variable, Z(t). Moreover, it is the
pdf, P (z, t), that satisfies the scaling relation:

P (z, λt) = λ−µP (z, t) (4)

and the homogeneous scaling relation is interpreted in the sense of the pdf. Time series with
such statistical properties are found in multiple disciplines, including finance [17], economics [18],
neuroscience [19,20], geophysics [21], physiology [22] and general complex networks [23]. A complete
discussion of pdfs with such a scaling behavior is given by Beran [24] in terms of the long-term memory
captured by the scaling exponent. An example of a scaling pdf is given by:

P (z, t) =
1

tµ
Fz

( z
tµ

)
(5)

and is found in Section 3 to be the general solution to a fractional phase space equation for the pdf.
Note that in a standard diffusion process, Z(t) is the displacement of the diffusing particle from its
initial position at time t, µ = 1

2
, and the functional form of Fz (·) is a Gauss distribution. However,

for general complex phenomena, there is a broad class of distributions for which the functional form of
Fz(·) is not Gaussian and the scaling index µ 6= 1

2
, an example of which would be an alpha-stable Lévy

distribution [25,26].
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1.3. Preview

In Section 2, we set the stage with a brief history of allometry with exemplars from a wide range of
disciplines from physical to physiological and social networks to their modern theoretical embodiment in
complex networks [23]. The variability in the kinds of allometry relations motivates the discussion of the
mathematics of fractional differential equations [27,28] in Section 3, along with the transitioning from
dynamic variables to phase space variables to express the probability calculus in terms of a fractional
phase space equation (FPSE) [29–31]. The general solution to the FPSE is found to provide insight into
different aspects of the origins of allometry.

The probability calculus extended to fractional operators should enable modelers to associate
characteristics of the measured pdf with specific deterministic mechanisms and with the structural
properties of the coupling between variables and fluctuations, as we show in Section 3. The FPSE
is presented as the basis for the many guises of allometry, and their fractional form is based on
a subordination argument, through which the influence of the environment is taken into account.
Elsewhere, we developed an alternative route to the probability calculus that systematically incorporates
both a reductionistic and statistical mechanism into the phenomenological explanation of ARs [32,33].
Those arguments are extended here using the fractional calculus.

In Section 4, some conclusions are drawn, and the potential wide ranging utility of the present
approach is discussed.

2. Empirical Allometry

In this section, we briefly touch on various disciplines in which data have revealed patterns described
by allometry relations, and although not exhaustive, the list demonstrates the ubiquity of allometry. The
reason for what some might consider a digression is the belief that if allometry is to remain a fundamental
scientific concept, then it must have a degree of universality. By universality, I do not mean an AR with a
specific value for a modeling parameter, such as the allometry exponent being 3/4 rather than 2/3 [34,35],
but rather that there exists a generic framework for understanding the origin of allometry, independent of
a specific mechanism within any particular discipline. To provide this motivation, we catalog a number
of phenomenological ARs that are not usually discussed from a common perspective, many of which are
taken from the review [15].

2.1. Living Networks

Gayon [36] reviewed the history of the concept of allometry in living networks and distinguished
between four different forms: (1) ontogenetic allometry, which refers to relative growth in individuals;
(2) phylogenetic allometry, which refers to constant differential growth ratios in lineages; (3) intraspecies
allometry, which refers to adult individuals within a species; and (4) interspecies allometry, which refers
to the same kind of phenomenon among related species.
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2.1.1. Biology

The fact that brain mass does not increase linearly with body size was first recognized experimentally
at the turn of the nineteenth century by Cuvier [37]. This empirical observation was subsequently
repeated regarding various biological variables proceeding from smaller to larger species within a taxon.
However, almost a century passed before the empirical observation was first expressed mathematically as
an allometric relation by Snell [38] withX the body weight and Y the weight of the brain in Equation (2).
In a related way, mammalian neocortical quantities Y have been empirically determined to change as a
function of neocortical grey matter volume X . The neocortical allometry exponent was first measured
by Tower [39] for neuron density to be approximately −1/3. The total surface area of the mammalian
brain was found to have an allometry exponent of approximately 8/9. Changizi [40] pointed out that
the neocortex undergoes a complex transformation covering the five orders of magnitude from mouse to
whale, but the ARs persist; those mentioned here along with many others.

2.1.2. Physiology

The most studied AR associates the average basal metabolic rate, Y (BMR), measured in watts,
to the average total body mass, X (TBM), measured in kilograms, of multiple species. Sarrus and
Rameaux [41] developed the first physiologic model for the value of the allometry exponent in the
intraspecies AR. They reasoned that the heat generated by a warm blooded animal is proportional to
the animal’s volume, and the heat loss is proportional to the animal’s free surface area. A half century
later, Rubner [42] supported their argument with a series of experiments on dogs that lead to the wide
acceptance of the ‘surface law’, requiring that b = 2/3. Kleiber [43] and Brody [44] determined that
the allometry exponent was closer to 3/4 than to 2/3. Subsequent observational studies have reinforced
the allometric pattern observed in the data predicted by the AR, including some relating the 3/4-rule to
plants; see, for example, Hemmingsen [45]. Consequently, the phenomenological value of the metabolic
allometry exponent, b, remains controversial [46–49].

Perhaps the most famous allometry relation is given in a graph of the metabolic rates versus the total
body mass of mammalian species from the elephant down to the mouse, depicted in Figure 1. The
solid line segment drawn through the data points is the “mouse-to-elephant” curve and has a slope of
b ≈ 0.74 [9], thereby apparently satisfying Equation (2).

The simple geometrical argument for heat transfer of Sarrus and Rameaux, suggesting b = 2/3 is
reviewed in a number of excellent sources [8,9,46,49]. A modern version of the heat transfer argument
is given by Bejan [50] using sophisticated geometrical reasoning for counterflow heat streams yields
an allometry exponent in the interval (2/3, 3/4), depending on the thermal resistance. On the other
hand, the quarter-power AR is explained by West et al. [11] using geometric scaling arguments from
fractal physics to establish the value b = 3/4 and other quarter-power scaling laws in physiology.
However, Glazier [51], among others, determined that this value of the allometry parameter was also
not universally true.

Heusner [49] adopted geometric scaling arguments to obtain b = 2/3 in the AR between BMR and
TBM. He argued that the various other values experimentally observed for the power law index by
investigators are a consequence of differing values of the allometric coefficient, a. He concluded
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Figure 1. The mouse-to-elephant curve. Metabolic rates of mammals and birds are plotted
versus the body weight (mass) on log-log graph paper. The solid-line segment is the best
linear regression to the data from Schmidt-Neilson [9] with permission.

that it is the allometry coefficient that remains the central mystery of allometry and not the allometry
exponent. West and West [52] investigated the implications of Heusner’s conjecture and explored the
implications of treating the allometry parameters as random variables. They established that the resulting
average values of the allometry parameters covary in a V-shaped functional form, as had been predicted
by Glazier [48] using a very different argument. This interdependence of the allometry parameters
demonstrates the lack of universality in the value of the allometry exponent.

2.1.3. Physiological and/or Biological Time

Another quantity of interest is the intrinsic time of a biological process, first called biological time
by Hill [53]. He reasoned that since so many properties of an organism change with size, that time
itself scales with TBM. Lindstedt and Calder [54] developed this concept further and determined
experimentally that biological time, such as species longevity, satisfies an AR, with Y being the
biological or physiological time. Lindstedt et al. [55] clarify that biological time is an internal
mass-dependent time scale to which the duration of biological events are entrained.

There are literally dozens of ARs involving physiologic time that increases with increasing body
size [56] and that describe chemical processes, such as the turnover time for glucose with b = 1/4 [57],
to the life span of various animals in captivity with b = 0.20 [58]. Lindstedt and Calder [56] point
out that attempts to determine specific values of the allometry exponent, b, presuppose that nature
may have selected for volume-rate scaling. In a more recent context, it has been argued that a fractal
network delivering nutrients to all parts of an organism is the reason for the existence of biological ARs.
The metabolic AR is considered to be a consequence of the scaling behavior of the underlying fractal
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network [11], and therefore, the fractal network is thought to be the more fundamental. This model has
stimulated a great deal of discussion in the literature, both for and against the fractal concept.

Lindstedt and Calder [56] suggested an explanation in which the scaling of biological volume-rates is
a consequence of physiologic time scales. For example, the BMR is the energy generated by a biological
volume per unit time, such that the ratio yields the AR with an exponent b = 1 − β ≈ 3/4, where
β ≈ 1/4 in the physiological time exponent [46,59,60]. Consequently, it would not be necessary to
hypothesize that specific biological rates have been selected as isolated phenomena. It would be the
physiologic time that makes the metabolic AR inevitable. West and West [61] explored what is implied
by assuming physiological time to be fundamental and hypothesized that the period associated with a
cyclic physiologic process manifests scaling behavior.

2.1.4. Information Transfer Hypotheses

Hempleman et al. [62] hypothesized a mechanism to explain how information about the size of an
organism is communicated to the organs within the organism. Their hypothesis involved matching the
neural spike code to body size to convey this information. They suggest that mass-dependent scaling of
neural coding may be necessary for preserving information transmission with decreasing body size and
point out that action potential spike trains are the mechanisms for long distance information transmission
in the nervous system. The hypothesis is that some phasic physiological traits are sufficiently slow in
large animals to be neural rate coded, but are rapid enough in small animals to require neural time coding.
These traits include such activities as breathing rates that scale with an allometry exponent of −1/4.

West and West [15] noted that Hempleman et al. tested for this allometry scaling of neural coding by
measuring action potential spike trains from sensory neurons that detect lung CO2 oscillations linked to
breathing rate in birds ranging in body mass from 0.045 kg to 5.23 kg. While it is well known that spike
rate codes occur in the sensing of low-frequency signals and that spike timing codes occur in the sensing
of high-frequency signals, their experiment was the first designed to test the transition between these two
coding schemes in a single sensory network due to variation in TBM. The results of their experiments
on breathing rate were an allometry exponent in the interval −0.26 ≤ b ≤ −0.23. The implications of
these experiments strongly suggest the need to continue such investigations.

2.1.5. Botany

An impressive statistical trend spanning twenty orders of magnitude in the mass of aquatic and
terrestrial non-vascular and vascular plant species was recorded by Niklas [63]. The annual growth
in plant body biomass (net annual gain in dry mass per individual) and the total dry mass per individual
are related by the empirical AR. The allometry exponent is 3/4 for the data recorded, but empirically
differs from this value when the data sets are graphed individually. The allometry coefficients of the
separate data sets may vary as a function of habitat, as well. The agreement between the biomass
data and the AR with exponent 3/4 is very suggestive, but it must be viewed critically, because of
methodological limitations.

On the other hand, Reich et al. [64] analyzed data for approximately 500 observations of 43 perennial
plant species of coupled measurements of whole-plant dry mass and the annual growth rates from four
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separate studies. Collectively, the observations span five of the approximately 12 orders of magnitude
of size in vascular plants [65]. The result of each experiment separately yielded an isometric scaling of
b ≈ 1 and not b = 3/4, as did the scaling of the annual growth rate to TBM for whole plants.

2.1.6. Computers and Brains

E.F. Rent, while an IBM employee in the 1960s, wrote a number of internal memos (unpublished)
relating the number of pins at the boundaries of an integrated circuit (X) to the number of internal
components (Y ), such as logic gates, to obtain an AR with b < 1.0. This rule has historically been used
by engineers to estimate power dissipation in interconnections and for the placement of components in
very large-scale integrated circuit design. More recently, Rent’s rule has been used to model information
processing networks in the human brain [66] where the mass of grey and white matter is shown to satisfy
an AR, as first noted by Schlenska [67]. Beiu and Ibrahim [68] suggested that the allometry exponent
for grey and white matter between species is identical to the Rent exponent within a species, and this
conjecture was supported using magnetic resonance imaging (MRI) data by Bassett et al. [66].

2.2. Physical Networks

Some of the oldest scaling relations supporting ARs involve physical networks. The skeptic need look
no further than Leonardo da Vinci’s Notebooks [69], wherein he relates the diameter of a parent limb,
d0, to the diameters of two daughter limbs, d1and d2:

dα0 = dα1 + dα2 (6)

where α need not be an integer and such that if the daughter branches have equal diameters, one
obtains the scaling relation d0 = 21/αd1. The 500 year old scaling relation of da Vinci supplies
the phenomenological mechanism necessary for AR to emerge in a number of contexts. In Figure 2
is da Vinci’s sketch of the branching structure that he used to argue for the scaling manifested by
Equation (6). He applied his arguments freely to all phenomena sharing this branching behavior,
including river networks.

2.2.1. Hydrology

One of the first hydrologic ARs has to do with the drainage basins of rivers. Hack [70] developed an
empirical relation between the mainstream length of a river network (Y ) and the drainage basin area at
the closure of the river (X). In Hack’s AR, b = h is the Hack exponent with the typical empirical value
h ≈ 0.57. He gratuitously asserted that river networks are not self-similar.

Mandelbrot [14] relates Hack’s exponent to the fractal dimension of the river network and presents
a then novel interpretation of Hack’s AR. Feder [71] observed that defining a fractal dimension for
river networks was obscure and required further study. A modern version of this discussion in terms of
hydrologic allometry is given by Rinaldo et al. [72], who point out that optimal channel networks yield
h = 0.57 ± 0.02, suggesting that feasible optimality [73] implies Hack’s law. Another viable model is
given by Sagar and Tein [74] that is geomorphology realistic, giving rise to general ARs in terms of river
basin areas, as well as parallel and perpendicular channel lengths.
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Figure 2. A sketch of a tree from Leonardo da Vinci’s Notebooks, PL. XXVII [69]. Note that
da Vinci was relating the branches of equal generation number to also make his association
with flowing streams.

Maritan et al. [75] consider an analogy with the metabolic AR assuming a relation between
parameters α = 1/b, such that α = 1 + h, with the limiting values α = 3/2 and h = 1/2, in the case
of geometric self-similarity. The ensemble average of Hack’s exponents from different basins extend
over 11 orders of magnitude and is indistinguishable from h = 1/2 [76]. Maritan et al. [75] conclude
that, like the interspecies metabolic rate, the slope of the intraspecies h’s are washed out in the ensemble
average, resulting in the average value h = 1/2.

2.2.2. Geology

Another empirical regularity observed in the topology of river networks is Horton’s law of river
numbers [77]. Brown et al. [78] summarize the variations of flows, velocities, depths, widths and
slopes in the form of an AR, where Y is the hydraulic-geometric variable and X is stream discharge
and is related to the area of the discharge basin. The bifurcation parameter is the constant ratio between
successive numbers of river networks, known as Horton’s law of stream numbers, and has an empirical
value between 4.1 and 4.7 in natural river networks [79,80], in contrast to the random model that predicts
a value of four for this ratio.

Dodds and Rothman [81] point out that universality arises when the qualitative character of a network
is sufficient to quantify its essential features, such as the exponents that characterize scaling laws. They
go on to say that scaling and universality have found application in the geometry of river networks and
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the statistical structure of topography within geomorphology. They maintain that the source of scaling in
river networks and whether or not such scaling belongs to a single universality class are not yet known.
They do provide a critical analysis of Hack’s law; see, also, Rodriguez-Iturbe and Rinaldo [82].

2.3. Natural History

Natural history embraces the study, description and classification of the growth and development of
natural phenomena. The focus of investigation includes such important contemporary areas as ecology
and paleontology, parts of which rely heavily on allometry and scaling.

2.3.1. Ecology

Ecology is the scientific study of the distribution, abundance and relations of organisms and their
interactions with the environment. Such living networks include both plant and animal populations and
communities, along with the network of relations among organisms of different scales of organization.
Woodward et al. [83], along with many others, point out that the largest metazoans, for example, whales
(108 grams) and giant sequoias, weigh over 21 orders of magnitude more than the smallest microbes
(10−13 grams) [35,84]. They go on to stress the considerable variation in body mass among members of
the same food web.

The significance of body size has been systematically studied in ecology [84–87]. Identifying Y with
species abundance and X with TBM, there is, in fact, an AR between the species at the base of a food
web and the largest predator at the top [84]. We note that species-area power functions have a vital
history in ecology [88,89], even though the domain of sizes over which the power law appears valid is
controversial [90,91].

Brown et al. [78] discuss the universality of the documented ARs in plants, animals and microbes;
to terrestrial, marine and freshwater habitats; and to human-dominated, as well as ‘natural’ ecosystems.
They emphasize that the observed self-similarity is a consequence of a few basic physical, biological
and mathematical principles; one of the most fundamental being the extreme variability of the
data. The variety of distributions of allometry coefficients and exponents have been discussed both
phenomenologically and theoretically by West and West [52].

2.3.2. Acoustic Allometry

Elephants trumpet, mice squeak and birds chirp due to scaling. Fitch [92] discusses the relationship
between an organism’s body size and acoustic characterization of its vocalization under the rubric of
acoustic allometry. Data indicate an AR between palate length (the skeletal proxy for vocal tract
length) and body mass for a variety of mammalian species. He shows that the interspecies allometry
exponent attains the geometric value of three in the regression of skull length and body mass, whereas
the intraspecies allometry exponent varies a great deal. The significant variability in the intraspecies
allometry exponent suggests taxon-specific factors influencing the AR [93,94].

Fitch [92] gives the parsimonious interpretation that the variability in the intraspecies allometry
exponent could be the result of each species adopting allometric scaling during growth, as postulated
by Huxley, with a different proportionality factor for each species. On the other hand, the interspecies
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allometry exponent could result from the common geometric constraints across species, due to the wide
range of body sizes. He concludes that the AR between vocal tract dimensions and body size could
provide accurate information about a vocalizer’s size in many mammals.

2.3.3. Paleontology

Pilbeam and Gould [95] provide reasons as to why body size plays such a significant role in biological
macroevolution. The first is the statistical generalization known as Cope’s Law [96], which states that
the body size of a species is an indication of how long it has survived on geological time scales. A second
reason is Galileo’s observation [97] that large organisms must change shape in order to function in the
same way as do their smaller prototypes.

One quantitative measure of evolution is the development of the brain in mammals at various stages
of evolution. Jerison [98] showed that the brain-body AR is satisfied by mammals with an exponent
that is statistically indistinguishable from 2/3. He suggested that the allometry coefficient may be an
appropriate measure of brain evolution in mammals as a class.

White and Gould [99] emphasized in their review that the meaning of the allometry coefficient was
unclear. Reiss [2] noted that if brain mass is regressed on TBM across individuals in a species, the slopes
are shallower than those of regressions calculated across mean values for different species within a single
family (genus). This argument had also been presented by Gould [100], who emphasized the importance
of the allometry coefficient in the geometric similarity of allometric growth. This interpretation of the
allometry coefficient was at odds with the majority of the scientific community at the time, who believed
the allometry coefficient to be independent of body size. This latter view has been contradicted by
contemporary data analysis [48,52].

Allometry has been used by Alberch et al. [101] as the first step in creating a unifying
theory in developmental biology and evolutionary ecology in their study of morphological evolution.
They demonstrate how their proposed formalism relates changes in size and shape during ontogeny
and phylogeny.

Eldredge and Gould [102] argued that punctuated change dominates the history of life and that
relatively rapid episodes of speciation constitute biological macroevolution. The intermittency of
speciation in time has been explained by one group as punctuated equilibria [103] and has been indirectly
related to fractal statistics by identifying it as a self-organized critical phenomenon [104]. In the
self-organized criticality model of speciation, Bak and Boettcher [105] associate an avalanche of activity
with exceeding a threshold and the distribution of returns to the threshold with a “devil’s staircase”
having a distribution of steps of stasis of lengths given by the inverse power law pdf with power law
index γ = 1.75.

Calder [8] points out that size and time seem to be the principle characteristics of life history and
ecology. West and West [106] use the time intermittency in punctuated equilibria to suggest a relation
between allometry and macroevolution.
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2.4. Sociology

In the allometry context, the aspect of sociology of interest are the patterns that emerge in the data
that depend on the size of the social group. In large urban centers, size dependencies are found in a city’s
physical structure [107], as well as in the city’s functionality, such as in the behavior of people [108].
Among the most compelling aspects of urban life, for example, income level and innovation are shown
to be allometry phenomena.

2.4.1. Effect of Crowding

Farr’s law [109] is an example of the change in ARs in the transition from organismic to environmental
allometry. Farr collected data from a variety of asylums in 1830s England [110] on the number of patients
committed to institutions because of their mental condition and on their mortality. From these data, he
was able to summarize the ”evil effect of crowding” into an AR between mortality rate Y and population
density X [111]. The measure of size used in the metabolic AR, the TBM, is replaced with a measure of
community structure, the population density. The ARs that capture life histories in ecology and sociology
are often expressed in terms of the numbers of animals and areas in addition to TBM.

2.4.2. Urban Allometry

Batty et al. [112] examine urban spatial structure in large cities through the distribution of buildings
in terms of their volume, height and area, while maintaining that there is no well worked out theory
of urban allometry. As they point out, the allometry hypothesis suggests the existence of critical ratios
between geometric attributes that are fixed by the functioning elements, just as in living organisms.
An example they use is the dependence of natural light on the surface area of a building, so that to
maintain a given ratio of natural light to building volume, the shape of the building must change with
increasing size. Consequently, the volume is not given by the surface area raised to the 3/2 power, but
is found empirically to have an allometry index b ≈ 1.3. They interpret this to mean that the volume
does not increase as rapidly with increasing surface area as it would for strict geometric scaling or strict
rationality on the part of the builder. A number of such ARs are found between the volume, area, height
and perimeter of buildings, indicating the strong influence of allometry on human design.

2.4.3. Health, Wealth and Innovation

Cities have at all times and in all places throughout history produced extremes in human activity,
generating creativity, wealth, as well as crime. The allometry relation for wealth and innovation in urban
centers is concave, with an allometry exponent for the population greater than one, whereas the ARs
accounting for infrastructure are convex with b < 1 [113]. The convex urban ARs share the economy
of scale that is enjoyed by biological networks, since Y/X ∝ 1/X1−b decreases with the network size,
and as pointed out by Bettencourt et al. [113], this economy of scale facilitates the optimized delivery
of social services, such as healthcare and education. They go on to contrast the convex with the concave
urban ARs that focus on the growth of occupations oriented toward innovation and wealth creation. Of
particular interest is their discussion of the scaling of rates of resource consumption with city size in
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direct correspondence to physiologic time. They [113] emphasize the concave situation for processes
driven by innovation and wealth creation having b > 1, manifest at an increasing pace, of urban life
within larger cities [108], which they [113] quantitatively confirm for urban crime rates, the spread of
infectious diseases and pedestrian walking.

3. Fractional Calculus

A dynamic fractal processes is rich in interconnected scales with no one scale dominating. It has
been known since Weierstrass constructed the first fractal function in 1872 that such functions are
continuous everywhere, but are no where differentiable. Consequently, such functions are not the
solutions to traditional equations of motion with integer-order derivatives, and therefore, the phenomena
they describe are not simple mechanical processes. Thus, information in fractal phenomena is coupled
across multiple scales, as, for example, observed in the architecture of the mammalian lung [114–116]
and in cities [107]; manifest in the long-range correlations in human gait [117,118] and the extinction
of biological species [103]; measured in the human cardiovascular network [119] and in a number of
other contexts [13]. The geometric interpretation of fractals is also given in the fractal nutrient model of
AR [11]. Thus, we have both a deterministic and statistical application of fractals to the understanding
of multi-scaled phenomena that manifest allometry patterns.

Here, we focus on the statistical nature of allometry and emphasize that allometry is strictly a relation
between average quantities. This immediately brings to the forefront one of the major problems in
constructing a theoretical understanding of the origins of allometry. Simply put, the measure of size
X is a random variable as is the functionality, Y , and from the Jensen inequality [120], we have for a
nonlinear function Y = F (X):

〈F (X)〉 6= F (〈X〉) (7)

where the brackets denote an ensemble average. Consequently, the empirical AR:

〈Y 〉 = a 〈X〉b (8)

cannot be realized by directly averaging the schematic AR given by Equation (2) over data, since
F (X) = Xb is not linear for b 6= 1. West and West [33] sketch out the beginnings of a theory to explain
how the allometry relations could originate from the scaling of the underlying statistical fluctuations.

In this section, we introduce the dynamics of observables in allometry phenomena and examine
pdfs that can produce the AR given by Equation (8). There are two major techniques available in
statistical physics for modeling stochastic phenomena: the first method uses the stochastic dynamic
Langevin equation constructed by introducing uncertainty through a random force in the equations of
motion; the second approach is based on the phase space evolution for the pdf using the Fokker–Planck
equation (FPE). The conditions under which these two methods converge have been shown in a number
of places [7]. One way to apply these techniques to allometry requires extending both the Langevin
equation and the FPE using the fractional calculus. Herein, we explore the extension of the evolution of
the pdf to fractional differential equations using the method of subordination.
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3.1. Subordination

A simple stochastic process is that of Poisson in which the probability, P (τ), of an event occurring
per unit time is λ0. The rate equation:

dP (τ)

dτ
= −λ0P (τ) (9)

has an exponential solution for the probability of an event occurring in a time interval (0, τ). This is the
kind of simplified dynamics Huxley adopted for the description of the differential growth of different
parts of an organism. To generalize this description, we introduce the notion of subordination. This
notion implies the existence of two ideas of time, as explained by Svenkeson et al. [121]. One is
the operational time, τ , which is the internal time of a single individual, with an individual generating
the ordinary dynamics of a non-fractional system, such as given by Equation (9). The other idea is
chronological time, t: the time as measured by the clock of an external observer. The subordination
procedure transforms the deterministic differential equation in operational time to a fractional differential
equation in chronological time.

Note that this idea of operational time ought to be familiar. We encountered a version of it in the
discussion of empirical physiologic time in which the time interval or frequency experienced by an
organism is determined by the total body mass of that organism. A similar distinction is made in
psychology, where the subjective time experienced by an individual in the performance of tasks is
separate and distinct from the objective time of the clock on the wall [22]. Given this empirical distinction
between the reality of the individual and that of the collective, mathematicians recognized the need for
a time that was intrinsic to a process, whose dynamics are regular, but that appears quite complicated to
an observer measuring the process from outside. Consequently, a procedure was developed to transform
intrinsically regular behavior to the experimentally observed complex behavior by relating operational
time to chronological time.

Svenkeson et al. [121] point out that in operational time, an individual’s behavior can appear
deterministic, but to an experimenter observing the individual, their temporal behavior can appear to
erratically grow in time, then abruptly to freeze in different states for extended time intervals. Due to
the random nature of the evolution of the individual in chronological time, the subordination process
involves an ensemble average over many individuals, each evolving according to its own internal clock,
independently of one another. The resulting ensemble average over a large number of individuals results
in an average trajectory that is fractal. We apply this reasoning to rate Equation (9).

The facilitate the discussion, we consider the discrete version of Equation (9):

P (n+ 1) = (1− λ0∆τ)P (n) (10)

in the notation P (n) = P (n∆τ), where the time has been partitioned into discrete intervals. The
solution to this discrete equation:

P (n) = (1− λ0∆τ)nP (0) (11)

is an exponential, in the limit λ0∆τ << 1, such that n∆τ becomes continuous time. However, when
the simple process is influenced by the environment, the limit of the discrete solution is no longer an
exponential. Adopting the subordination interpretation, we define the discrete index, n, as an operational
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time that is stochastically connected to the chronological time, t, in which the global behavior is
observed. We assume that the chronological time lies in the interval (n − 1)∆τ ≤ t ≤ n∆τ , and
consequently, the equation for the average dynamics of the probability is given by [122]:

〈P (t)〉 =
∞∑
n=1

t∫
0

Gn (t, t′)P (n) dt′ (12)

The physical meaning of Equation (12) is determined by considering each tick of the internal clock,
n, as measured in experimental time, to be an event. Since the observation is made in experimental time,
the time intervals between events define a set of independent identically distributed random variables.
The integral in Equation (12) is then built up according to renewal theory [123]. After the n-th event, it
changes from state P (n−1) to P (n), where it remains until the action of the next event. The sum over n
takes into account the possibility that any number of events could have occurred prior to an observation
at experimental time t, and Gn (t, t′) dt′ is the probability that the last event occurs in the time interval
(t′, t′ + dt′).

We assume that the waiting times between consecutive events in Equation (12) are identically
distributed independent random variables, so that the kernel is defined:

Gn (t, t′) = Ψ (t− t′)ψn (t′) (13)

The probability that no event has occurred in a time, t, is given by the survival probability, Ψ(t).
Individual events occur statistically with a waiting-time pdf, ψ(t), and taking advantage of their renewal
nature, the waiting-time pdf for the n-th event in a sequence is connected to the previous event by:

ψn(t) =

∫ t

0

dt′ψn−1(t
′)ψ(t− t′) (14)

and ψ0(t) = ψ(t). The waiting-time pdf is related to the survival probability through:

ψ(t) = − d

dt
Ψ(t) (15)

Here, we select the probability of no event occurring up to time t to be:

Ψ (t) =

(
T

T + t

)α
(16)

and consequently, the waiting-time pdf is renewal and also inverse power law.
To find an analytical expression for the behavior in experimental time, it is convenient to study the

Laplace transform of Equation (12), where f̂(s) denotes the Laplace transform of f(t):〈
P̂ (s)

〉
= Ψ̂(s)

∞∑
n=0

P (n)
[
ψ̂(s)

]n
(17)

and the relation ψ̂n(s) =
[
ψ̂(s)

]n
was used, due to the correlation structure of Equation (14). With the

discrete time solution in operational time, Equation (11), this can be written as:〈
P̂ (s)

〉
= Ψ̂(s)

∞∑
n=0

(1− λ0∆τ)nP (0)
[
ψ̂(s)

]n
(18)
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Performing the sum and noting the relationship given by Equation (15), we find:〈
P̂ (s)

〉
=

1− ψ̂(s)

s

1

1− (1− λ0∆τ)ψ̂(s)
P (0) (19)

This can be expressed in the typical form:〈
P̂ (s)

〉
=

1

s+ λ0∆τ Φ̂(s)
P (0) (20)

where:

Φ̂(s) =
sψ̂(s)

1− ψ̂(s)
(21)

is the Montroll–Weiss memory kernel [124].
In the asymptotic limit s→ 0, Equation (20) becomes:〈

P̂ (s)
〉

=
1

s+ λs1−α
P (0) (22)

with the parameter value:

λ =
λ0∆τ

TΓ (2− α)

Consequently, the subordination process results in ordinary rate Equation (9), through the inverse
Laplace transform of Equation (22), being replaced with the fractional rate equation [121,125]:

Dα
t [〈P (t)〉]− t−α

Γ (1− α)
P (0) = −λ 〈P (t)〉 (23)

where we introduce a Riemann–Liouville (RL) fractional operator. Here, we define the RL integral:

D−αt [g(t)] ≡ 1

Γ (α)

t∫
0

g(t′)dt′

(t− t′)1−α
(24)

and the RL derivative:
Dα
t [g(t)] ≡ Dn

tD
α−n
t [g(t)] (25)

with the operator index in the range n− 1 ≤ α ≤ n for integer n. We use the notation Dt [g(t)] = dg(t)
dt
.

Note that fractional rate Equation (23) reduces to ordinary rate Equation (9) in the limit α = 1, since
the gamma function diverges at zero argument. Consequently, the solution to Equation (23) must reduce
to the exponential in this limit.

The solution to fractional rate equation Equation (23) was obtained by the mathematician
Mittag-Leffler at the turn of the twentieth century:

〈P (t)〉 = P (0)Eα (−λtα) (26)

in terms of the infinite series that now bears his name:

Eα (−λtα) ≡
∞∑
n=0

(−λtα)n

Γ (nα + 1)
(27)
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The time dependence of the Mittag-Leffler function (MLF) is extremely interesting. At early times,
the MLF has the analytic form of the stretched exponential:

lim
t→0

Eα (−λtα) = exp

[
−λtα

Γ (1 + α)

]
(28)

at late times, it has the analytic form of an inverse power law:

lim
t→∞

Eα (−λtα) =
1

λΓ (1− α) tα
(29)

and the MLF smoothly joins these two asymptotic expressions. Consequently, the relatively benign
statistics of Poisson at α = 1 become the intermittent inverse power law statistics at 0 < α < 1.

The complexity of the resulting statistics is captured in the power law index, much like the allometry
exponent captures the complexity of the fractal structure of allometric phenomena.

3.2. Fractional Phase Space Equations

In the previous subsection, the fractional rate equation is given by Equation (23) using subordination
to generalize the ordinary time derivative to the RL fractional derivative. Now, it is necessary to further
extend the argument to the dynamic variable, where the probability that the dynamic variable, Z(t),
lies in the interval (z, z + dz) at time t is the phase space quantity, P (z, t)dz. The construction of the
fractional partial differential equation for the pdf in both “space” and time and the scaling method for
obtaining a solution has been presented elsewhere [33], but for the sake of completeness, I present those
details here, as well. The fractional phase space equation (FPSE) with fractional derivatives in both
space and time is:

Dα
t [P(z, t)]− t−α

Γ (1− α)
P0(z) = Kβ∂

β
|z| [P (z, t)] (30)

where Dα
t [·] is the RL fractional derivative in time, ∂β|z| [·] is the Riesz–Feller fractional derivative in one

space dimension, P0(z) is the initial value of the pdf typically taken to be the delta function δ (z), andKβ

is a generalized diffusion coefficient. Equation (30) is sometimes called the fractional Fokker–Planck
equation (FFPE) with zero potential, because it can be generalized by introducing a potential function in
complete analogy with the historical Fokker–Planck equation. It is not necessary to review the fractional
calculus in order to understand the solution to Equation (30) in terms of its scaling properties.

When α = 1, Equation (30) reduces to the anomalous diffusion equation [29,31,126]:

∂P (z, t)

∂t
= Kβ∂

β
|z| [P (z, t)] (31)

This equation will be useful subsequently.
The Fourier transform of the symmetric Riesz–Feller operator ∂β|z| [·] acting on an analytic function,

f (z ), is [29,126]:
FT

{
∂β|z| [f(z)] , k

}
= − |k|β f̃(k) (32)

where f̃(k) is the Fourier transform of f(z). The Laplace transform of an RL fractional time derivative
Dα
t [·] acting on the analytic function, g(t), is:

LT {Dα
t [g(t)] ;u} = uαĝ(u) (33)



Systems 2014, 2 106

where ĝ(u) is the Laplace transform of g(t). Consequently, the phase space dynamics given by
Equation (30) can be expressed as the Fourier–Laplace transform:

uαP ∗(k, u)− uα−1 = −Kβ |k|β P ∗(k, u) (34)

and the asterisk denotes the double transform. Therefore, the solution when P0(z) = δ (z) in
Fourier–Laplace space is:

P ∗(k, u) =
uα−1

uα +Kβ |k|β
(35)

The pdf that solves the FPSE is given by the inverse Fourier–Laplace transform of Equation (35). We
note that the space-time representation of the solution to the FFPE for various combinations of α and β
and potential functions are reviewed by Klafter and Metzler [29], who show how to derive Equation (30)
using the continuous time random walk (CTRW) of Montroll and Weiss [124].

The inverse Laplace transform of Equation (35) yield the MLF, just as obtained in Section 3.1:

P̃ (k, t) = Eα

(
−Kβ |k|β tα

)
(36)

which is the characteristic function for the process. The inverse Fourier transform of the characteristic
function yields the probability density:

P (z, t) =
1

2π

∞∫
−∞

dke−ikzEα

(
−Kβ |k|β tα

)
= FT−1

{
Eα

(
−Kβ |k|β tα

)
; z
}

(37)

When α = 1, we know that the MLF reduces to an exponential, in which case, the solution is the
characteristic function for the alpha-stable Lévy distribution in space with a Lévy index 0 < β ≤ 2 and
a “width” that increases linearly with time:

P (z, t) = FT−1
{
Exp

(
−Kβ |k|β t

)
; z
}

(38)

The series representation for the Lévy distribution is given in a number of places [27,31,127,128].
A variety of other solutions to the FFPE have been obtained by Mainardi [129], including the inverse

Fourier transform for β = 2, in which case, the solution asymptotically relaxes as the inverse power
law t−α/2.

3.2.1. Statistics of Allometry Parameters

As an exemplar of the statistics of the network size, consider the growth of the average TBM across
species, in which case the “space” variable is the total body mass. We assume the FFPE for the pdf to be
given by:

∂P (m, t)

∂t
=

∂

∂m
[λmP (m, t)] +Kβ∂

β
|m| [P (m, t)] (39)

where the phase space variable is m = 〈Mi〉 = 〈X〉, and the discrete index for species i is suppressed
for notational convenience. The Fourier transform of this equation, with P̃ (k, t) the Fourier transform
of P (m, t), yields the equation for the characteristic function:

∂P̃ (k, t)

∂t
+ λk

∂P̃ (k, t)

∂k
= −Kβ |k|β P̃ (k, t)
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whose solution is [126]:

P̃ (k, t) = exp

[
−Kβ

λβ
(1− e−λβt) |k|β

]
(40)

Equation (40) is the characteristic function for a Lévy distribution with Lévy index β < 2. Note that
at early times λβ >> 1/t, the inverse Fourier transform of Equation (40) is given by Equation (38).

The asymptotic form of the pdf, obtained from the inverse Fourier transform of Equation (40), is
therefore given by the inverse power law, that is, the Pareto distribution for the average TBM:

lim
t→∞

P (〈Mi〉 , t) ∝
1

〈Mi〉β
(41)

West and West [52] fit the power law index in the steady-state TBM pdf to a data set of mammalian
species tabulated by Heusner [49] and depict the pdf in Figure 3. They constructed a histogram of
the interspecies TBM for the 391 mammalian species from these data by partitioning the mass axis into
intervals of 20 gm and counting the number of species within each of the intervals. The vertical axis is the
relative number of species as a function of TBM. The figure depicts the fit to the logarithmic histogram
data points indicated by dots starting at a TBM of 1.1 kg. An inverse power law would be a straight line
with a negative slope on this log-log graph. Fitting the power law index from the steady-state TBM pdf
to the value β = 1.67 yields the solid curve in the figure, which fits the data extremely well. The curve
is quite clearly an inverse power law in the interspecies TBM. This coarse-grained description of the
interspecies mass statistics indicates great variability in the TBM, which is indeed the case. Moreover,
since β < 2, the variance of the interspecies TBM diverges or more properly increases without bound
with increasing TBM.

Figure 3. The average total body mass (TBM) data for the 391 mammalian species tabulated
by Heusner [49] are used to construct a histogram. The mass interval is divided into twenty
equally spaced intervals on a logarithm scale and the number of species within each interval
counted. The quality of the fit using the inverse power law is measured by the correlation
function to be r2 = 0.998 (From West and West [52] with permission).
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This inverse power law in the average TBM implies a clustering of the fluctuations in mass, with
bursts in the number of species near a given mass interspersed with gaps of various lengths in the mass
spectrum. However, on closer inspection of these bursts of speciation, there is seen to be contained
within each burst a number of smaller bursts intermittently spaced with gaps in the number of species.
This intermittent bursting is characteristic of inverse power law statistics [15].

3.2.2. Urban Variability

Bettencourt et al. [130] in their study of urban scaling constructed the metric:

ηi = ln

[
Yi
aXb

i

]
(42)

which they called the Scale-Adjusted Metropolitan Indicators (SAMIs). They used Yi as the observed
value of the measure of innovation, wealth or crime for each city, i, with population Xi. They found
that a Laplace distribution provides an excellent fit to the normalized SAMI histogram for the statistical
residuals, ηi, across different cities. However, they made the assumption that the allometry exponent is
approximately universal.

Quite independently and contemporaneously, an analogous measure was devised by West and
West [52] for the relative variation in the allometry parameters. They argued that since there are
independent fluctuations in X and Y , these result in what Warton et al. [131] call equation error;
also known as natural variability, natural variation and intrinsic scatter. Considering that ARs are not
predictive, but instead, summarize vast amounts of data [132], this natural variability was interpreted
as fluctuations in the modeling allometry parameters (a, b). Denoting the fitted values of the random
parameters as a and b, if the fluctuations are assumed to be contained in the allometry coefficient, West
and West [52] define the residual in the allometry coefficient:

ηi = ln

[
〈Yi〉
a 〈Xi〉b

]
(43)

The numerator and denominator in Equation (43) are measured independently, and in the case
they were investigating, 〈Yi〉 is the average BMR and 〈Xi〉 is the average TBM. The statistics of the
normalized allometry coefficient, eηi , were determined by least squares fitting to the data to be given
by a Pareto distribution. On the other hand, when the fluctuations are assumed to be constrained in the
allometry exponent, they define the residual:

ηi =
ln (〈Yi〉 /a)

ln 〈Xi〉
− b (44)

In their analysis, the allometry coefficient and exponent were held fixed, so that the parametric
fluctuations fitted by a histogram gave the best fit to be that of a Laplace distribution centered on
the fitted value of the allometry exponent. This latter result is completely consistent with that of
Bettencourt et al. [130].

Both research groups reach the conclusion that the Laplace distributions for the statistics of the
allometry exponent imply the inverse power law pdf in the size of the network. This overlap of
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interpretation was reached in spite of the fact that in one case, the data consisted of independent
measures of BMR and TBM, which is a convex AR, and the other was on independent measurements of
city economic quantities and populations in a given year, which is a concave AR. The convergence of
conclusions reached in these two studies suggests the necessity of statistical measures being foundational
for understanding allometry in general, as had been argued previously [15].

3.2.3. Scaling Solution

Uchaikin [133] directly inverse transformed Equation (35) for arbitrary α and β; but that level of
mathematical detail is not necessary for the present analysis. For our present purposes, the desired insight
is provided by directly utilizing the scaling properties of Equation (36) by considering the solution in the
form of the inverse Fourier transform:

P (z, t) = FT−1
{
Eα

(
−Kβ |k|β tα

)
, z
}

(45)

The series expansion for the MLF allows one to write for the scaling:

P (Az,Bt) =
∞∑
n=0

(−KβB
αtα)n

Γ (nα + 1)
· Γ (nβ + 1)

|Az|nβ+1

where the second factor in the summation is the result of applying the Tauberian Theorem to the
inverse Fourier transform of |k|nβ . A scaling equation emerges when the parameters satisfy the equality
A = Bα/β , resulting in:

P (Bα/βz, Bt) =
1

Bα/β
P (z, t)

If we now select the time parameter to be B = 1/t, we can write:

P (z, t) =
1

tα/β
P

(
1

tα/β
z, 1

)
(46)

Finally, the pdf that solves the FPSE in terms of the similarity variable, z/tµz , satisfies the scaling
equation:

P (z, t) =
1

tµz
Fz

( z

tµz

)
and µz = α/β (47)

The function Fz (·) in Equation (47) is left unspecified, but it is analytic in the similarity variable,
z/tµz . As mentioned in the Introduction, a standard diffusion process, Z(t), is the displacement of
a diffusing particle from its initial position at time t, and for vanishing small dissipation, the scaling
parameter is µz = 1/2 and the functional form of Fz(·) is a Gauss distribution. However, for general
complex phenomena, there is a broad class of distributions for which the functional form of Fz(·) is
not Gaussian and the scaling index µz 6= 1/2. For example, the α-stable Lévy process [25,26,126,127]
scales in this way and the Lévy index is in the range 0 < α ≤ 2, with the equality holding for the Gauss
distribution; the scaling index is related to the Lévy index by µz = 1/α.

3.2.4. Allometry Relations

Of course, the stochastic variables of interest here are not necessarily space and time; they
are the measures of functionality and the size of the allometry phenomena being investigated.
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Banavar et al. [134] used scaling theory in which z is interpreted as the TBM, population abundance
or both, and t is the region of area over which the population roams, and they obtain an expression
similar in form to Equation (47). A sequence of four additional hypotheses establish a framework for
the analysis of diverse empirical macroecological laws. The fractional calculus approach leading to
Equation (47) is less ambitious than the scaling theory of Banavar et al. [134], but has the virtue of
being able to systematically study the influence of the environment on the process of interest through the
inclusion of an external force, as we did in the case of the TBM in Equation (39).

Let us now replace the space and time discussion of the previous sections with the variables of interest
in an allometry context. We identify the function variable y = Y with z, the average measure of size
x = 〈X〉 with t and the exponent, µz, with b. In this way, the scaling pdf can be written in terms of phase
space variables as:

P (y, x) =
1

xb
Fx

( y
xb

)
(48)

for a generic allometry process. The average functionality of interest is therefore given by:

〈Y 〉 =

∫
yP (y, x)dy = a 〈X〉b

in agreement with Equation (8). The allometry coefficient is given as the average similarity variable
q = y/xb:

a =

∫
qFx(q)dq (49)

therefore, the scaling properties of the pdf solution to the fractional phase space equation
entails allometry.

Here, we noted that the allometry coefficient is determined by Equation (49), the average similarity
variable. It probably does not need emphasis, but the scaling variable is precisely the quantity that was
defined by the SAMI measure in Equation (42), and its average is here shown to determine the level of
the allometry relation. The allometry exponent is a different matter; it is given by the ratio of the scaling
index, α, for the fractional derivative in time and the scaling index, β, for the fractional derivative in
“space”. Consequently, the ratio denotes a balance between the memory of the underlying process, with
α = 1 indicating no memory, and the nonlocal nature in the phase space of the variate, with β = 2

indicating a homogeneous local process, such as obtained in classical diffusion. However, the allometry
relation only yields their ratio, being as it is a relationship between averages. In order to untangle their
separate contributions to allometry, requires a more detailed statistical study.

4. Discussion and Conclusions

One reason for the introduction of the fractional calculus into the discussion of allometry relations
was the fact that “time” for the lumbering elephant is not the same as that for a humming bird. As
West and West [61] point out, the “time” shared by the two species is the same when referenced to a
physical clock, but is not the same when referenced to their individual physiology. This realization led
us to introduce the mathematics of subordination to transform a normal rate process into a fractional rate
process and to recast the allometry scaling arguments into the formalism of the fractional calculus. We
also took cognizance of the fact that allometry scaling is not a property of the dynamic variables, which
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are stochastic, but is rather a property of the probability density functions. Consequently, the ordinary
probability calculus had to be replaced with the fractional probability calculus in which the equations of
motion for the probability density function have one or more fractional derivatives.

The dynamics of allometry phenomena have been treated as interdependent dynamical statistical
allometry variables in terms of the fractional probability calculus. A fractional Fokker–Planck equation
with the network size as the dependent variable (in this case, the network size is the total body mass)
was shown to have a steady-state solution that is a Lévy distribution. The asymptotic form of the Lévy
distribution is the inverse power law, which is shown to fit the distribution of TBM across species.
It should be noted that this recognition of the asymptotic inverse power law behavior of the TBM is
fairly recent [52].

From this new fractional probability calculus perspective, a number of results were derived that had
previously been restricted to the contexts in which they were originally developed. For example, the
statistical variability of the allometry exponent around its average value was found to be described by a
Laplace distribution for the metabolic AR [52], as well as for a number of urban ARs [130] by completely
different arguments. Here, it was demonstrated that they both are the consequence of the same statistical
scaling. These results suggest the universality of using the probability calculus generalized to fractional
form to capture the underlying complexity of allometry phenomena regardless of the source of the
dynamics.

The representation of allometry phenomena in terms of the joint pdf of the system size and
functionality has been shown to be very useful. The scaling property of the pdf solution to the fractional
phase space equations was shown to entail an allometry relation between the average functionality and
the average measure of the network size. This AR could not be rigorously derived previously, due to the
Jensen inequality. Consequently, one may cautiously observe that the origin of allometry relations lies
with the scaling behavior of the underlying statistical processes.

Allometry can now be interpreted to be a consequence of the the fact that the two measures of the
complex phenomenon, function and size are statistically tied together as a ratio, independently of how
they fluctuate separately. A consequence of there being a ratio is that the separate fluctuations cannot be
disentangled. The allometry exponent, b, is the ratio of the scaling indices, α and β, not unlike the ratio
of growth indices in the Huxley “derivation” of the allometry relation.

Note that the present analysis does not invalidate the mechanism-specific arguments that various
investigators have ingeniously constructed to explain allometry relations in particular contexts. The
fractional probability calculus explanation of AR is compatible with the fractal nutrient network model
of West et al. [35]; it is consistent with the renormalization scaling of Banavar et al. [134]; it does not
contradict the data analysis of Glazier [48] nor does it conflict with Bejan’s constructal law [50].

A purist might criticize the assertion that scaling statistics entail allometry as being
phenomenologically based and, therefore, is not a ‘real’ explanation of the origin of allometry. My
only defense is to point to the utility of thermodynamics and observe that it too is mere phenomenology
that lacks such a ‘fundamental’ explanation.
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