
Citation: Ottaviani, F.M.; De Marco,

A.; Rafele, C.; Castelblanco, G. Risk

Perception-Based Project Contingency

Management Framework. Systems

2024, 12, 93. https://doi.org/

10.3390/systems12030093

Academic Editor: Germán Martínez

Montes

Received: 20 January 2024

Revised: 9 March 2024

Accepted: 11 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Risk Perception-Based Project Contingency
Management Framework
Filippo Maria Ottaviani 1,* , Alberto De Marco 1 , Carlo Rafele 1 and Gabriel Castelblanco 2

1 Department of Management and Production Engineering, Polytechnic University of Turin, 10129 Turin, Italy;
alberto.demarco@polito.it (A.D.M.); carlo.rafele@polito.it (C.R.)

2 M.E. Rinker, Sr. School of Construction Management, University of Florida, Gainesville, FL 32611, USA;
gabriel.castelbl@ufl.edu

* Correspondence: filippo.ottaviani@polito.it

Abstract: Project risk management (PRM) involves identifying risks, assessing their impact, and
developing a contingency plan. A structured contingency management (CM) approach prevents
subjective biases in analyzing risks and developing responses. Previous studies have either focused on
improving the accuracy of risk estimates or analyzed, from a qualitative perspective, the relationships
between perceived risk and project performance. This study aimed to improve PRM by providing a
risk-perception-based contingency management framework (CMF). The CMF guides contingency
depletion based on two short- and long-term cost overrun indicators and their respective thresholds.
Thresholds and the initial contingency reserve amount are determined by applying the Monte Carlo
method to a stochastic, discrete-event, finite-horizon, dynamic project simulation model. The study
developed the CMF through a structured approach, validating the simulation model on eight specific
project configurations. The results prove that the framework can be applied to any project, shaping
the risk response strategy. This study contributes to PRM by explaining the relationships between
risk perception and risk responses and providing a prescriptive CM tool.

Keywords: project management; risk management; contingency management; risk perception;
system dynamics; causal loop diagram

1. Introduction

Effective project risk management (PRM) is crucial to project success. PRM involves
identifying potential risks, evaluating their impact on the project system, and implementing
responses to increase the likelihood of meeting project objectives [1]. The weight of PRM
increases with project complexity, as complex projects face a wider range of potential
risks [2].

In projects, risks can lead to both direct and indirect cost overruns. Direct cost overruns
arise when the actual cost of project activities exceeds their budget, often due to price
fluctuations, scope changes, or inefficiencies during execution [3,4]. Instead, indirect cost
overruns stem from the cascading effects of risks on the project system, such as schedule
delays or disruptions triggering overtime or contract penalties [5].

Cost overruns trigger short- and long-term concerns in project managers about not
respecting the project budget. Short-term (ST) concern arises from the deviation between
the actual cost of work performed and its budgeted value. Conversely, long-term (LT)
concern arises from the deviation between the project cost estimate at completion and the
available budget, encompassing the planned budget and contingency reserve.

In PRM, the contingency reserve (CR) is a financial buffer within the project cost
baseline to address known unknown risks [6]. Project managers utilize the CR to fund
responses to materialized risks that lead to cost overruns. The CR is determined by the
contingency plan, which outlines the criteria for assessing risk responses, including whether
to implement them, how, and to what extent.
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PRM success comes down to effective contingency management (CM). Without a con-
tingency plan, risk responses are determined based on project managers’ perceptions [7],
which include both attitude and appetite. However, risk perception is influenced by organi-
zational values and personal experiences, making it inherently subjective [8]. Subjective
CM exposes the project to additional risks that may affect project success [9]. Therefore,
integrating expert judgment with data-driven decisions is crucial to effective CM. By lever-
aging data, managers can make informed decisions supported by concrete evidence and
robust analysis [10].

Despite the extensive literature on PRM, few studies have provided objective frame-
works to guide CM. While most works have focused on improving the accuracy of risk
estimates, they overlook or address only qualitatively the implications of project managers’
risk perceptions on PRM. Therefore, it is essential to follow a structured approach to CM
that prevents subjective behaviors.

This study’s objective is twofold. Firstly, it explains the relationship between short-
and long-term cost overruns, how project managers perceive them, and how they can
react. Secondly, it aims to model risk perception, provide the criteria for developing risk
responses, and implement both within a contingency management framework (CMF) to
minimize short- and long-term concerns for cost overruns throughout project execution
while ensuring the complete depletion of the CR. The CMF applies the Monte Carlo (MC)
method to a stochastic, discrete-event, finite-horizon, dynamic project simulation model
for evaluating the combinations of initial CR level and response thresholds that optimize
contingency spending. In the CMF, risk responses consist of using part of the CR to reduce
the increase in the project’s actual cost, thereby reducing both the perceived overrun and
the cost variance at project completion.

This paper is organized as follows. Section 1 provided the background of the study
and its objectives. Section 2 reviews previous studies on contingency estimation models,
CM models, risk control thresholds, and risk perception in project management. Section 3
describes the proposed CM framework. Section 4 provides the results of the framework
testing on synthetic project configurations, which are then discussed in Section 5. Lastly,
Section 6 lists the limitations of the study and the avenues for future research.

2. Literature Review

Literature on PRM is vast and encompasses a comprehensive range of research topics,
including identifying and evaluating risks, CM, establishing risk response thresholds,
and analyzing the relationship between PRM and project performance. While the review
provides a brief overview of the first category, it delves into a more in-depth exploration of
the latter three areas.

Project risk identification and evaluation studies focus on determining the appropriate
size of the CR. To this end, two distinct approaches are employed: deterministic and
probabilistic [11]. In deterministic approaches, project risks are characterized by predefined
probabilities and impact values [12]. In contrast, probabilistic approaches recognize the
inherent uncertainty associated with project risks, assigning probability distributions to
each level of potential impact [13].

CM studies have proposed different models to guide the depletion of CR throughout
project execution. Ford [14] built a dynamic behavioral simulation model to test how
different CM strategies impact project performance. Their findings showed that a passive
strategy performs better under critical conditions, whereas an aggressive strategy is more
robust to changes. Barraza and Bueno [15] proposed a heuristic approach based on MC
simulation for determining whether to intervene and to what extent according to the
activities’ cost and cost variance. The study concluded that the optimal CM strategy
is not predetermined but depends on project characteristics and the project manager’s
subjective behavior. Moselhi and Salah [16] and Salah and Moselhi [17] developed fuzzy-set-
based CM methods for determining contingency depletion based on periodically allocated
contingency and uncertainty measures. Their results demonstrated the superior capabilities
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of the proposed methods compared to MC. Xie et al. [12] applied a value-at-risk method
to update project contingencies as the project progresses, implementing newly available
information inferred from monitoring data. The method shifts the focus from risks and their
magnitude to daily cost and earnings, overcoming the problem of correlation between risks.
Eldosouky et al. [18] proposed a three-round approach for drawing upon contingency based
on monitoring project progress metrics, relying on earned value management (EVM) metrics
to monitor and control project contingencies. Hammad et al. [19] developed a heuristic-based
CM method working at the activity level, which was later improved by Hammad et al. [20]
by specifying that the allocated amount to each activity depends on its weight in the project
cost, uncertainty, and criticality. Traynor and Mahmoodian [21] recommended MC simulation
for contingency management, guiding activity-level depletion of their assigned cost and
time buffers.

Several studies have implemented control thresholds within the project system based
on preexisting or new metrics and indicators to capture deviations in performance proac-
tively by generating early warnings. Kim et al. [22] introduced risk thresholds, evaluated
through the value-at-risk concept, which would trigger if the profit ratio of the affected
work package influences the project profit. Pajares and López-Paredes [23] introduced
two monitoring metrics, namely, the cost control index and schedule control index, whose
values determine whether early decisions should be made. Colin and Vanhoucke [24]
developed a statistical project control procedure to set tolerance limits in the traditional
monitoring indicators for determining whether the deviations from the performance mea-
surement baseline are related to risk materializing. Colin et al. [25] introduced two mul-
tivariate control metrics, namely, T2 and SPE, obtained through MC simulation to set
statistical tolerance limits. Kim [26] presented a quantitative method for establishing
dynamic control thresholds depending on the project objectives’ overall progress and
degree of achievability. Ballesteros-Pérez et al. [27] developed two schedule monitoring
metrics, ESmin and ESmax, of which exceeding determines performance not under control.
Kim and Pinto [28] investigated the predictive power of project cost data as an early in-
dicator of the cost overrun probability in risk management. Chen et al. [29] adopted the
Bayesian approach to determine the expected distributions of the tolerance limits of the
project schedule metrics.

Many works have adopted system dynamics (SD) tools to model the relationships
between PRM and project performance. Rodrigues [30] analyzed the feedback loops
between risks, risk effects, and the project system, highlighting SD’s potential to improve
response planning. Chritamara et al. [31] used SD modeling to incorporate sub-systems
and their relationships in D/B construction projects to simulate how the system reacts
to risks and different policies. Wang et al. [32] claimed traditional PRM techniques to be
inappropriate when dealing with high uncertainty and dynamic project risks, suggesting
SD for identifying risks and developing responses. Howick et al. [33] analyzed the indirect
consequences of disruptions and delays, showing both disruption and delay feedback
on themselves causing further disruptions and delays. Ding et al. [34] designed a PRM
framework based on social network analysis and SD, simulating risk mitigation actions at
the organizational level. Wang and Yuan [35] took a holistic view to investigate the effects
of dynamic risk interactions on a schedule delay in infrastructure projects. Leon et al. [36]
developed an SD model to simulate the complexities among interdependent variables and
forecast their dynamics over time, simulating four possible intervention scenarios.

SD has also been used to demonstrate that project control processes are affected by
risk perception [37]. The decision of when and how to spend the contingency budget
depends significantly on risk perception [17]. Risk perception influences assessing risks
and developing responses based on individual experiences of intuitive judgment and
subjective cognition [38,39]. Qualitative perspectives have been embraced for evaluating
the possibility of occurring risks, considering the dynamics behind the perception and
response to a schedule delay. This leads to the employees experiencing low productivity,
lower morale, and increased pressure due to work overload [8]. While this literature helps
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characterize the relationship between human perception and project risk, approaches that
link risk perception with CM are still lacking.

Among the different studies analyzed, only two integrated risk perception and CM. De
Marco et al. [40] proposed an SD-based CM model to simulate decision-making scenarios
under different project conditions and behavioral pressures of senior managers and owners.
The model considers multiple influences of the leading project participants in the problem.
Their findings suggest that the CM strategy should be based on conflicting pressures to
make preventive, risk-mitigating improvements or release the remaining CR as savings.
The model was later improved by De Marco et al. [41] and applied to improve project cost
estimates at completion, highlighting how the project CR expenditure behavior influences
cost forecasts. Ayub et al. [42] developed a mathematical model that integrated project KPIs
with future risk perception, enabling a quantitative approach to informal and subjective
risk models. The cost contingency consumption trend analysis showed an S-curve pattern,
with project managers holding back contingency in the early stages because of uncertainty.
Steady consumption in the middle allowed them to address risks later, validating the cost
impact of late changes.

Transitioning from project-level to organization and enterprise risk management
entails various models outlined in the literature, which offer guidance on the timing and
approach to developing risk responses. Noteworthy frameworks in this domain encompass
ISO 31000 [43], the COSO ERM Framework [44], the DALI model [45], and the PRIMO
FORTE framework [46].

Research Motivation

The literature review described different endeavors for improving PRM. Studies agree
on (1) tailoring the CM strategy to specific projects, (2) utilizing simulation to account for
the probabilistic nature of risks, and (3) considering the implications of risk perception
on the decision-making processes. In this regard, this study proposes a CMF taking into
account all the aspects above at once.

3. Research Methodology

The study developed the CMF, more specifically, the project execution simulation model,
following a simplified version of the methodologies of Law [47] and Banks et al. [48], consist-
ing of the following steps:

• Problem formulation and system configurations;
• Model definition;
• Model translation;
• Pilot runs;
• Model validation;
• Output data analysis;
• Discussion of results.

3.1. Problem Formulation and System Configurations
3.1.1. Problem Formulation

The CMF is intended as a prescriptive tool for driving CM while minimizing project
managers’ exposure to risk perception. The CMF should determine, for each initial level
of CR, the frequency and entity of risk responses. Such responses should be based on
the difference between marginal and cumulative cost overruns and two predetermined
thresholds. The CMF must apply to any project and be based on robust analysis; hence,
the thresholds must be optimized by applying the MC method to a stochastic, discrete-
event, finite-horizon, dynamic project execution simulation model. The simulation should
undergo both verification and validation.
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3.1.2. System Configurations

Model verification depends on the mathematical properties of the project execution
simulation model. On the other hand, model validation requires testing it in several projects,
which is not feasible because of the infinite number of possible project configurations.
Hence, for the purpose of validation, this study employs synthetic data representing
extreme project configurations. Suppose the CMF works in such extreme configurations.
In this case, the CMF can be applied in any real project that has a configuration that falls
between the extreme ones. This study defines project configurations based on the schedule,
cost deviation, and correlation of the tasks.

Task schedule refers to the tasks’ start and end dates. Following the activity-based
costing method [49], the task schedule determines the cumulative cost curve, which rep-
resents the total project cost as a function of time. Let BAC and PD indicate the project
budget at completion and planned duration, respectively. Then, the project cumulative cost
curve can assume one of the four typical profiles in Figure 1 [50].

0

BAC
s l

0 PD
0

BAC
bl

0 PD

fl

Figure 1. Project cumulative cost curve typical profiles.

A task’s cost deviation is expressed using a probability density function (PDF) to
account for potential risks Du et al. [51]. This function is derived by fitting a theoretical
distribution to historical cost overrun data or by selecting an estimation method and
gathering uncertainty factors for a sensitivity analysis. The resulting PDF values can be
adjusted to accommodate additional risks that would substantially alter the task cost or to
incorporate subjective assumptions.

Ideally, each task should have its cost deviation PDF. However, for verification and
validation purposes, this study assumed all tasks’ cost deviation PDFs to be the same (in
relative terms) [15,18]. Specifically, this study adopted the PERT distribution as PDF, i.e., a
beta distribution extended to the domain [min, max] [52].
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Let x denote the task cost deviation. Then, Equation (1) provides the PDF of the
PERT distribution:

f (x) =
(x−min)α−1(max−x)β−1

Beta(α, β)(max−min)α+β−1 , (1)

where min is the x lower bound, max is the x upper bound, α and β are the shape parameters,
and Beta is the beta function described by Equation (2),

Beta(α, β) =
∫ 1

0
uα−1(1− u)β−1 du. (2)

Equation (3) provides the cumulative density function (CDF) of the PERT distribution:

F(x) =
Betaz(α, β)

Beta(α, β)
, (3)

where Betaz is the incomplete beta function and z is evaluated as per Equation (4),

z =
x−min

max−min
. (4)

By definition, the standard deviation (σ) of the PERT distribution is equal to 1/(γ+ 2)
of the range. Therefore, the following equalities hold:

α =
γ ·Mo + max−(γ+ 1)min

max−min
= 1 + γ

Mo−min
max−min

, (5)

and
β =

(γ+ 1)max−min−γ ·Mo
max−min

= 1 + γ
max−Mo
max−min

, (6)

so that the distribution mean (µ) is evaluated as per Equation (7),

µ =
min+γ ·Mo + max

γ+ 2
, (7)

while the variance (σ2) is given by Equation (8),

σ2 =
(µ−min)(max−µ)

γ+ 3
, (8)

where Mo is the distribution mode and γ is the distribution shape parameter. Figure 2
provides a graphical representation of the adopted PDF and CDF.

min Mo µ max
0

1

2

x

f(
x)

0

0.25

0.50

0.75

1

F(
x)

Figure 2. Example PERTPDF (blue) and CDF (orange).

A task’s cost deviation correlation affects its cost deviation PDF. This study involves
two correlation scenarios, namely, A and B. In Scenario A, all tasks are assumed to not be
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correlated. In scenario B, all tasks executed in the same time frame show the same relative
cost deviation.

Table 1 summarizes the eight extreme configurations that serve to verify and validate
the framework.

Table 1. Project configurations codes.

Correlation Scenario Cumulative Cost Curve
Profile Code

A

s A.s
l A.l
fl A.fl
bl A.bl

B

s B.s
l B.l
fl B.fl
bl B.bl

3.2. Model Definition

The project execution simulation model is determined by combining SD conceptual
modeling and the earned value management (EVM) [53] methodology. Figure 3 displays
the project execution model as a causal loop diagram (CLD) to describe the relationships
between EVM variables.

BAC

dEV(t)

dAC(t)

xi(t)

CCST(t) RCST(t) CPI(t) EAC(t) CCLT(t) RCLT(t)

< ThST >

EV(t)

AC(t) CC(t)
< ThLT >

C(t)
+

+

+

−

+

+

+

+

−

−

+

−
− +

−

+

+
+

−

−

−

+

Figure 3. Project monitoring variables CLD.

The CLD is defined as follows. The argument t, used as the simulation clock, indicates
the tth project review, ranging from 0 (project start) to PD (project end). At any given t,
tasks executed determine the increment in work performed (dWP). Relating dWP to the
BAC provides the increment in the budgeted cost of work performed (dEV). In contrast,
relating dWP to the x determines the increment in actual cost (dAC) incurred to perform
dWP. The cumulative sum of dEV provides the accrued earned value (EV), while the
cumulative sum of dAC provides the accrued actual cost (AC).

The difference between dAC and the inflated dEV, determined using the ST threshold
(ThST), provides the ST Concern for Cost Overruns indicator (CCST). A corresponding
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Response to ST Cost Overruns (RCST) is developed if the current level of CR (C) allows
for it. In the LT, the ratio of EV to AC provides the EVM cost performance index (CPI),
which is used to evaluate the project cost estimate at completion (EAC). The difference
between EAC, BAC, and C, inflated by the LT threshold (ThLT), provides the LT Concern
for Cost Overruns indicator (CCLT). A corresponding Response to LT Cost Overruns (RCLT)
is developed if the current C allows for it. Lastly, the overall Concern for Cost Overruns
indicator (CC) is theorized as a function of both CCST and CCLT.

3.3. Model Translation

The CLD is translated into an analytical model describing the mathematical relation-
ships between the EVM variables. Let N denote the total number of tasks, each contributing
equally to the project’s progress, and let i indicate the ith task. Then, Equation (9) holds.

dWPi =
100%

N
=

1
N

(9)

Following EVM, progress is determined by assuming dEV(t) = dWP(t) · BAC. Then,
Equation (10) holds.

dEVi =
BAC

N
(10)

Let n(t) denote the number of tasks completed at time t, determined by the profiles
displayed in Figure 1. Then, dEV is determined using Equation (11).

dEV(t) = n(t) · dEVi = n(t) · BAC
N

(11)

In contrast, dAC depends on both the task correlation and xi, which can be randomized
by applying the inverse of Equation (3) to a random value generated through the uniform
distribution, as in Equation (12).

xi(t) ∼ F−1(t) ∀i ∈ [0 . . . n(t)] (12)

In Scenario A, all project tasks are assumed to be independent; hence, dAC is random-
ized per Equation (13).

dAC(t) =
n(t)

∑
i=1

[
BAC

N
· xi(t)

]
(13)

In Scenario B, all tasks executed in the same t are assumed to show the same relative
cost deviation. Therefore, dAC is randomized per Equation (14).

dAC(t) = dEV(t) · x(t) (14)

Following EVM, the project EV is determined per Equation (15),

EV(t) =
t

∑
j=0

dEV(j), (15)

while AC is determined per Equation (16),

AC(t) =
t

∑
j=0

dAC(j). (16)

The ratio of EV to AC provides the cost performance index (CPI), as in Equation (17),

CPI(t) =
EV(t)
AC(t)

, (17)
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which is used as the BAC projection factor to evaluate the project cEAC, as in Equation (18),

EAC(t) =
BAC

CPI(t)
. (18)

The Concern for ST Cost Overruns indicator (CCST) is determined per Equation (19):

CCST(t) = max{0, dAC(t)− dEV(t) · (1 + ThST)}, (19)

where CCST is non-negative, (1 + ThST) is the inflation factor, and ThST is the ST threshold.
The Response to ST Cost Overruns (RCST) is obtained by setting CC′ST(t) = 0. Here, CC′ST
and AC′ indicate the respective variables after implementing the ST risk response. Solving
by RCST(t),

CC′ST(t) = 0

dAC(t)− dEV(t) · (1 + ThST)− RCST(t) = 0

RCST(t) = dAC(t)− dEV(t) · (1 + ThST)

RCST(t) = dAC(t)− dEV(t) · (1 + ThST)

RCST(t) = CCST(t),

leads to Equation (20),
RCST(t) = min{C(t), CCST(t)}, (20)

where the response amount (RCST) is the smaller of the remaining contingency and the
required non-negative amount that reduces CCST to zero.

The Concern for LT Cost Overruns indicator (CCLT) is determined per Equation (21):

CCLT(t) = max{0, EAC(t)− BAC− C(t) · (1 + ThLT)}, (21)

where CCLT is non-negative, (1 + ThLT) is the inflation factor, and ThLT is the LT threshold.
The Response to LT Cost Overruns (RCLT) is obtained by setting CC′LT = 0. Here, CC′LT,
EAC′, and C′ indicate the respective variables after implementing the LT risk response.
Solving by RCLT(t),

CC′LT(t) = 0

EAC′(t)− BAC− C′(t) · (1 + ThLT) = 0

BAC
CPI′(t)

− BAC− C′(t) · (1 + ThLT) = 0

BAC
EV(t)

AC′(t)− BAC− C′(t) · (1 + ThLT) = 0

BAC
EV(t)

[AC(t)− RCLT(t)]− BAC− [C(t)− RCLT(t)] · (1 + ThLT) = 0

BAC
EV(t)

AC(t)− BAC
EV(t)

RCLT(t)− BAC− C(t) · (1 + ThLT) + RCLT(t) · (1 + ThLT) = 0

− BAC
EV(t)

RCLT(t) + RCLT(t) · (1 + ThLT) = −
BAC
EV(t)

AC(t) + BAC + C(t) · (1 + ThLT)

RCLT(t)
[
(1 + ThLT)−

BAC
EV(t)

]
= − BAC

EV(t)
AC(t) + BAC + C(t) · (1 + ThLT)

RCLT(t) =
− BAC

EV(t) AC(t) + BAC + C(t) · (1 + ThLT)

(1 + ThLT)− BAC
EV(t)

RCLT(t) =
− BAC

EV(t) AC(t) + BAC + C(t) · (1 + ThLT)

(1 + ThLT)− BAC
EV(t)

EV(t)
EV(t)

RCLT(t) =
BAC[EV(t)− AC(t)] + C(t) · EV(t) · (1 + ThLT)

EV(t) · (1 + ThLT)− BAC

leads to Equation (22),
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RCLT(t) = min
{

C(t), max
{

0,
BAC[EV(t)− AC(t)] + C(t) · EV(t) · (1 + ThLT)

EV(t) · (1 + ThLT)− BAC

}}
, (22)

where the response amount (RCLT) is the smaller of the remaining contingency and the
required non-negative amount that reduces CCLT to zero.

The project analytical model is fit within Algorithm 1, which evaluates all combinations
of C0, ThST, and ThLT optimizing CM.

Algorithm 1: Contingency management framework optimization algorithm
Data: n, µ, σ
Parameters: S, BAC, PD, maxC0 , δC0 , maxThST , δThST , maxThLT , δThLT

Result: Determine (C0, ThST, ThLT) combinations that minimize CC
C0, stopC0 ← 0, 0
while C0 ≤ maxC0 and stopC0 = 0 do

ThST, stopThST ← 0, 0
while ThST ≤ maxThST and stopThST = 0 do

ThLT, stopThLT ← 0, 0
sol ← (C0, ThST, ThLT)
CCsol ← ∞
while ThLT ≤ maxThLT and stopThLT = 0 do

for s← 1 to S do
t← 0
while t < PD do

t← t + 1
C(s, t)← C(t− 1)
dEV(s, t)← n(s, t) · BAC

N
EV(s, t)← EV(t− 1) + dEV(s, t)

dAC(s, t)←
{

∑
n(s,t)
i=1

BAC
N · xi(s, t) Scenario = A

dEV(s, t) · x(s, t) Scenario = B
AC(s, t)← AC(t− 1) + dAC(s, t)
CCST(s, t) = max {0, dAC(s, t)− dEV(s, t) · (1 + ThST)}
RC(s, t)← min{C(s, t), CCST(s, t)}
AC(s, t)← AC(s, t)− RCST(s, t)
C(s, t)← C(s, t)− RCST(s, t)
CCST(s, t)← CCST(s, t)− RCST(s, t)
CPI(s, t)← EV(s, t)/AC(s, t)
EAC(s, t)← BAC/CPI(s, t)
CCLT(s, t) = max{0, EAC(s, t)− BAC− C(s, t) · (1 + ThLT)}
RCLT(s, t)← min

{
C(s, t), max

{
0, BAC[EV(s,t)−AC(s,t)]+C(s,t)·EV(s,t)·(1+ThLT)

EV(s,t)·(1+ThLT)−BAC

}}
AC(s, t)← AC(s, t)− RCLT(s, t)
C(s, t)← C(s, t)− RCLT(s, t)
CPI(s, t)← EV(s, t)/AC(s, t)
EAC(s, t)← BAC/CPI(s, t)
CCLT(s, t) = max {0, EAC(s, t)− BAC− C(s, t) · (1 + ThLT)}
CC(s, t)← CCST(s, t) + CCLT(s, t)

CC(s)← 1
PD ∑PD

t=0 CC(s, t)
C ← 1

S ∑S
s=1 C(s, PD)

CC ← 1
S ∑S

s=1 CC(s)

if 0 ≤ C ≤ ϵh and CC ≤ CCsol then
stopThLT ← 1
CCsol ← CC
sol ← (C0, ThST, ThLT)

else
ThLT ← ThLT + δThLT

ThST ← ThST + δThST

if ThST = ThLT = 0 then
stopC0 ← 1

else
C0 ← C0 + δC0

The algorithm is defined as follows. The parameter C0 denotes the initial level of CR,
i.e., C(0) = C0. The parameters δC0 , δThST , and δThLT denote the increment in C0, ThST, and
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ThLT, respectively. An upper bound corresponds each parameter (maxC0 for C0, maxThST

for ThST, and maxThLT for ThLT). Iterations over C0 are repeated until it reaches maxC0 or
until ThST = ThLT = 0, triggering the first stop criterion (stopC0 ← 1). Next, iterations over
ThST are repeated until it reaches maxThST . Finally, iterations over ThLT are repeated until it
reaches maxThLT or until the mean value of the residual C amount over the S simulations (C)
is reduced to almost zero (ϵl ≤ C ≤ ϵh), triggering the second stop criterion (stopThLT ← 1).

For each combination of C0 and ThST, the algorithm explores all possible ThLT values.
The optimal combination is the one that minimizes the mean over the S simulations of
the mean Concern for Cost indicator (CC) throughout the project duration. The algorithm
stores the optimal combination as the sol variable and the optimal CC as the CCsol variable.

3.4. Pilot Runs

The algorithm was programmed from scratch in the Julia 1.8.1 programming language.
Pilot runs (and later validation runs) were performed on an Acer Nitro AN 515-55 Intel(R)
Core(TM) i7-10750H CPU; the run time was negligible.

3.4.1. Parameters Initialization

Simulation parameters were initialized arbitrarily. The number of simulations was
set to 640 (i.e., S = 640). The project duration was set to 24 (i.e., PD = 24), simulating a
two-year-long project with monthly progress reviews. The budget was set to 100% (i.e.,
BAC = 100% = 1). The total number of tasks was set to 100 (i.e., N = 100 → dEVi =
1% = 0.01).

Regarding the cost deviation PDF, the shape parameter was set to four (per traditional
PERT) so that the mode (Mo) represented ∼66.67% of the distribution mean, i.e., γ = 4
so that µ = (min + 4Mo + max)/6. The mode was set to 100% (i.e., Mo = 1), while
the minimum and maximum were set to 80% (i.e., min = 0.8) and 180% (i.e., max = 1.8),
respectively. As a result, the task cost tends to result in cost overruns (max 80% cost
overruns) rather than savings (max 20% cost savings), and savings are usually smaller than
cost overruns. Applying Equation (5) determines α = 1.8, whereas applying Equation (6)
determines β = 4.2. On the other hand, applying Equation (7) determines µ = 1.1, while
applying Equation (8) determines σ2 = 3× 10−2.

3.4.2. Model Verification

The simulation model can be considered verified if it satisfies the central limit theorem
(CLT) [54]. According to the CLT, the PDF of the project’s total cost deviation should
conform to a normal distribution to which mean and variance correspond.

µ = µAC(PD) = N · µx ·
BAC

N
= µx · BAC = µx, (23)

and

σ2 = σ2
AC(PD) = N · σ2

x ·
BAC2

N2 = σ2
x ·

BAC2

N
=

σ2
x

N
, (24)

respectively. The CLT holds only if the random variables are iid (i.e., independent and
identically distributed). In the simulation model, the random variables correspond to the
tasks’ cost deviation PDFs and are iid only in the A configurations. However, if the only
difference between Scenarios A and B is in the randomization of dAC and the simulation
model verifies the CLT in the A scenarios, then the B configurations should also be verified.

For the pilot runs, to verify whether the configurations met the requirements of the CLT,
the number of simulations was set to 64,000 (i.e., S = 6.4× 104), the initial level of contingency
was set to zero (i.e., C0 = 0), and the thresholds were set to infinite (i.e., ThST = ThLT = ∞),
as never to trigger.

Table 2 presents the results of the pilot runs. All A configurations fulfill the conditions of
the CLT since Equations (23) and (24) are satisfied. As a result, the model is considered verified.
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Table 2. Pilot runs’ cost at completion mean and variance.

Configuration µAC(PD) σ2
AC(PD)

A.s 1.1 3× 10−4

A.l 1.1 3× 10−4

A.bl 1.1 3× 10−4

A.fl 1.1 3× 10−4

B.s 1.1 1.8× 10−3

B.l 1.1 1.3× 10−3

B.bl 1.1 1.6× 10−3

B.fl 1.1 2.2× 10−3

3.5. Model Validation

Prior to conducting validation runs, the CR was bounded below zero (minC0 = 0) and
above by 0.8 (maxC0 = 0.8). Following the pilot runs, the CLT could be applied to narrow
the range of C0 further to µ − 3σ − BAC ≤ C0 ≤ µ + 3σ − BAC. This range is derived
from the observation that a six-sigma interval covers approximately 99.7% of the possible
outcomes. Based on this refined range of C0, it can be predicted that the model may not
provide an optimal solution for values of C0 below µ− 3σ− BAC. Conversely, the CMF
ensures that risks will always be mitigated for values of C0 above µ + 3σ− BAC.

For the validation runs, we set the following:

• S = 6.4× 103;
• δThST = δThLT = 0.05;
• ϵh = 1× 10−2.

4. Output Data Analysis

Table 3 presents the optimal configurations (sol) determined by the CMF for each
project configuration.

Table 3. Optimal values of CMF parameters.

C0

A B

s l bl fl s l bl fl
ST LT ST LT ST LT ST LT ST LT ST LT ST LT ST LT

0.01 0.70 0.00 0.75 0.15 0.50 0.40 0.55 0.90
0.02 0.70 0.35 0.60 0.00 0.90 0.55 0.45 0.85
0.03 0.90 0.95 0.45 0.85 0.60 0.50 0.75 0.95 0.55 0.45 0.55 0.80
0.04 0.85 0.90 1.00 0.80 0.80 0.75 0.60 0.70 0.70 0.85 0.65 0.85 0.55 0.95 0.60 0.15
0.05 0.75 0.55 0.95 0.60 0.50 0.85 0.80 0.60 0.75 0.45 0.60 0.35 0.85 0.25 0.50 0.05
0.06 0.55 0.35 0.60 0.30 0.85 0.45 1.00 0.00 0.80 0.00 0.95 0.15 0.50 0.10 0.20 0.00
0.07 0.90 0.05 0.55 0.00 0.25 0.00 0.70 0.05 0.15 0.05 0.15 0.05 0.95 0.00 0.10 0.05
0.08 0.55 0.00 0.95 0.00 0.25 0.00 0.75 0.00 0.05 0.00 0.10 0.00 0.10 0.00 0.05 0.00
0.09 0.05 0.00 0.00 0.00 0.05 0.00 0.20 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.25
0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

While the results depend on the algorithm’s parameters, several observations can be
made. First, the minimum level of C0 does not necessarily correspond to minC0 . Second,
the maximum value of C0 is confirmed to be equal to maxC0 = Mo, as any greater value
meets the C ≤ ϵh condition on a statistical basis. Additionally, increasing ThST results in a
decrease in ThLT, as the RCST helps prevent the escalation of CCST. However, higher values
of C0 do not necessarily imply an increase in ThST at the expense of ThLT.

Figure 4 provides, for the configurations displayed in Table 2, the CR spending (C)
and Concern for Cost Overruns indicator (CC) curves over the S simulations. The former is
obtained using Equation (25),

C(t) =
1
S

S

∑
s=1

C(s, t) (25)



Systems 2024, 12, 93 13 of 18

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

A.s B.s

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

A.l B.l

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

A.bl B.bl

0 PD
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

A.fl

0 PD

B.fl

Figure 4. Project configurations optimized C(t) (solid) and CC(t) (dashed) curves.

While the latter is given by Equation (26),



Systems 2024, 12, 93 14 of 18

CC(t) =
1
S

S

∑
s=1

CC(s, t) =
1
S

S

∑
s=1

[CCST(s, t) + CCLT(s, t)] (26)

As a result, a higher level of C0 leads to a delay in materialization and a decrease
in CC(t).

5. Discussion

This study aimed to develop a CMF to replace subjective decision-making in the deple-
tion of CRs, considering project managers’ risk perceptions. This work developed the CMF
and validated it on synthetic projects, representing eight extreme project configurations to
be applied in any real project whose configuration falls between the eight tested.

The main results confirm the applicability of CMF in identifying combinations of
C0, ThST, and ThST that drive contingency spending while minimizing concern for cost
overruns. For a specific project, the CMF identifies three C0 intervals. In the first interval,
which ranges from zero to minC0 = µ− 3σ− BAC, the CR is statistically insufficient to
address risks. Hence, delaying the use of the CR until a later stage of the project remains the
only way to optimize its utilization. In the second interval, which ranges between minC0

and µ− BAC, the CMF examines the combinations of ThST and ThLT to minimize the CC
indicator. In the third interval, where C0 ≥ µ− BAC, the CMF recommends mitigating any
ST or LT cost overrun by setting ThST = ThLT = 0 since it is statistically unlikely for the
project AC(PD) to exceed µ.

From a theoretical standpoint, the study provides several contributions. First, the
CLD clarifies the relationships that connect project monitoring variables and the sequence
of steps leading from the valuation of marginal work performed within a timeframe to
estimating the variance between the project’s forecasted cost at completion and the available
budget. Second, the CMF incorporates two indicators quantifying the concern for short-
and long-term cost overruns (i.e., CCST and CCLT), the respective responses (i.e., RCST and
RCLT), and thresholds (ThST and ThLT). Third, the study offers a method to quantify the
thresholds in a way that guides contingency spending, minimizing a project manager’s
exposure to the risk of under or overestimating responses to cost overruns.

On a practical level, the CMF serves as a decision support tool to be implemented
during PRM planning. Through simulation-optimized thresholds, the CMF determines the
development of responses to cost overruns recorded during project execution, which in the
simplest form consist of spending contingency reserves to acknowledge risk events, thus
reducing the increase in AC that serves as the basis for project completion cost estimates.
In this way, the CMF dictates the CR depletion strategy, replacing project managers’ risk
attitudes and perceptions.

The study’s methodology relies on several key assumptions. Firstly, it assumes that
CR is solely utilized to address cost overruns rather than proactively mitigating risks. This
limitation may affect the method’s effectiveness when confronted with unforeseen risks,
which are often difficult to anticipate and quantify. However, one can adjust the PDF for
cost overruns to accommodate additional risks that can impact project activities. Secondly,
the project execution simulation model assumes a uniform cost deviation PDF for all tasks.
This assumption is unrealistic in real-world scenarios, where each task should have its
PDF tailored to its specific characteristics, such as complexity, technology, and operational
context. The choice of the PDF should be based on whether historical data are available to fit
an empirical PDF or on information about the PDF mean, mode, and skewness. Lastly, the
approach to calculating the EAC adheres to EVM principles. While EVM offers simplicity
and effectiveness for cost prediction, it may not adequately account for complex factors
such as unknown risks. For example, the EAC equation assumes that the CPI remains
constant until project completion, but it can fluctuate. Nonetheless, the CMF is insensitive
to such assumptions, as it quantifies RCLT by setting CCLT = 0.
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6. Conclusions

CM is essential to project success, as it allows developing responses to keep project
costs under control. This process consists of two steps: estimating the initial CR and
using it based on the occurrence of cost overruns. The fundamental problem associated
with CM is the high weight of the human factor in perceiving risks and developing re-
sponses. Managers make decisions based on their attitude and appetite, characterized by
personal experience and external factors. Such subjectivity carries several risks related to
the effectiveness of actions and the repercussions they may have on the project system.

Studies in the literature have addressed the problem of CM by focusing either on
developing contingency depletion strategies, introducing thresholds to assess whether the
project is in control, or analyzing the ripple effects between risk responses and project
performance. This study proposes a CMF integrating all problems at once using the Monte
Carlo approach. The whole RM process, including the CMF, can be summarized as follows:

1. Identify project tasks;
2. Identify risks impacting tasks;
3. Estimate task cost distribution;

(a) Define task cost point estimate;
(b) Define estimating method, uncertainty drivers, and risks;
(c) Anchor point estimate and adjust distribution;

4. Define EAC formula;
5. Set CMF simulation parameters (i.e., maxC0 , δC0 , maxThST , δThST , maxThLT , δThLT );
6. Run CMF.

The CMF determines three intervals of initial CR based on the probability density
function (PDF) of task cost deviation and their degree of correlation. The optimization
algorithm then determines the thresholds for drawing on the CR in response to risk events
that cause task cost overrun for each interval. Risk responses are developed based on
matching two thresholds: one related to cost overruns in the ST and the other related
to cost overruns in the LT. The project execution is simulated multiple times, changing
the threshold levels. Given an initial CR level, the CMF optimizes the threshold levels to
minimize the risk of cost overruns while ensuring the CR is used efficiently. This reduces the
possibility that project managers develop suboptimal risk responses that could undermine
a project’s cost and schedule performance. The CMF considers the statistical properties
of task cost distributions and their correlation with other tasks, providing a more realistic
approach to contingency management optimization. The ability to optimize the allocation
of CRs based on statistical analysis and simulation can lead to better decision-making and
cost control during project execution.

The proposed CMF integrates with standards and software related to project risk
management. Concerning standards, the simulation model is consistent with the Monte
Carlo simulation approaches described in project risk-specific standards including, but
not limited to, ISO/IEC 62198 [55], ISO/IEC 31010 [56], PMI [1], and PMI [57]. Regarding
software, the CMF can be coded from scratch (as in the case of this study), using either
procedural or object-oriented programming, or developed using commercial software that
allows for discrete-event modeling.

This study faced several limitations that warrant consideration. First, the study concep-
tualized the simulation model that represents project cost monitoring in a highly simplified
manner. Specifically, time-related considerations are absent, whereas cost can be related to
task duration and other cost drivers. Future studies can expand the model by incorporating
additional variables impacting project execution and costs, such as schedule delay [58] or
factors related to the external environment of the stakeholders’ organization [59]. Second,
the study does not compare the proposed CMF with existing CMFs. Given the absence of
standard CMFs and CMFs that specifically address concern for cost overruns in the short
and long term, further research is needed to evaluate the proposed CMF’s relative strengths
and weaknesses. Lastly, the study validates the CMF and the simulation model on synthetic
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projects, raising concerns about its effectiveness in real-world settings. The inability to
simulate alternative decision paths and observe their outcomes in real projects limits the
study’s ability to assess the CMF’s effectiveness. However, this is a hard limitation of
all studies in project risk management proposing prescriptive methods. These assump-
tions highlight the need for further research to refine the CMF, compare it to established
benchmarks, and validate its effectiveness in real-world project environments.
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