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Abstract: In response to Boschma’s concern that the implications of relatedness- and unrelatedness-
based diversification strategies lack empirical evidence at disaggregated levels and in the context
of the Global South, this study generates a unique dataset at the city level and explores how these
smart specialization strategies (S3) may explain digital industry innovations within a specific regional
innovation system, i.e., the Yangtze River Delta, China. The findings reveal that both relatedness
density and knowledge complexity play a positive role in explaining digital industry innovations.
However, the relationship between relatedness and knowledge complexity and its interactive effects
on innovation performance are less straightforward. In our study, we found that efficient cooperation
between relatedness and complexity can only be achieved if the level of government intervention
is moderate. Therefore, the discussion of S3 focuses on more than the dichotomous argument
between relatedness and unrelatedness. Many socio-economic factors also impact the effectiveness of
these theoretical components within different innovation systems, which are largely overlooked by
present studies.

Keywords: smart specialization; relatedness; knowledge complexity; innovation system; Yangtze
River Delta; digital industry

1. Introduction

According to Austrian economic theorists such as Hayek [1], the issue with the con-
cept of a competitive market proposed by neo-classical economists is that it describes an
equilibrium but not the process to achieve such a point. Thus, it remains difficult to explain
how producers are naturally connected with their competition and how they increase or
decrease prices, promote products, or change cost structures during the process of com-
petition. Although he is not a representative figure among Austrian economic theorists,
Schumpeter [2] further notes that the focus on economic development should be shifted
from resource allocation to creating or destroying resources. Schumpeter believes that
innovation and entrepreneurship play a central role during the process of production,
which, in turn, results in enormous internal economic well-being, which is far more im-
portant than the traditionally defined concept of allocation efficiency. In comparison, the
modern Austrian economist Kirzner [3] enriches the core concept of individual behaviors
and argues that the purposes and means of economic activities will not remain unchanged.
Instead, these factors are determined by individuals with creativity because the assump-
tions proposed by neo-economists, such as a constant return to scale, information symmetry,
etc., are impossible to realize. To a certain extent, these concepts, which focus more on a
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free market and individual freedom than on government intervention and central planning,
introduce new perspectives to traditional location theories and further clarify the important
position of new economic geographies (NEGs), which underscore the discussion around
the spatial agglomeration of specific economic activities and associated driving forces [4,5].
The core elements of NEGs, i.e., an increased return to scale, information asymmetry, and
path dependency, are intertwined with the concept of Austrian economic theories, as they
represent a “good” economic theory that reflects the real situation of markets.

Extensive studies from various perspectives have attempted to understand the realistic
interactions between knowledge, innovation, and location under the dominant milieu of
the knowledge economy’s development. In particular, smart specialization strategies (S3)
that aim to stimulate relatedness diversification within innovation systems have received
increasing attention in the domain of economic geography. Such strategies follow the
seminal work of Boschma [6], who proposes the concept of smart specialization beyond the
geographical proximity perspectives of traditional regional economics. However, when a
system is transitioning from a labor-intensive to knowledge-intensive model, institutional
features, human capital reserve, and the traditional industrial structure may impede such
a system from entering new domains. This process can lead to the phenomenon of “high
relatedness and low complexity” or a “lock-in-state”, in which only increasing related
diversification in a few directions removes opportunities for further diversification. This
contradiction is particularly evident in some old industrial systems with an aim to develop
new technologies [7]. Therefore, unlike European regional innovation systems in which
the importance of relatedness diversification is repeatedly emphasized, determining how
to effectively use the concept of relatedness and implement an S3 strategy is less straight-
forward in the regional innovation systems of developing countries such as China. These
systems face the burden of overcoming the “middle income trap”. Thus, involving the role
of complexity appears to complicate our understanding of the importance of relatedness
diversification policy making and introduces new challenges to innovation systems with
fewer capabilities to engage in more complex activities.

To solve the above conundrum, we used the development of the digital industry in
the Yangtze River Delta region, China, as an example. This area is a representative regional
innovation system that is more likely than other regions to serve as a center of high-tech
industries. This region can also be used as an example to validate the theoretical claims
of the S3 theory. In this study, we sought answers to the following questions: (1) Does
relatedness outperform unrelatedness in explaining the inter-regional innovation process
of a newly emerged high-tech industry? (2) What would the interactive effect be between
relatedness and complexity? Here, we aim to provide region-specific solutions to overcome
the potential low complexity trap. To the best of our knowledge, this is one of the first
studies that empirically and directly investigates the role of relatedness and unrelatedness
in explaining industrial innovation outputs at a sub-national level in the context of the
Global South. In doing so, and in response to the issue of missing data and inconsistency,
we provide a novel perspective to measure the concept of relatedness [8,9] and knowledge
complexity [10] using both primary and secondary data. We aim to not only shed more light
on the debate regarding “related or unrelated diversification” with non-Northern empirical
evidence but also provide more meaningful materials and references for enriching and
revisiting the S3 theory based on socio-economic reality. This study aims to achieve the
following objectives: (1) enrich empirical analysis at the sub-national level; (2) shift the
perspective from the Global North to the Global South; (3) further integrate a region-specific
situation with the development of digital industries; and (4) describe how the effects of S3
policy on innovation are moderated by other, broader socio-economic factors.

This paper is organized as follows. The following section presents the relevant litera-
ture and provides an overview of the debate on the relatedness and complexity of smart
specialization policy, as well as the development of the digital economy. The third section
discusses the empirical data, variables, and methods required for this study. This section is
followed by a section that calculates the characteristics of the relatedness of digital industry



Systems 2024, 12, 62 3 of 19

in the Yangtze River Delta region. The penultimate section constructs a cross-section re-
gression model to estimate the impact of relatedness density and knowledge complexity
on digital industry innovation.

2. Literature Review
2.1. Digital Industry Innovation

With the rapid development of information technologies such as big data, cloud
computing, and artificial intelligence, the development of the modern economy and in-
dustrial enterprises has entered the digital age. There are several definitions of the digital
economy [11]. Yoo et al. specifically define the digital economy as the process by which
the digital [12] and physical components of a product or service use new combinations
to produce new products or provide new services. Digital Croatia defines the digital
economy as a new form of economy based on digital technologies [13] and argue that
this area represents one of the most attractive opportunities for growth. Bukht and Heeks
divide the digital economy into three levels [14]. The first level is the “IT field”, which
includes hardware manufacturing, software and IT consulting, and information services;
the second level is the narrow sense of the digital economy, which includes electronic
business, digital services, and the platform economy; the third level is the digital economy
in the broad sense, which includes E-commerce, industry 4.0, precise agriculture, and the
algorithm economy.

The present studies mainly focus on the establishment and evolution of digital in-
frastructure from a technical perspective [15]. The most important driving force for the
development of the digital industry appears to be innovation capacity. However, scholars
have reached mixed conclusions regarding the definition of digital innovation. Such defi-
nitions can be generally summarized using the following categories: (1) digital product
innovation [16], such as smart home products; (2) digital process innovation [17] (for exam-
ple, digital technology greatly reduces R & D costs); (3) digital organization innovation [18],
such as the establishment of a chief digital office for organizational innovation; (4) digital
business model innovation [19], which includes supply connection, marketing, and other
business models with the aid of updates to digital technology; and (5) results and tech-
nological innovation, which emphasize innovative results and improved IT technologies.
In this study, we selected patent data as a proxy of definition (4) to measure the level of
technological innovation in the digital technology industry of the Yangtze River Delta re-
gion, as datasets related to innovation processes and intermediate services are very limited
in China.

Digital innovation is influenced by many factors. Kohli and Melville maintain that the
emergence of digital innovation is an outcome of the increasing pressure on organizations to
apply digital technology in their products and change existing business models [20]. As one
of the most significant drivers of innovation, digitization has a disruptive impact on almost
every industry [21]. From a corporate management perspective, Chen et al. believe that the
CIO’s issue-selling effectiveness, rather than its structural location [22], directly affects the
level of corporate digital innovation. Some research focuses on disruptive innovation in
digital technology from the perspective of technological change [23]. For instance, Sandberg
et al. further analyzed the differences in various digital technology application levels (the
base layer, platform layer, and application layer) [24]. Some scholars instead argue that
innovative applications at all levels are based on standardized technologies that increasingly
contain standard essential patents and that owning standard essential patents is essential
to gaining and maintaining a significant market share [25]. Moreover, the formation of
technical standards can effectively solve the problem of technological discontinuity and
subsequently promote industrial innovation and development [26]. However, this branch
of the literature only focuses on key technologies, management strategies, and property
rights protection at the micro level. The concepts of digital development and innovation
have not yet been used to understand the disparity in socio-economic development caused
by the lack of adaptability towards radical structural change, policy implementation, etc.
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2.2. Smart Specialization, Relatedness, and Complexity

S3 is an economic development approach that explores the potential advantages of
an innovation system within, e.g., a city or region [27–29]. The core concept of S3 is smart
specialization, which determines a system’s growth probability based on certain place-
based strengths [30,31]. Smart specialization aims to target economic domains related to
its potential strengths. Unlike its name suggests, the goal of smart specialization is not to
make an innovation system more specialized but to leverage existing strengths to promote
diversification into new economic platforms and domains. A smart specialization strategy
follows a core principle: When innovation systems develop a new domain, they should
target and start from where those systems have relevant capabilities or variety to promote
knowledge and technology exchanges across domains [32]. Related diversification reflects
a path-dependent process that borrows from and combines relevant local technologies
and capabilities [33]. For instance, the development of the car industry is likely to be
based on several relevant capabilities such as engineering, training, etc. [34] because the
implementation is easier and less costly [35]. Many other approaches also incorporate such
patterns, including branching, path dependence, bounded rationality, etc. [32,36,37].

However, critics argue that this type of S3 overemphasizes the power of related
diversification and is conservative and less altered [38], which could remove diversification
opportunities and make regions less resilient over time [9,39,40]. Therefore, some scholars
seek a type of S3 that focuses on unrelated diversification [38,40,41]. This type of S3 aims to
realize a potential brand-new path [41]. The development of the economy in the long term
may face the risk of lock-in [42,43], and unrelated diversification may lead to radical change
and new support in regions [44]. Nevertheless, there also remain questions and weaknesses
related to the policy focus on unrelated diversification. The potential for systems to start
from zero with little experience creates a high risk of policy failure. It is much easier for
regions to show higher economic growth when diversifying into related and complex
activities, rather than unrelated activities [35,45].

The theory of S3 has been frequently mentioned by local governments in Europe
only since 2014. Even though extensive studies have investigated how the implementa-
tion of S3 affects regional/city growth and innovation, this theory remains a relatively
new research domain. Innovation systems at different levels require time to adjust and
unfold structural changes. Thus, associated results, both positive and negative, may be
difficult to accurately measure over the short term. However, there is consensus that
the development and improvement of smart specialization depend on the situations that
innovation systems generate and upgrades to sustainable advantages. Therefore, the pro-
posed concept of complexity appears to represent a compromise between relatedness- and
unrelatedness-oriented policies, which at least provide a “benchmark” or “guarantee” that
the implementation of S3 will avoid the low-complexity trap documented by a plethora of
studies [9,46,47].

To date, mixed conclusions have been reached regarding the definition and useful-
ness of the S3 theoretical framework. However, these mixed conclusions are unlikely
to be a consequence of the debates regarding the validity of theoretical frameworks or
methodological improvements. Instead, this uncertainty remains because the role of S3
within the process of socio-economic development has been less empirically explored. As
Boschma notes [48], “it is not a matter of S3’s focus either on related or unrelated diver-
sification, but that this choice depends on the region-specific context”. Therefore, this
study aims to shed some light on the current research domain as follows: (1) enriching
empirical analysis at the sub-national level, particularly at a new economic–geographical
level, i.e., metropolitan groups that are quite different from the conventional typology such
as major urban regions, old industrial regions, and peripheral regions [49]; (2) shifting
the perspective from the Global North to the Global South, as almost all present studies
focus on European or North American contexts; (3) further integrating a region-specific
situation within the development of digital industries; and (4) describing how the effect of
S3 policy on innovation is moderated by other broader socio-economic factors. We expect
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that our research settings, which are different and more complicated than those in previous
studies, will provide meaningful empirical evidence for developing an appropriate tool
to identify regional lock-ins and traps. Instead of discussing a polarized S3 policy, i.e.,
related or unrelated diversification, the effect of specification strategies should be dynamic
and based on different inter-system linkages, institutional settings, industrial features, etc.
Thus, there would be no one-size-fits-all panaceas but instead individual remedies that suit
specific cases.

3. Data Collection, Variable Generation, and Model Specification
3.1. Data Collection and the Generation of Core Variables

The Yangtze River Delta metropolitan area, including the Shanghai municipality and
Zhejiang, Jiangsu, and Anhui provinces, is the most developed region in China, with an
integrated industry system and chain. In the Yangtze River Delta Regional Integration
Development Plan proposed by the Chinese central government in 2019, the role of this area
is clearly defined as a “growth pole”, “science and technology center”, and “demonstration
area” similar to metropolitan areas in the U.S., Europe, and Japan. The corresponding
positioning and development purposes are different from those of other comparatively
developed regions such as the Guangdong–Hong Kong–Macao Greater Bay Area, as the
development of high-tech industry is a priority. This featured background provides us a
good opportunity to investigate the features of digital industries.

Based on the Innojoy database, a total of 70 four-digit industries in China’s national
economy industry category were selected, including computer, communication, and other
electronic equipment manufacturing industries (C39) and information transmission, soft-
ware, and information technology service industries (I63-65) for all 27 cities in the Yangtze
river delta region in 2021 (Table 1). The number of invention patents and utility model
patents was categorized using each four-digit industry in each city according to “the GB/T
4754-2007 classification standard” and “international patent classification and national
economic classification”. The central explanatory variables were obtained from the basic
information and financial indicator data of listed companies belonging to the four-digit
industries in the IFIND financial database. We selected the listed companies that remained
active until 31 December 2021, with the latest data disclosed in 2021. Control variables
were obtained from the IFIND financial database and the China Statistical Yearbook 2020.
Due to space limitations, only the selected double-digit industries are listed here, as shown
in the table below.

Table 1. Digital industry double-digit industry composition.

Industry Name Industry Code

Computer, communication, and other
electronic equipment manufacturing industries C39

Telecommunications, radio and television, and
satellite transmission services I63

The internet and related services I64

Software and information technology services I65

Due to limitations in data availability, there is no unified definition for industrial
innovation. Many studies use patent applications or the output value of new products
as a proxy. In comparison, Balland et al. proposed a novel approach using the num-
ber of new patents belonging to a specific industrial category in a city or region as the
proxy of innovation capacity [35]. However, related data are not accessible in Chinese
databases. Thus, we still used the number of four-digit industry invention patents and util-
ity model patents to express the innovation capacity of each four-digit industry using the
variable Patentrj.
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Here, we mainly focus on relatedness density and knowledge complexity, with the
variables Relatedness_Densityrj and TCIrj, respectively. At present, there are roughly three
approaches for measuring relatedness density. The first approach follows the simple logic
that two industries are related to each other if they are located within the same two- or
three-digit category [6]. However, this method ignores the cross-industry input–output
and technology spillover links between the upstream and downstream areas of the same
product industry chain [50]. Based on the input–output table, the second approach assumes
that industries with more similar resource inputs, such as the means of production, labor,
and R&D activities, are more likely to have a higher degree of technological similarities and
relatedness. For example, Lemelin and Guo et al. calculated an industrial resource structure
through input–output tables to compare the degree of similarity among inputs between
different industries [51,52]. However, while different industries invest similar resources, the
proportion and importance of such resources remain different [53]. For example, human
input is more suitable for evaluating labor-intensive industries, and patents are more
suitable for evaluating technology-intensive industries. The third method is coexistence
analysis, which measures the degree of relatedness between industries with the conditional
probability of two industries’ production activities in the same region. If two industries
are frequently identified in the same region, these two industries are likely more closely
related to certain resources or technologies. This method directly uses a larger range of
industrial data based on the final output of enterprises without concern for the endogeneity
and heterogeneity of more complex intermediate data such as factor inputs. Therefore, we
also employed this approach to investigate the degree of digital industry relatedness in the
Yangtze River Delta region. The specific calculation method is shown below. Relatednessij
indicates the relatedness between two industries; the larger the value is, the more related
the two industries are:

LQ =
Xri/∑i Xri

∑r Xri/∑i ∑r Xri
, (1)

Relatednessij = min
[
P
(

RCAi/RCAj
)
, P

(
RCAj/RCAi

)]
, (2)

RCA =

{
1, LQ ≧ 1
0, LQ < 1

(3)

where LQ indicates the total asset location entropy of listed enterprises belonging to a
four-digit industry in a certain city, r is the city, i and j are the four-digit industries, and
Xri is the total assets of a listed enterprise in r city and i industry. RCA is the dominant
comparative advantage. If the location entropy of r city and j industry is larger than 1,
this city and the industry are considered to have a dominant comparative advantage,
which means that RCA = 1. P

(
RCAi/RCAj

)
is a conditional probability expression

which refers to the probability that industry j has a dominant comparative advantage
when industry i has a dominant comparative advantage. For example, in the 27 cities
studied in this article, n cities have a dominant comparative advantage in industry i
and m cities have a dominant comparative advantage in industry j, while c cities have
comparative advantages in both industry i and industry j. We can thus conclude that
Relatednessij = min[(c/m) + (c/n)] using the above principle. After the above calculation,
the relatedness matrix of 70 four-digit industries in the Yangtze River Delta region can
calculated and recorded as B, which represents a real symmetric matrix of 70 × 70, and all
diagonal elements are 1. We next apply the work of Balland et al. (2019) [35] to represent the
dominant comparative advantage of r city and j industry (when r city and j industry have
the dominant comparative advantage, σrj = 1). The relatedness density index between
each industry at the aggregate level or within a particular city can be calculated via the
following method:

Relatedness_Densityrj =
∑j∈r, j ̸=i Relatednessij

∑j ̸=i Relatednessij
(4)
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We also follow Balland et al.’s approach to estimate knowledge complexity [35]. We
multiply the relatedness matrix B composed of all paired industries with its transposed
matrices BT to obtain a new matrix M, where M = B × BT. M is a square matrix with the
same dimension as the four-digit industries (70 × 70). Finally, the knowledge complexity

index of each industry is given by the value of each element’s second eigenvector
→
Q within

the matrix M, and then all elements in vector
→
Q are standardized for the subsequent

regression analysis, which is TCIi =
→
Q−⟨

→
Q⟩

stdev(
→
Q)

.

3.2. Model Specification

This section presents a cross-sectional regression analysis to explore the impact of
relatedness and knowledge complexity on digital industry innovation in the Yangtze River
Delta region. Besides the main variable, relatedness density and knowledge complexity,
we also include control variables: (1) FDI. The technology spillover effect of FDI indi-
rectly affects regional innovation capacity. (2) Human capital (Human) is an important
factor affecting regional or industrial innovation activities. Thus, the number of regional
college students per capita is used here to indicate the level of human capital reserves.
(3) Government intervention (GOV) has an impact on all industrial production activities in
a region. We assume a local government with a higher level of fiscal expenditures is more
likely to have resources and time to intervene in local industries’ activities. Thus, the share
of fiscal expenditures over the total GDP of a city is used as a proxy. (4) The population
density (Pop_density) indirectly affects the regional innovation ability by strengthening the
human capital level. (5) The per capita GDP (GDP_per_capita) directly measures the level
of regional economic development. Regions with a higher level of economic development
generally have greater innovation vitality. (6) The level of technological expenditures
(Tech) reflects the general quality of technology and science of a local environment. We
assume that innovative activities among enterprises are more likely to be motivated if a
local government focuses on supporting technological and scientific developments directly
or indirectly.

To exclude cases where control variables affect the significance of core variables, we
first construct the following basic regression to verify whether relatedness density and
knowledge complexity affect the digital industry innovation capacity of cities in the Yangtze
River Delta region:

Patentrj = β0 + β1Relatedness_Densityrj + β2TCI j + εrj (5)

The dependent variable Patentrj is the industry’s innovation capabilities and uses the
number of applications for invention patents and utility model patents in industry j and
city r in 2021. Relatedness_Densityrj is the relatedness density of city r, industry j, and
other industries in the city. TCI j is the knowledge complexity of each industry, and εit is
the perturbation term.

Ensuring the coefficients of main explanatory variables are unbiased, we next introduce
the control variables for the regression analysis:

Patentrj = β0 + β1Relatedness_Densityrj + β2TCI j + β3FDIr + β4Humanr + β5GOVr

+β6Techr + β7Pop_densityr + β8GDP_pcr + γrj
(6)

Because an increase in innovation capacity also reversely affects the level of technolog-
ical relatedness and complexity, the three-stage least squares method (3SLS) was used to
resolve the endogeneity issue caused by simultaneity.
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The following is the system of equations used for 3SLS estimation:
Patentrj = θ0 + θ1Relatedness_Densityrj + θ2TCI j + θ3FDIr+

θ4GOVr + θ5Techr + µrj
Relatedness_Densityrj = α0 + α1Patentrj + α2TCI j + α3GDP_pcr

+α4Pop_densityr + α5Humanr + ϕrj

(7)

We also constructed a spatial measurement model of relatedness and complexity
based on industrial innovation capacity to handle the potential endogeneity issue caused
by omitted variables:

Y = ρWY + Xβ + θWX + µ (8)

µ = λWµ + ε, ε ∼ N[0, σ2 I] (9)

where Y indicates the explained variable, X represents the explanatory variables
Relatedness_Densityrj and TCI j, W represents the spatial weight matrix of n × n dimen-
sions, β represents the correlation coefficient of X, and ρ and θ represent the spatial correla-
tion coefficients. Λ represents the spatial error coefficient, µ and ε represent the random
error, and ε follows a normal distribution. When ρ ̸= 0, θ = 0, and λ = 0, the above equation
conforms to the spatial autoregressive model (SAR). When ρ = 0, θ = 0, and λ ̸= 0, the above
formula conforms to the spatial error model (SEM). When ρ ̸= 0, θ ̸= 0, and λ = 0, the above
formula conforms to the spatial Dubin model (SDM).

Together with other important factors, the effects of relatedness and complexity on a
city’s innovation capacity are likely to be determined by disparities in socio-economic de-
velopment. Therefore, we lastly apply a threshold model to capture potential heterogeneity
as follows:

Patentrj = µ0 + µδit + γ1Xj · I(q < ρ1) + γ2Xj · I(ρ1 < q < ρ2) + γ2Xj · I(ρ2
< q < ρ3) + γ2Xj · I(q > ρ4) + εrj

(10)

where q is the threshold variable, ρi is the threshold estimate for this regression, and Xj is
an explanatory variable. We specifically chose GDP per capita and the level of government
intervention (i.e., the share of government expenditures) as the possible threshold proxies
that could affect industrial innovation at different stages. The interactive term of these
proxies is also included for further analysis.

4. Analysis
4.1. Characteristics of Relatedness Density in the Yangtze River Delta Region

The total asset information of 1890 listed four-digit industry companies in 2021 was
sorted through the data screening and matching of 70 four-digit industries within the
category of digital industry among 27 cities in the Yangtze River Delta region. Then,
we used python programming to calculate the Relatednessij between two industries and
Relatedness_Densityrj of each four-digit industry at the city level, with 2415 industrial pairs
and 1890 industrial–city pairs. Among them, relatedness industry pairs accounted for
43.23% of the total, which means that 56.77% of industries did not have a comparative
advantage in the 27 cities. Regarding the overall situation of the Yangtze River Delta region,
the average relatedness density among 2415 industrial pairs in 2021 was approximately
0.36, and the variance was approximately 0.07. Thus, the dispersion degree was relatively
small. The minimum value of relatedness density of related industries was approximately
0.11, and the maximum value was 1, indicating the presence of some fully related digital
industry pairs in the Yangtze River Delta region in 2021.

In addition to the different characteristics of relatedness in the region, the relatedness
among the four-digit digital industries also varied from the perspective of the Yangtze
River Delta’s integration. Observing the probability of relatedness between each four-
digit industry and other industries, the relatedness of each industry was 37.17 on average,
accounting for more than 50% of the total number of industries. This result shows that
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digital industries in the Yangtze River Delta region are well-coordinated. In addition,
the highest probability of relating with other industries was identified in the information
system integration service (6531) and Internet of Things technology service (6532) industries,
which were both at 62/70. The smallest value was yielded by the internet security services
(6440) industry, as no other industries were found to be related. Figure 1 shows at a high
level how each four-digit digital industry relates to the others in terms of quantity.
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Figure 1. The breadth of relatedness in four-digit industries. Source: Authors’ own calculation.

As shown in Figure 1, from the perspective of the strength of association, industrial
pairs with an association strength of 1 such as internet platform services (including I6432
and I6434), operation and maintenance services (I6540), and radio and television satellite
and animation and game digital content services (I6572) were effectively participating in
the same service chain. Because the service process is interlinked, the flow of knowledge
between industries is generally more frequent.

We further calculated and constructed the technical complexity index (TCI) [28]. Ac-
cording to the technical complexity of 70 four-digit digital industries, we found that the
most complex industries were information security equipment manufacturing (C3915)
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and computer parts manufacturing (C3912). Overall, the technical complexity of internet
information platform and professional equipment manufacturing industries was high,
while the technical complexity of information storage and satellite broadcasting industries
was relatively low, which is in line with the innovative characteristics of current digital
technology. Figure 2 shows the technical complexity indexes of 70 digital industries and
four-digit industries in the Yangtze River Delta region (to facilitate the subsequent regres-
sion analysis, the TCI index is the result of a standardized treatment; thus, a larger value
indicates higher complexity).
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To explore the spatial pattern of relatedness and determine the disparity in related-
ness among the 27 cities in the Yangtze River Delta region, we calculated the average
relatedness density value for the 70 four-digit industries in each city (Relatednessr =
1

70 ∑j Relatedness_Densityrj). The larger the value of Relatednessr, the higher the aver-
age level of coordination among all four-digit industries in a city. The average num-
ber of patent applications in 70 four-digit industries was also calculated in each city
(Patentr =

1
70 ∑j Patentrj) to determine each city’s innovation capabilities. We then used a

scatter diagram to visualize the potential association between relatedness and innovation.
As shown in Figure 3, only Shanghai, Hangzhou, Suzhou, and Nanjing, as the major de-
veloped cities and creative hubs, performed well in both the innovation and relatedness
dimensions. However, many cities, despite an evident level of relatedness, did not equally
produce solid innovation outputs. This finding suggests a less straightforward relationship
between technological relatedness and regional innovation capabilities in the scenario of
this study, where differences in socio-economic status may play a vital role in the process
of digital industry development.
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4.2. Relatedness, Knowledge Complexity, and Digital Industry Innovation in the Yangtze River
Delta Region

GDP_per_capitar and Pop_densityr are natural logs. Table 2 shows the descriptive
statistical results. Considering that the model’s validity is affected by the issue of mul-
ticollinearity, a correlation analysis between various explanatory variables and control
variables was first conducted before performing the cross-sectional model regression esti-
mation. The results are shown in Table 3. Here, the correlation coefficients of all explanatory
variables are generally low, with a maximum value of 0.612. Thus, multicollinearity is
unlikely to be a serious issue for our model specification.
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Table 2. Descriptive statistics.

Variable Mean Max Min Sd

Patentrj 365.38 14,804 0 1236.02
Relatedness_Densityrj 0.13 1 0 0.21

TCI j −0.02 0.82 −1.83 0.41
FDIr 26.35 190.48 2.17 35.63

Humanr 159,266.30 877,894 7354 199,492.40
GOVr 0.05 0.12 0.02 0.02
Techr 0.19 0.69 0.07 0.11

GDP_per_capitar 11.56 12.02 10.98 0.31
Pop_densityr 7.53 10.03 5.98 0.76

Table 3. Correlation test.

Patentrj Relatedness_Densityrj TCIj FDIr Humanr GOVr Techr GDP_per_capitar Popdensityr

Patentrj 1
Relatedness_Densityrj 0.348 *** 1

(0.000)
TCI j 0.0571 ** −0.0100 1

(0.020) (0.663)
FDIr 0.201 *** 0.164 *** −1.83 × 10−8 1

(0.000) (0.000) (1.000)
Humanr 0.313 *** 0.212 *** −2.36×10−8 0.347 *** 1

(0.000) (0.000) (1.000) (0.000)
GOVr 0.357 *** 0.240 *** 1.83×10−8 0.279 *** 0.479 *** 1

(0.000) (0.000) (1.000) (0.000) (0.000)
Techr −0.106 *** 0.0400 * −1.83×10−8 −0.318 *** −0.448 *** −0.111 *** 1

(0.000) (0.082) (1.000) (0.000) (0.000) (0.000)
GDP_per_capitar 0.496 *** 0.291 *** 8.69×10−8 0.486 *** 0.534 *** 0.344 *** −0.415 *** 1

(0.000) (0.000) (1.000) (0.000) (0.000) (0.000) (0.000)
Pop_densityr 0.0835 *** 0.195 *** 0.0000109 0.354 *** 0.250 *** 0.612 *** 0.0657 *** −0.0917 *** 1

(0.001) (0.000) (1.000) (0.000) (0.000) (0.000) (0.004) (0.000)
(0.000) (0.000) (1.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.008)

Notes: standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

Next, we performed a regression analysis of the cross-sectional model. The regression
results are presented in Table 4. The basic regression results in the first column show
positive coefficients for relatedness and complexity with significance at 1% and 5% levels,
respectively. This result indicates that the level of relatedness among industries has signifi-
cantly improved the innovation capacity of digital industries in the Yangtze River Delta
region. In industries with a higher level of relatedness, the technological innovation level
was significantly higher than that in industries with a lower level of relatedness. To more
specifically explore the effects of the core explanatory variables, a cross-sectional regression
was performed again by introducing the control variables in the second column of Table 4.
The results show that the coefficients of relatedness and complexity remained significantly
positive. Economic variables are usually interdependent and mutually causal. Thus, to
solve the problem of endogeneity caused by bidirectionality between relatedness and the
level of industrial innovation, and considering the limitations of handling endogeneity
when using cross-sectional data for empirical analysis, the third column presents a robust-
ness test of the model using the three-stage least-squares method (3SLS). According to the
test results, the coefficients of core explanatory variables remained positively significant.
This outcome demonstrates that the results of the basic regression are robust. However,
through the second group of regressions, we found that the influence of complexity on
relatedness was significantly negative, indicating that the degree of relatedness in a region
is likely to reduce in association with an increase in the complexity level.
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Table 4. Basic regression and 3SLS robustness test of relatedness and industrial innovation level.

Patentrj
(OLS)

Patentrj
(OLS)

Patentrj
(3SLS)

Relatedness_Densityrj 3.057 *** 0.742 *** 23.262 ***
(0.202) (0.184) (3.244)

TCI j 0.280 ** 0.282 ** 0.411 *
(0.104) (0.083) (0.191)

FDIr 0.025 *** −0.027
(0.001) (0.008) **

Humanr 0.135 *
(0.071)

GOVr 28.740 *** −2.065 **
(2.275) (0.781)

Techr 0.063 −18.868 ***
(0.408) (4.414)

GDP_per_capitar 0.405 *
(0.194)

Pop_densityr −0.765 ***
(0.075)

Intercept 3.736 *** 2.366 2.936 ***
(0.053) (2.454) (0.196)

Relatedness_Densityrj
(3SLS)

Patentrj 0.089 ***
(0.005)

TCI j −0.030 *
(0.013)

GDP_per_capitar −0.033 *
(0.011)

Pop_densityr 0.021 *
(0.004)

Humanr −0.019 **
(0.006)

Intercept 0.086
(0.130)

N 1648 1648 1648
R2 0.125 0.538 n.a

Notes: standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

We also used the Moran index to test the spatial autocorrelation between the industrial
innovation level, relatedness, and complexity. The significantly positive coefficient of the
Moran index implies that the level of industrial innovation and relatedness is spatially
correlated. Next, we conducted LM tests. All four tests rejected the null hypothesis,
suggesting that the sample we selected was affected by both spatial lag and spatial error
autocorrelation. In response, we constructed the SAR model, SEM model, and SDM model
shown in Table 5. For spatial metrology models, the SDM model was adopted because it
had the smallest value. We then performed an LD test on our SDM model to verify whether
it could be reduced to an SAR model and SEM model. As shown in Table 5, the results of
the LR test were 98.34 and 78.62 and significant at a 1% level.
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Table 5. Regression results of the spatial measurement model.

Patentrj
(SAR)

Patentrj
(SEM)

Patentrj
(SDM)

Relatedness_Densityrj 0.828 *** 0.743 *** 0.739 ***
(3.48) (2.31) (3.54)

TCI j 0.13 0.11 0.10
(1.19) (1.31) (0.67)

FDIr 0.014 *** 0.012 *** 0.035 ***
(3.86) (4.73) (4.03)

Humanr 0.323 *** 0.316 *** 0.030
(3.72) (2.94) (−0.13)

GOVr −1.104 ** −1.052 ** −5.192 ***
(−2.45) (−2.26) (−4.33)

Techr 13.365 *** 12.856 *** 2.478
(5.34) (2.44) (0.04)

GDP_per_capitar 0.16 0.01 0.94
(−0.44) (−0.14) (3.42)

Pop_densityr −0.293 *** −0.322 *** −0.424 *
(−3.19) (−3.28) (−1.72)

The fixed effect −0.871 −3.335 −6.972
Log-L −3722.787 −3727.551 −3747.934
sigma2 3.001 *** 3.053 *** 2.814 ***

(31.26) (30.32) (33.46)
R2 0.973 0.889 0.893

LR test 98.34 *** 78.62 ***
Notes: standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

The coefficients of relatedness were also positive and significant at a level of 1%,
which again indicates that a higher level of relatedness is related to a higher level of
industrial innovation in this highly developed region in China. However, the coefficient of
complexity was not significant. This finding may suggest a notable feature of technological
complexity under the dominant milieu of digital industry development in the Yangtze
River Delta region, as increasing the level of technological complexity was found to be a
follow-up activity within specific industrial systems in each city. In other words, knowledge
can be easily transferred and related among different digital industries and even among
different cities. However, complexity, as an outcome of relatedness, is less likely to be
affected by geographically nearby industries in the initial stage of development. A further
decomposition of coefficients also showed a similar pattern (Table 6): The relatedness in a
city not only has a positive effect on promoting the innovation level of digital industries
but also has a significant spatial spillover effect on other cities.

A threshold model was employed to find more specific reasons why the degree of
digital innovation was inconsistent with the level of relatedness across different regions.
First, the GDP per capita, as a well-known proxy of socio-economic development, was
used as a threshold variable. In addition, government intervention (GOV) was considered
a threshold proxy of political institution power because the presence of local regulations
and management plays a vital and direct role during the process of system innovation.
Relatedness, knowledge complexity, and their interaction terms were also analyzed as
explanatory variables.

As shown in Table 7, a triple threshold effect is evident when discussing the non-
linear relationship between relatedness and innovation capacity. However, there is no
threshold effect when the scenario is analyzed with complexity or an interaction term. The
summarized results are presented in Table 8. Specifically, when the value of the threshold
variable is below 11.795, the coefficient of relatedness is not significant. However, when
the threshold value is between 11.795 and 11.934, the coefficient becomes −0.607. When
the threshold value is between 11.934 and 11.973, the coefficient of relatedness is still not
significant. A positive effect of 0.781 is produced when the threshold variable is higher than
11.973, which describes an inverted U-shaped trend. Regarding this result, it is believed
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that in regions with extremely high development, relatedness has an apparently positive
impact on digital innovation. However, when economic development is relatively low,
relatedness may have a negative influence on innovation at a certain point.

Table 6. Spatial effect decomposition.

Direct Effect Indirect Effect Total Effect

Relatedness_Densityrj 0.876 *** 2.681 ** 3.551 ***
(3.34) (2.27) (2.66)

TCI j 0.936 0.819 0.743
(0.41) (3.01) (0.87)

FDIr 0.039 ** 0.219 * 0.2385 *
(5.75) (2.13) (1.97)

Humanr 0.242 ** 2.303 ** 3.082 *
(1.33) (1.49) (1.45)

GOVr 13.566 *** −16.28 *** −14.74 ***
(3.24) (−2.43) (−2.73)

Techr 13.245 12.423 15.034
(−0.58) (−0.04) (−13.46)

GDP_per_capitar 0.872 4.733 1.542
(−0.92) (−0.37) (−0.38)

Pop_densityr −1.242 *** 26.013 *** 22.717 ***
(−4.33) (2.91) (2.83)

Notes: standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 7. Threshold effects of per capita GDP and GOV.

Threshold
Variables

Explanatory
Variables Model Threshold

Estimate F-Value p-Value Number of
Bootstrap 1% 5% 10%

Per capita GDP

Relatedness

Single
threshold 11.795 32.875 *** 0.000 300 7.824 5.579 3.869

Double
threshold 11.934 7.595 *** 0.010 300 7.724 5.442 4.281

Triple
threshold 11.973 17.337 *** 0.000 300 13.007 5.523 3.863

Complexity - 11.495 1.050 0.310 300 9.863 3.749 2.776

Relatedness *
complexity - 11.791 2.089 0.130 300 6.207 4.044 2.434

Government
intervention

Relatedness Single
threshold 0.249 26.572 *** 0.000 300 9.491 4.582 3.569

Complexity - 0.136 - - - - - -

Relatedness *
complexity

Single
threshold 0.232 2.730 * 0.070 300 7.083 3.952 2.637

Notes: all control variables are included, * p < 0.10, *** p < 0.01.

In comparison, when the threshold variable is the level of government intervention and
has a value of less than 0.249, the coefficient of relatedness is 0.262. If the threshold value of
government intervention is greater than 0.249, the relationship between relatedness and
system innovation becomes negative, with a coefficient of −0.384. Similarly, considering
the effect of the interactive term between relatedness and complexity, the coefficient is
0.440 if the threshold value is below 0.232. If the value is higher than 0.232, the coefficient
of the interaction term is not significant. These findings suggest a moderating role of
government intervention during the process of digital industrial innovation. However, the
level of government intervention can neither be too high nor too low; otherwise, innovation,
together with technological coordination, complexity, and improvement, are suppressed.
Thus, complexity was, again, found to be irrelevant for explaining such an innovation
process alone.
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Table 8. Summary of threshold effects.

Variables Threshold Interval Coefficient t-Value

Relatedness

Per capita GDP ≤ 11.795 0.0287 0.38

11.795 < Per capita GDP ≤ 11.934 −0.607 *** −4.85

11.934 < Per capita GDP ≤ 11.973 −0.081 −0.93

Per capita GDP > 11.973 0.781 *** 6.71

Relatedness
GOV ≤ 0.249 0.262 *** 4.61

GOV > 0.249 −0.384 *** −3.24

Relatedness *
complexity

GOV ≤ 0.232 0.440 *** 2.41

GOV > 0.232 0.034 0.28
Notes: all control variables are included, * p < 0.10, *** p < 0.01.

5. Discussion

After the analysis, we sought to develop a new scenario not presented in previous
studies to demonstrate how S3 policies or their theoretical components, such as system-
specific relatedness or unrelatedness, could explain global socio-economic events. In other
words, if the implementation of S3 can help stimulate innovation in Europe, our goal
was to determine whether the corresponding protocol and its effectiveness could also be
observed in other economies with different cultural and institutional settings. We found
that Chinese digital industries are more likely to follow the path of diversified relatedness,
as within the category of digital industry, different innovation activities are closely linked
with each other. This joint effect on the level of industrial innovation was found to be
significant, which is consistent with the results of Guo and He and Li [52,53], who reported
that the level of diversification is driven by relatedness at an industrial level. Meanwhile,
the positive, direct effect of complexity will lead to high potential economic returns due
to a high level of complex activities [7]. However, the spatial effect of complexity is nei-
ther more positive nor more significant than relatedness, which indicates that the average
knowledge complexity of a city does not have a direct spillover impact on surrounding
areas. Additionally, efficient cooperation between relatedness and complexity can only
be achieved if the level of government intervention is moderate. Intervention that is too
high or too low will only lead to a negative relationship, as suggested by Boschma [48].
With this factor in mind, the present study further proposes how a specific combination of
factors contributes to the development of an innovation system instead of only highlighting
which factors could be pertinent. Thus, the discussion of S3 should focus on more than
the dichotomous argument between relatedness and unrelatedness. Many socio-economic
factors moderate the effectiveness of these theoretical components within different innova-
tion systems. This implication, to a certain extent, is consistent with the core concept of
neo-institutional theories [54] and has been presented in many previous studies (e.g., [55]).
Indeed, the reason why many organizations eventually become similar is not because of
the presence of market competition but due to their obedience toward the same external
institutional pressures.

6. Conclusions and Research Limitations

This study aimed to provide a meaningful analysis and references for understanding
how smart specialization policy is utilized within a specific innovation system. With this
goal in mind, we further sought to clearly visualize how a specific combination of factors
contributes to the development of an innovation system, instead of only highlighting the
potentially relevant factors. We argue that the discussion of S3 should consider more socio-
economic factors. We used patent data and the data of listed companies from 70 four-digit
digital industries in 27 cities in the highly developed Chinese Yangtze River Delta region
and performed econometric analyses to capture the impacts of relatedness, knowledge
complexity, and their interactions on digital industry innovation. Our findings revealed
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that Chinese digital industries are more likely to follow the path of diversified relatedness.
Unsurprisingly, a positive, direct effect of complexity was also observed. However, in
the spatial model, the effect of complexity was neither more positive nor significant than
relatedness. Similarly, the effect of complexity was less straightforward than relatedness in
the threshold model. We determined that efficient cooperation between relatedness and
complexity can be only achieved if the level of government intervention is moderate.

Ultimately, this study has important policy implications. Beyond the scope of “diversi-
fication or un-diversification”, policy makers should clearly understand the role of political,
cultural, socio-economic, and institutional quality within an innovation system. These
factors could serve as a mirror for the implementation of the S3 strategy. Our study shows
that the Chinese context (e.g., digital industries) is sensitive to institutional constraints such
as the level of government intervention. Thus, increasing relatedness or complexity levels
appears to be a short-term solution for the development of regional innovation systems.
Attention should be given to exploiting opportunities for creating efficient coordination
between relatedness and complexity within a system. Finally, it is necessary to give full
play to the role of central cities in developing communication networks to jointly increase
the level of knowledge complexity in the context of digital industry development in the
Yangtze River Delta, as the performance of major cities in innovation and relatedness was
found to significantly outperform that of surrounding cities, with an observable spillover
effect. However, a great disparity and inconsistency in policy making was observed in
terms of complexity.

This study also has several limitations. First, due to data convenience, the level of
relatedness and complexity was only estimated based on a single-year dataset. Thus, only
a cross-section regression analysis was applicable. In the future, it would be ideal to update
our dataset using a panel structure. Second, this study focused only on the feature of
knowledge embodied in patents. However, smart specialization involves diversification
toward other functions and cannot be fully explored using only knowledge captured by
patents. Finally, our presentation of applications within an innovation system applies
only to the context of digital industries. Future studies should also aim at exploring the
effectiveness and applicability of S3 theory in other industrial categories.
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