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Abstract: In electrodynamics there is a mutual exchange of energy and momentum between
the matter field and the electromagnetic field and the total energy and momentum are
conserved. For a constant magnetic field and harmonic scalar potential, electrodynamics
is shown to be isomorph to a system of damped/amplified harmonic oscillators. These
can be described by squeezed coherent states which in turn are isomorph to self-similar
fractal structures. Under the said conditions of constant magnetic field and harmonic scalar
potential, electrodynamics is thus isomorph to fractal self-similar structures and squeezed
coherent states. At a quantum level, dissipation induces noncommutative geometry with the
squeezing parameter playing a relevant role. Ubiquity of fractals in Nature and relevance of
coherent states and electromagnetic interaction point to a unified, integrated vision of Nature.
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1. Introduction

It is well known, and well established by experimental observations, that systems characterized by
observable ordered symmetry patterns, such as crystal, ferromagnets, superconductors, may be described
in quantum field theory (QFT) by coherent boson condensation in the ground state which arises as
a consequence of the spontaneous breakdown of symmetry mechanism [1–3]. Even in high energy
physics, such a mechanism, with the recent discovery of the Higgs particle, proves to be crucial and
the vacuum state appears to have the structure of a coherent condensate. The study of topologically
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non-trivial “extended objects”, such as vortices, crystal dislocations, domain walls and other soliton
solutions, also shows that boson condensation is at the root of the formation of such macroscopic
quantum systems, as also confirmed in many laboratory observations [4]. In recent works it has been
shown that also the formalism describing fractal self-similar structures is isomorph to the one of coherent
boson condensates, in particular to squeezed generalized SU(1, 1) coherent states [5–8]. These last ones,
on the other hand, provide a representation of the system of damped/amplified oscillators, which is a
prototype of dissipative system and the environment or bath in which it is embedded. In this paper, by
resorting to the well known result in classical and quantum electrodynamics on the conservation of the
energy-momentum tensor, the isomorphism is shown to exist, under convenient conditions, also between
electrodynamics and the system of damped/amplified oscillators, and thus squeezed SU(1, 1) coherent
states and fractal self-similar structures. Such a result, in view of the ubiquity of fractals in Nature
and of the relevance of coherent states and electrodynamics, opens the way to an integrated vision of
Nature. The plan of the paper is the following. In Section 2 the conservation of energy-momentum in
electrodynamics is reviewed, also in connection with the system of damped/amplified oscillators, whose
analysis is continued in Section 3 and its quantization formalism is presented in Section 4. Finally,
coherence and fractal self-similarity is discussed in Section 5. Section 6 is devoted to conclusions and
the emergence of an integrated vision of Nature is commented upon.

2. The Conservation of Energy and Momentum in Electrodynamics

In classical electrodynamics, as well as in quantum electrodynamics (QED), it is well known that
the conservation of the electromagnetic (em) energy-momentum tensor T µν holds: ∂µT µν = 0. The
system of the matter field ψ and of the em gauge field Aµ is a closed system, {ψ,Aµ}: there is no
energy/momentum flowing out of it. However, one may easily realize that the conservation of T µν arises
from the compensation of the variations of the matter part T µνm and the em part T µνγ of the total T µν :
∂µT

µν
m = −∂µT µνγ , so that ∂µT µν = ∂µ(T µνm + T µνγ ) = 0. In particular one finds:

∂µT
µν
m = e FανJα (1)

∂µT
µν
γ = −e FανJα (2)

where Jα denotes the current, e is the charge and as usual Fαβ = ∂βAα−∂αAβ (gµν = (1,−1,−1,−1),
µ = 0, 1, 2, 3 ; ~ = 1 = c will be used throughout the paper). It needs to be stressed that Equations (1)
and (2) are characterizing equations for classical and quantum electrodynamics, they fully express
the dynamical content of Maxwell equations and the associated conservation laws. We see that the
non-vanishing divergences of T µνm and T µνγ compensate each other, which, stated in different words,
means that the em field acts as the reservoir for the dissipative matter field system, or vice-versa,
exchanging the roles of the matter field and the em field. Such a conclusion is a general one. For
what concerns our discussion there is no need to specify the boson or fermion nature of ψ(x). The
Lagrangian is only required to be invariant under local gauge transformations. Recalling now that the
energy-momentum vector P µ is given by

P µ =

∫
T µ0d3x , µ = 0, 1, 2, 3 (3)
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and Ei = F 0 i, Bi = εijkF
k j , i, j, k = 1, 2, 3, with Ei and Bi denoting the i-component of the electric

and magnetic fields, E and B, respectively, volume integration of Equations (1) and (2) gives for ν = 0

the rate of changes in time of the energy of the matter field and em field, Em and Eγ , respectively:

∂0Em = eE · v = −∂0Eγ (4)

For ν = i = 1, 2, 3, integration of Equations (1) and (2) over the volume gives

∂0P
i
m = eEi + e (v ×B)i (5)

∂0P
i
γ = −eEi − e (v ×B)i (6)

namely, the Lorentz forces Fm and Fγ , acting on two opposite charges with same velocity v in the same
electric and magnetic fields. They are equal and opposite, component by component. We thus see that
the energy-momentum vector is conserved only provided the matter field is considered together with the
em field (and vice-versa). Each of the fields, separately considered, behaves as an open system. Only
the system made of both fields is non-dissipative.

Suppose now that, at least in some space-time region, the magnetic field B be a constant vector, thus
described by the vector potential

A =
1

2
B× r (7)

where r = (x1, x2, x3). It is B = ∇×A, ∇·A = 0 and, without loss of generality, choose the reference
frame so that B = ∇×A = −B3̂ . Then, A3 = 0 and by using ε12 = −ε21 = 1; εii = 0,

Ai =
B

2
εijxj , i, j = 1, 2 (8)

and the third component, i = 3, of (v × B) vanishes. Assume also that E is given by the gradient of
the harmonic potential Φ ≡ k

2e
(x1

2 − x2
2) ≡ Φ1 − Φ2 , E = −∇Φ; and E3 = 0. We may thus limit

our analysis to the i = 1, 2 components in Equations (5) and (6). Then let i = 1 in Equation (5) and put
B ≡ γ/e. Use of Equation (8) gives

mẍ1 + γẋ2 + kx1 = 0 (9)

where m, γ and k are time independent quantities and the first member of Equation (5) has been put
equal to mẍ1 (and is equal and opposite to the i = 1 component of the force in Equation (6)). By
considering i = 2 in Equation (6) gives

mẍ2 + γẋ1 + kx2 = 0 (10)

(note that similar conclusion may be reached considering i = 2 in Equation (5) and i = 1 in
Equation (6)). In the case of constant magnetic field and harmonic scalar potential Equations (9) and
(10) thus provide a representation of electrodynamics expressed by Equations (5) and (6).

The problem of the separation of the x1 and x2 variables is discussed in the following Section. Let
me close the present one by observing that these equations can be derived from the Lagrangian

L =
m

2
(ẋ2

1 − ẋ2
2) + e(ẋ1A1 + ẋ2A2)− eΦ (11)
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which shows that Equations (9) and (10) describe indeed opposite charges in a constant magnetic field
and a harmonic scalar potential and exhibits the correct coupling between the current and the vector
potential field (charge density is e ρ and eJ = e ρv, with v = dr/dt the velocity). Equation (11) can be
written also as

L =
1

2m
(mẋ1 + e1A1)2 − 1

2m
(mẋ2 + e2A2)2 − e2

2m
(A1

2 − A2
2)− eΦ (12)

That x2 behaves as the em field for x1, and vice-versa is explicitly shown by considering the
Hamiltonian [9,10]

H = H1 −H2 =
1

2m
(p1 − e1A1)2 + e1Φ1 −

1

2m
(p2 + e2A2)2 + e2Φ2 (13)

We see that in the least energy state (where H = 0, H1 = H2) the respective contributions to the
energy compensate each other. Equations (9) and (10) are derived from Equation (12) in the usual form

d

dt
(mẋi + eiAi) = −e∂iΦi + ei∂ivjAj (14)

where i, j = 1, 2, i 6= j, no sum on i, j, Φi ≡ k
2e
xi

2, e1 = e = −e2, ∂i ≡ ∂
∂xi

and it is d
dt
Ai = vj∂jAi .

In summary, one of the oscillators may be considered to represent the em field in which the other one
is embedded.

3. The Damped Oscillator and Its Double

In order to separate x1 and x2 variables one may use the canonical transformations

x(t) =
x1(t) + x2(t)√

2
, y(t) =

x1(t)− x2(t)√
2

(15)

thus obtaining from Equations (9) and (10) the couple of damped and amplified harmonic
oscillators (dho):

mẍ+ γẋ+ kx = 0 (16)

mÿ − γẏ + ky = 0 (17)

respectively. The y oscillator may be considered as the reservoir (or the environment, or the bath) for
the x oscillator (or vice-versa), which is consistent with the remark made above on the mutual exchange
of energy-momentum between the em field and the matter field. In other words, the y oscillator acts as
the sink into which the energy dissipated by the x oscillator flows. The couple of the x oscillator and
its “double” oscillator y form the closed system (x − y). Moreover, Equation (17) is the time-reversed
image (γ → −γ) of Equation (16) (or vice-versa).

By introducing the pseudo-euclidean metric

r(t)2 ≡ x1(t)2 − x2(t)2 (18)

namely

x(t) =
1√
2
r(t)eu(t), y(t) =

1√
2
r(t)e−u(t) (19)
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Equations (16) and (17) are found to be formally equivalent to the equation for the harmonic oscillator
r(t) representing the global (x− y)-system:

mr̈ +Kr = 0 (20)

where K ≡ 1
m

(
k − γ2

4m

)
≡ mΩ2, assuming k > γ2

4m
, provided u(t) ≡ − γ

2m
t, consistently with the time

independence of the coefficients m, γ and k. The reverse is also true: the oscillator (20) is decomposed
into two damped/amplified oscillators (16) and (17) when the pseudo-euclidean metric is adopted [9,10].
On the contrary, the r-oscillator is decomposed into two undamped oscillators when the euclidean metric,
r2 ≡ x2

1 + x2
2 , x1 = rcosα , x2 = rsinα , is used.

The Lagrangian (11) and the Hamiltonian (13), rewritten in terms of the (x− y)-system, become

L = mẋẏ +
γ

2
(xẏ − ẋy)− kx y (21)

H =
1

m
pxpy +

1

2m
γ (ypy − xpx) +

(
k − γ2

4m

)
x y (22)

respectively, with conjugate momenta px = mẏ− γ
2
y, and py = mẋ+ γ

2
x and the common frequency of

the two oscillators Ω ≡
[

1
m

(
k − γ2

4m

)] 1
2
, k > γ2

4m
(i.e., assuming no overdamping). Note that conjugate

momenta cannot be defined without introducing the doubled mode y.
Summing up, the system made of two separate modes describing different physical evolutions

(damping and amplification) is a closed system. Considering only one of them breaks the time-reversal
symmetry and a partition on the time axis is induced, implying that positive and negative time directions
are associated with the two separate modes. The canonical formalism is not able to describe dissipative
systems, i.e., cannot describe separately each one of the modes. It can only describe the closed system.
Remarkably, the two separate non-conserving modes Equations (5) and (6) (and Equation (4)) out of
which electrodynamics is made are associated with charge conjugation (e↔ −e).

The issue of the quantization of the system of Equations (16) and (17) will be discussed in the
following Section (see [11–13]).

4. Dissipation and Quantization

The issue of quantum dissipation in connection with the damped/amplified system Equations (16) and
(17) has been considered in details in literature [3,11–13]). Therefore here only the resulting formulas
which are relevant to our discussion will be reported.

Canonical quantization of the oscillator system Equations (16) and (17) is performed as customary by
introducing the commutators [x, px ] = i ~ = [ y, py ] , [x, y ] = 0 = [ px, py ] and the annihilation and
creation operators

a ≡
(

1

2~Ω

) 1
2
(
px√
m
− i
√
mΩx

)
; a† ≡

(
1

2~Ω

) 1
2
(
px√
m

+ i
√
mΩx

)
(23)

b ≡
(

1

2~Ω

) 1
2
(
py√
m
− i
√
mΩy

)
; b† ≡

(
1

2~Ω

) 1
2
(
py√
m

+ i
√
mΩy

)
(24)
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with [ a, a† ] = 1 = [ b, b† ], [ a, b ] = 0 = [ a, b† ]. By use of the canonical linear transformations
A ≡ 1√

2
(a+ b), B ≡ 1√

2
(a− b) and putting Γ ≡ γ

2m
, the Hamiltonian H is obtained [11]

H = H0 +HI (25)

H0 = ~Ω(A†A−B†B), HI = i~Γ(A†B† − AB) (26)

By defining J+ = A†B†, J− = J†+ = AB, J3 = 1
2
(A†A + B†B + 1), [ J+, J− ] = −2J3,

[ J3, J± ] = ±J± the two mode realization of the algebra su(1, 1) is obtained. The SU(1, 1) Casimir
operator C is given by C2 = 1

4
(A†A−B†B)2, so that [H0, HI ] = 0. The initial condition of positiveness

for the eigenvalues of H0 are thus protected against the danger of transitions to negative energy states.
The vacuum state is |0〉 ≡ |nA = 0, nB = 0〉 = |0〉 ⊗ |0〉, with nA and nB the number of A and B’s

and (A⊗ 1)|0〉 ⊗ |0〉 ≡ A|0〉 = 0; (1⊗ B)|0〉 ⊗ |0〉 ≡ B|0〉 = 0. Its time evolution is controlled by
HI and given by |0(t)〉 = e−it

H
~ |0〉 = e−it

HI
~ |0〉, with 〈0(t)|0(t)〉 = 1, ∀t, and

lim
t→∞
〈0(t)|0〉 ∝ lim

t→∞
exp (−tΓ) = 0 (27)

One finds that states generated by B† represent the sink where the energy dissipated by the
quantum damped oscillator flows: the B-oscillator represents the reservoir or heat bath coupled to the
A-oscillator [11]. The instability (decay) of the vacuum is expressed by Equation (27), which shows
that time evolution leads out of the Hilbert space of the states. Therefore, the framework of quantum
mechanics is not suitable for the canonical quantization of the damped harmonic oscillator. The proper
framework is the one of QFT [11], where the time evolution operator U(t) and the vacuum are formally
(at finite volume) given by

U(t) =
∏
κ

exp
(

Γκt
(
A†κB

†
κ − AκBκ

))
(28)

|0(t)〉 =
∏
κ

1

cosh (Γκt)
exp

(
tanh (Γκt)A

†
κB
†
κ

)
|0〉 (29)

respectively, with 〈0(t)|0(t)〉 = 1, ∀t . In the infinite volume limit we have (for
∫
d3κ Γκ finite

and positive)
〈0(t)|0〉 → 0 as V →∞ ∀ t (30)

Here the relation
∑

κ →
V

(2π)3

∫
d3κ has been used. Note that 〈0(t)|0(t′)〉 → 0 as V →∞∀ t and

t′, t′ 6= t: a representation {|0(t)〉} of the canonical commutation relations (CCR) is defined at each
time t and is unitarily inequivalent to any other representation {|0(t′)〉, ∀t′ 6= t} in the infinite volume
limit. The system thus evolves in time through unitarily inequivalent representations of CCR [11]. Note
that |0(t)〉 is a two-mode time dependent generalized SU(1, 1) coherent state [3,11,14,15] where A
and B are entangled modes, which is consistent with the entanglement between the (charged) matter
field and the em field in QED. Remarkably, in QFT the entanglement notion enters in a natural way
through the coherent state structure of the vacuum state (in the present case the coherent SU(1, 1) boson
condensation of the couple AB in |0(t)〉). Moreover, entanglement cannot be destroyed by the action
of any unitary operator since it characterizes unitarily inequivalent representations, a feature absent in
quantum mechanics.
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The number of Aκ (or Bκ) modes in |0(t)〉 is given by

NAκ(t) = 〈0(t)|A†κAκ|0(t)〉 = sinh2 Γκt (31)

|0(t)〉 turns out to be a squeezed coherent state characterized by the q-deformation of Lie-Hopf
algebra [3,16–18] and provides a representation of the CCR at finite temperature which is equivalent [11]
to the Thermo Field Dynamics representation {|0(β)〉} [1,2].

Time evolution is controlled by the entropy variations [11,19], which is consistent with the fact that
dissipation implies breaking of time-reversal invariance (i.e., the choice of a privileged direction in time
evolution, the arrow of time). Heat dissipation dQ = 1

β
dS is given by the variations in time of the number

of particles condensed in the vacuum.
The classical system of oscillators considered above is known to belong to the class of deterministic

systems à la ’t Hooft [20–24] (those systems that remain deterministic even when described by means
of Hilbert space techniques). The quantum harmonic oscillator emerges from the classical (dissipative)
system when one imposes a constraint on the Hilbert space of the form J2|0〉 = 0. For further details on
’t Hooft analysis see [20–24].

In conclusion, an isomorphism has been established between electrodynamics and the SU(1, 1)

couple of damped/amplified quantum oscillators. It is interesting that according to a recent
result [25] the quantized electromagnetic field appears to be naturally described by su(1, 1) rather than
Weyl-Heisenberg algebra.

In the following Section, our discussion goes further by showing the isomorphism between the
generalized coherent states entering the quantum dissipation formalism and self-similarity properties
of fractal structures. On the basis of the discussion presented above, the isomorphism between fractal
self-similarity and QED is also implied.

5. Coherence and Fractal Self-Similarity

In the previous Sections, the system of damped/amplified harmonic oscillators Equations (16) and
(17) has been shown to be isomorph to QED under proper conditions (i.e., for a constant magnetic field
and for a harmonic scalar potential): one of the oscillator may be considered to represent the em field
in which the other one is embedded. In this Section, by resorting to the results of [5–8], we will show
that an isomorphism exists between the fractal self-similarity properties and the coherent state structure
in QFT. In view of the isomorphism discussed in the previous Sections, this also establishes a relation
between electrodynamics and fractal self-similarity.

I will consider the case of the logarithmic spiral and the Koch curve. The conclusions can be extended
to other examples of deterministic fractals (namely those which are generated iteratively according to a
prescribed recipe), such as the Sierpinski gasket and carpet, the Cantor set, etc. [26,27].

Let me start with the logarithmic spiral (Figure 1). Its representation in polar coordinates (r, θ)

is [27,28]:
r = r0 e

d θ (32)
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with arbitrary real constants r0 and d and r0 > 0. Equation (32) is represented by the straight line of
slope d in a log-log plot with abscissa θ = ln eθ:

d θ = ln
r

r0

(33)

Figure 1. The anti-clockwise and the clockwise logarithmic spiral.

The self-similarity property is represented by the constancy of the angular coefficient tan−1 d.
Rescaling θ → n θ affects r/r0 by the power (r/r0)n. The parametric equations of the spiral are:

ξ = r(θ) cos θ = r0 e
d θ cos θ (34)

η = r(θ) sin θ = r0 e
d θ sin θ (35)

The point z = ξ + i η = r0 e
d θ ei θ on the spiral in the complex z-plane is fully specified once the the

sign of d θ is assigned. The completeness of the (hyperbolic) basis {e− d θ, e+ d θ} requires that the points
z1 = r0 e

− d θ e− i θ and z2 = r0 e
+ d θ e+ i θ need both to be considered. Opposite signs for the imaginary

exponent±i θ also have been considered for convenience. By using the parametrization θ = θ(t), z1 and
z2 can be shown to solve the equations (“dot" denotes derivative with respect to t)

m z̈1 + γ ż1 + κ z1 = 0 (36)

m z̈2 − γ ż2 + κ z2 = 0 (37)

respectively, provided that

θ(t) =
γ

2md
t =

Γ

d
t (38)

up to an arbitrary additive constant; m, γ and κ are positive real constants. Thus the logarithmic spirals
are described by z1(t) = r0 e

− iΩ t e−Γt and z2(t) = r0 e
+ iΩ t e+Γ t solutions of Equations (36) and

(37) and the parameter t can be interpreted as the time parameter. The notations Γ ≡ γ/2m and
Ω2 = (1/m)(κ − γ2/4m) = Γ2/d2, with κ > γ2/4m, are the same as in Section 3. Note that by
putting [z1(t) + z∗2(−t)]/2 = x(t) and [z∗1(−t) + z2(t)]/2 = y(t), Equations (36) and (37) reduce to
Equations (16) and (17) (namely they provide an equivalent representation of Equations (5) and (6)).
Observe that θ(T ) = 2π at T = 2 π d/Γ. At t = mT , z1 = r0 (e− 2π d)m, z2 = r0 (e2π d)m, with integer
m = 1, 2, 3... We thus see that the continuous character of Equations (34) and (35) (which is reflected in
the continuous time evolution according to Equation (38)) also includes as a subset, due to the T integer
multiplicity, the discrete group transformation z1(m) = r0(e−2π d)m → z1(m+ 1) = r0(e−2π d)(m+1) =

z1(m)(e−2π d). This suggests to us that the isomorphism we refer to appears as a homomorphism. Such
an occurrence is indeed implicit in the very same structure of Equations (34) and (35) describing the
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logarithmic spiral. A similar situation occurs in the case of the Koch curve and other fractals considered
below. We plan to present a deeper analysis of this point in a future paper. The spiral “angular velocity”
is | d θ/dt | = |Γ/d |. Our discussion also includes the golden spiral and its relation with Fibonacci
progression (see the Appendix).

By proceeding in a similar way as done in previous Sections, the Lagrangian, the Hamiltonian
Equations (25) and (26) and also the other formulas for the evolution operator, the ground state, etc.,
Equations (28)–(31) are obtained for the spiral when working in the proper QFT frame. The breakdown
of time-reversal symmetry is again associated with the choice of a privileged direction in time evolution
and the entropy operator S may be defined. The left-handed chirality spiral (direct spiral, q ≡ e−dθ > 1)
is the time-reversed, but distinct, image of the right-handed chirality spiral (indirect spiral, q < 1).

The HamiltonianH is actually the fractal free energy for the coherent boson condensation process out
of which the fractal is formed. H0 = 2 ~Ω C can be identified with the “internal energy” U and 2 J2 with
the entropy S. From Equation (26) and the defining equation for the temperature T (putting kB = 1), we
have ∂ S/∂ U = 1/T and obtain T = ~Γ. Thus, H represents the free energy F = U − T S. The heat
contribution in F is given by 2 Γ J2 and (∂ F/∂ T )|Ω = −2 J2. The temperature T = ~Γ is found to be
proportional to the background zero point energy: ~Γ ∝ ~Ω/2 [3,22–24].

The evolution operator U(t), when written in terms of the a and b operators (see Section 4),
becomes [3,16–18]

U(t) = exp

(
−Γt

2

((
a2 − a†2

)
−
(
b2 − b†2

)))
(39)

and it is recognized to be the two mode squeezing generator with squeezing parameter ζ = −Γ t. The
SU(1, 1) generalized coherent state (29) is thus a squeezed state.

Consider now the examples of the Koch curve [26,27]. Let u0 = 1 for the initial stage u0 (see
Figure 2) [5]. The n-th step or stage is denoted by un,q(α), with α = 4 and q = 1/3d [6,7]. One has

un,q(α) = (q α)n = 1, for any n (40)

which gives the self-similarity, or fractal dimension [27] d = ln 4/ ln 3 ≈ 1.2619. It is important to stress
that self-similarity is properly defined only in the n→∞ limit. Put q = e−d θ and write the self-similarity
equation for n = 1 in polar coordinates as u = u0 α e

d θ, which is similar to Equation (32) (or as
d θ = ln α which is similar to Equation (33)). One can proceed then as in the case of the logarithmic
spiral, the parametric equations for the fractal in the z-plane can be written, and so on to obtain the fractal
Hamiltonian and free energy. The exponential operator in the evolution operator U(t) is(

(c2 − c†2)− (c̃2 − c̃†2)

)
= −2

(
C†D† − CD

)
(41)

where c̃ and c̃† denote the doubled degrees of freedom and C ≡ 1√
2
(c+ c̃), D ≡ 1√

2
(c− c̃).

In conclusion, the relation between the self-similarity of logarithmic spiral and the Koch curve and
the SU(1,1) generalized coherent state is thus established.

It is also interesting to consider the relation of the Koch curve with Glauber coherent states. Indeed,
apart the normalization factor 1/

√
n! , the functions un,q(α) are recognized to be the restriction to real

q α of the functions

un,q(α) =
(q α)n√
n!

, n ∈ N+ , q α ∈ C (42)
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which form a basis in the space F of the entire analytic functions. Therefore, the fractal properties can
be studied in F , by restricting, at the end, the results to real q α, q α → Re(q α) [6,7]. The relation
with coherent states is established by realizing that F provides the Fock-Bargmann representation of the
Weyl–Heisenberg algebra [14], namely, the frame where (Glauber) coherent states are described. Define
q ≡ eζ , ζ ∈ C and apply qN to the coherent state |α〉, N ≡ α d/dα; one finds the so-called q-deformed
coherent state

qN |α〉 = |qα〉 = exp

(
−|qα|

2

2

) ∞∑
n=0

(qα)n√
n!
|n〉 (43)

Figure 2. The first five stages of Koch curve.

Here a|α〉 = α|α〉, with a the annihilator operator. Apply (a)n to |qα〉 and restrict then to real qα:

〈qα|(a)n|qα〉 = (qα)n = un,q(α), qα→ Re(qα) (44)

which gives the n-th iteration stage of the fractal. The operator (a)n acts as a “magnifying” lens [6,7,26].
In conclusion, the one-to-one correspondence is established between the fractal n-th stage of iteration,
n = 0, 1, 2, ..,∞, and the n-th term in the q-deformed coherent state Equation (43). |qα〉 is a squeezed
coherent state [16–18,29] with squeezing parameter ζ = ln q and qN , called the fractal operator [6,7], is
the squeezing operator in F . The squeezing transformation of the coherent state therefore describes the
self-similarity properties of the Koch curve (and other fractals).

Let me close this Section with a comment on noncommutative geometry arising as an effect of
dissipation [30]. In the (z1, z2) plane use the notation + ≡ 1 and − ≡ 2, so that pz± denote the
momenta and v± = ż± the forward in time and backward in time velocities:

v± =
1

m
(pz∓ ∓

1

2
γz±) , with [v+, v−] = −i γ

m2
(45)

The relation between dissipation and noncommutative geometry in the plane is thus obtained since the
canonical set of conjugate position coordinates (ξ+, ξ−) can be then defined by putting ξ± = ∓(m/γ)v±,
with

[ξ+, ξ−] = i
1

γ
(46)

The area S enclosed in the two paths P1 and P2 is proportional to the quantum dissipative interference
phase ϑ = S γ in the noncommutative plane, provided z+ 6= z−.

On the other hand, the algebraic structure of the doubling of the degrees of freedom introduced above
in order to close the system is a noncommutative one. The algebra is indeed duplicated by the map
A → A1 ⊗A2, which is the Hopf coproduct map A → A⊗ 1 + 1⊗A. Convenient combinations of
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the deformed coproducts in the q-deformed Hopf algebra, which are noncommutative [3,16–18,31,32],
produce the Bogoliubov transformations of “angle” Γ t and the q-deformation parameter controls the
coherent condensate of the state |0(t)〉. This provides the physical meaning of the deformed Hopf
algebraic structure and of the non-trivial topology of paths in the phase space [31,33].

6. Conclusions

In this paper I have shown that, in space-time regions where the magnetic field may be approximated
to be constant and the electric field is derivable from a harmonic potential, an isomorphism exists
between (classical and quantum) electrodynamics and the set of damped and amplified oscillators
representing a prototype of a dissipative system and the environment or bath in which it is embedded,
respectively. It is known [5–8], on the other hand, that such a system of oscillators is isomorph to
fractal self-similar structures. On the basis of these isomorphisms a link therefore is established between
electrodynamics, dissipation and self-similarity. Moreover, the ground state of the oscillator system turns
out to be a generalized q-deformed (or squeezed) SU(1, 1) coherent state. Coherent states thus appear
to play a crucial role in our discussion. I also observe that quantum dissipation implies in a natural way
noncommutative geometry in the plane and the notion of dissipative interference phase [6–8]. A rich,
many-facet scenario thus emerges which certainly deserves further study. For example, it is interesting
to observe that recently quantum electrodynamics has been shown [25] to be naturally described by
su(1, 1) rather than Weyl-Heisenberg algebra, which seems to agree with the general picture of the
present paper establishing the relation between the SU(1, 1) system of damped/amplified oscillators
and electrodynamics.

One more aspect which is related with the discussion here presented concerns with the description of
fractal-like structures with self-similarity properties in terms of non-homogeneous Bose condensation.
Indeed, in the present scheme they appear to be generated by coherent SU(1, 1) quantum condensation
processes at the microscopic level, similar to “extended objects” or macroscopic quantum systems [1–4],
such as crystals, ferromagnets and like systems in condensed matter physics characterized by ordered
patterns. The macroscopic appearances (forms) of the fractals seems to emerge out of a process
of morphogenesis as the macroscopic manifestation of the underlying dissipative, coherent quantum
dynamics at the elementary level. An integrated vision of Nature resting, in its essence, on the paradigm
of coherence and dissipation thus emerges. Even the sector of high energy physics, with the recent
discovery of the Higgs boson and the coherent condensate structure of the vacuum, belongs to such a
picture. Nature appears to be modulated by coherence, rather than being hierarchically layered in isolated
compartments, in multi-coded collections of isolated systems and phenomena [5,34]. One might express
this by saying that the dynamics of coherence is the primordial origin of codes. In this way codes
are promoted from the (syntactic) level of pure information (à la Shannon) to the (semantic) level of
meanings, expressions of coherent dynamical processes.

Let me close with a further comment concerning living matter physics. That coherence comes before
the code seems to be supported also by the DNA duplication processes currently done in biological
laboratories. In these polymerase chain reaction (PCR) processes, samples of water solutions containing
the parent DNA (the template), primers, nucleotides and enzymes are submitted to sequences of thermal
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cycles. The DNA template transfers to the water in which it is embedded, by means of the emission
of its em signal, the coherent structure of which its code is the expression. It turns out indeed that
such an em signal has fractal-like self-similar structure and therefore, according to the theorem above
discussed, it is expression of coherent dynamics. The duplicated DNA (reproducing the specific sequence
of nucleotides of the parent DNA macromolecule), i.e., the genetic DNA code, is “re-constructed” as the
dynamical output of the interaction of the coherent em signal with the water medium, and, through this,
with the primers and nucleotides in the solution. In recent experiments [35] it has been possible to record
the em signal emitted by aqueous solutions of DNA of viruses and bacteria and it has been shown that
they have fractal-like self-similar structure. These signals have been used to irradiate (to “signalize”)
water. Then the original (parent) DNA has been reconstructed by use of usual PCR protocols, provided
that primers and nucleotides, but not the template DNA, are added in the water solution. The occurrence
of such a phenomenon also suggests that deformation (squeezing) of the signal coherence may induce
dynamical epigenetic modifications, which may then signal the appearance of new meanings associated
to deformed coherent signals. The DNA genetic code appears in conclusion to be the output of the
coherent dynamics. In this way, it is subtracted from its purely phenomenological characterization,
which is sometimes at the origin of dogmatic or even miraculous beliefs. In this view, DNA appears to
be the vehicle through which the laws of form express themselves in living systems and coherence and
its deformations propagate through duplication and multiplication processes.
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Appendix

The Golden Spiral and the Fibonacci Progression

Let dg ≡ (lnφ)/(π/2), where φ denotes the golden ratio, φ = (1 +
√

5)/2, and the subscript g
stays for golden. The logarithmic spiral with polar equation rg(θ) = r0 e

dg θ is then called the golden
spiral [27]. As θ grows of π/2, the radius of the golden spiral grows in geometrical progression of ratio
φ: rg(θ + nπ/2) = r0 e

dg (θ+nπ/2) = r0 e
dg θ φn and rg,n ≡ rg(θ = nπ/2) = r0 φ

n, n = 0, 1, 2, 3, ....
An “approximate” construction of the golden spiral is obtained by drawing [27] squares whose sides

are in the Fibonacci progression (Fibonacci tiling), 0, 1, 1, 2, 3, 5, 8, 13, .... (the Fibonacci generic
number is Fn = Fn−1 + Fn−2, with F0 = 0; F1 = 1). The Fibonacci spiral is obtained from
quarter-circles tangent to the interior of each square. It does not perfectly overlap with the golden spiral
since Fn/Fn−1 → φ in the n→∞ limit, but is not equal to φ for given finite n.

The golden ratio φ and its “conjugate” ψ = 1 − φ = −1/φ = (1 −
√

5)/2 are solutions of the
“quadratic formula”:

x2 − x− 1 = 0 (47)

and of the recurrence equation xn − xn−1 − xn−2 = 0, which, for n = 2, is the relation (47). This
is satisfied also by the geometric progression of ratio φ of the radii rg,n = r0 φ

n of the golden spiral.
Equation (47) is the characteristic equation of the differential equation r̈ + ṙ − r = 0. It admits as
solution r(t) = r0 e

i ω t e+d θ(t) with ω = ± i
√

5/2 and θ = −t/(2 d) + c, with c, r0 and d constants. By
setting c = 0, r(t) = r0 e

∓
√

5 t/2 e−t/2, i.e., rφ(t) = r0 e
−φ t and rψ(t) = r0 e

−ψ t. See [36] for details on
the relation between q-groups and the Fibonacci progression.
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