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Abstract: Shared autonomous electric vehicles (SAEVs) can offer safer, more efficient, and more
environmentally friendly real-time mobility services with advanced autonomous driving technologies.
In this study, a multi-agent-based simulation model considering SAEVs’ vehicle range and charging
behavior is proposed. Based on real-world datasets from the Luohu District in Shenzhen, China,
various scenarios with different fleet sizes, charging rates, and vehicle ranges are established to
evaluate the impact of these parameters on parking demand, charging demand, vehicle miles traveled
(VMT), and response time in the era of SAEVs. The results show there would be much more charging
demand than parking demand. Moreover, a larger fleet size and longer vehicle range would lead to
more parking demand, more charging demand, and more VMT while increasing the charging rate
can dramatically reduce the charging demand and VMT. Average response time can be reduced by
increasing the fleet size or the charging rate, and a larger vehicle range leads to longer response time
due to the longer time spent recharging. It is worth noting that the VMT generated from relocating
from the previous request destination to the origin of the upcoming request accounts for nearly 90% of
the total VMT, which should be addressed properly with appropriate scheduling. A charging policy
considering current requests and the availability of charging stations was proposed and verified in
terms of reducing the response time by 2.5% to 18.9%.

Keywords: shared autonomous electric vehicles; charging behavior; multi-agent-based simulation
model; vehicle miles traveled; response time

1. Introduction

Shared autonomous vehicles (SAVs), as a new mode of transportation that combines
the sharing economy and autonomous driving technology, have gained significant attention
from both commercial and academic communities [1,2]. Many scholars believe that SAVs
will revolutionize the future of urban transportation and provide much more convenient,
safer, and economical mobility services [3,4]. Rapidly increasing research and development
efforts are contributing to the expected presence of SAVs on the road, particularly in terms
of parking, which they can free from the constraint of distance due to their self-driving
ability [5]. A further way to enhance the advantages of SAVs is by replacing traditional
fuel-powered vehicles with electric ones, so here comes SAEVs [6–9]. With the gradual
decrease in the price of electric vehicles and the continuous development of charging
infrastructure [1], the prospects for SAEVs are becoming increasingly promising. However,
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the limitations in vehicle range and the time required for recharging SAEVs can influence
the planning and operation of the transportation system [10], making it crucial to consider
these two new constraints when trying to model the transportation system in the era
of SAEVs.

Currently, most charging stations and parking lots are built separately, but for SAEVs,
parking and charging can occur simultaneously [11]. For SAEVs that provide real-time
mobility services, the reasons for parking are (1) low travel demand at the current period
which does not need such a great number of SAEVs driving on the roads and (2) their
current battery level is satisfied which needs no recharging at charging stations. Moreover,
most existing parking lots have not considered installing charging facilities or only partially
modifying some spaces to fulfill the demand for recharging, mainly due to safety and
economic concerns. Charging electric-powered vehicles is a time-consuming process that
inevitably occupies charging station spaces for extended periods of time. Compared to
SAEVs that are parked in parking lots with no charging needs, if vehicles could be parked
at charging stations, it would couple both demands and allow for charging while parking.
Therefore, it is essential to study the impact of charging behavior on parking demand.

Although there are lots of studies on SAVs and SAEVs about their impact on the
transportation system [12–16], to the authors’ best knowledge, there are few studies that
incorporate the constraints of vehicle range and charging behavior into a simulation model.
Likewise, research focusing on the impact of SAEVs on parking demand can hardly be
found which indicates the omission of this vital issue. Since the relationship between
charging-related indicators (e.g., vehicle range and charging rate) and traditional trans-
portation metrics (e.g., parking demand, VMT, and awaiting time) is of great significance
to the sustainable development of SAEVs service, and a suitable charging policy would
certainly be an assistance to the SAEVs service performance, this study aims to fill these
research gaps by:

1. Developing a comprehensive multi-agent simulation model that considers both vehi-
cle range and charging behavior of SAEVs to reveal the relationship between SAEVs’
fleet size, charging rate, vehicle range, parking demand, charging demand, VMT, and
average response time in the era of SAEVs based on the output of the experiment
using real-world datasets in Shenzhen, China;

2. Dividing the total VMT into different parts based on the different origins and destina-
tions and analyzing the specific VMT parts that counted most to provide suggestions
for reducing these parts;

3. Proposing a charging policy that considers the balance between current requests
and the availability of charging stations, and reveals its effectiveness on these
mentioned metrics.

The remainder of this paper is structured as follows. In the next Section, previous
studies related to these topics were comprehensively summarized. Then, we give a brief
description of the dataset we used and the specifications of the proposed multi-agent-based
simulation model. Next, the results of different experiment scenarios are discussed, and
finally, conclusions from the discussion are presented and suggestions for future work
are given.

2. Previous Studies

Many works have been completed focusing on SAVs’ fleet size to analyze their impact
on urban transportation systems, especially on parking demand [17–20]. An agent-based
simulation model was proposed to estimate the potential impact of SAV in terms of urban
parking demand. They pointed out that 90% of parking demand would be eliminated at
a relatively low market penetration rate of 2%, but there would be an increase in VMT
because of empty cruising [3]. After that, SAVs’ parking demand in the City of Atlanta
was further examined using a discrete-event, agent-based simulation model and the results
suggested that parking demand can be reduced by over 90% for households who would
give up private vehicles and use SAVs. Researchers also pointed out that the shift of urban



Systems 2024, 12, 61 3 of 20

parking demand to adjacent areas may result in larger VMT, more congestion, and longer
response time [4]. This model was further developed by focusing on the future trajectories
of reduced parking demand [21]. It was pointed out that in the most optimal SAV adoption
scenario, the parking demand will decrease by over 20% after 2030, especially in core
urban areas. Taking parking preference date into consideration, a discrete event simulation
model was proposed using the example of the University of the West of England, Frenchay
campus as a case study to examine the impacts of SAVs. The results indicated that the
parking demand decreased dramatically, leaving over 2500 m2 of existing parking space
unused [22]. Considering the fact that reducing parking demand may cost another price
such as the increase in VMT and road congestion, reference [23] analyzed such side effects
of SAVs from a transportation analysis zones (TAZs) perspective based on a dynamic traffic
flow simulator named SOUND. The results show consistency with previous research that
parking demand was reduced the most in residence-dominant zones in terms of quantity
and office-dominant zones in terms of proportion, at the cost of a dramatic increase in
empty VMT generated because of SAVs’ relocation behavior which would therefore result
in road congestion. Reference [24] explored the effects of SAVs based on a data-driven
modeling approach using the dataset from Langfang, China. The simulation experiments
contain two kinds of sharing schemes called “ride-sharing” and “car-sharing”, respectively.
The results indicated these two schemes would reduce parking demand by reducing car
ownership, but VMT would increase regardless of sharing schemes while car-sharing
alone increases much more VMT than ride-sharing. In terms of SAV service performance,
reference [25] developed an agent-based simulation model for SAVs based in the city
of Amsterdam, the Netherlands. Three different proactive relocation strategies named
“Demand-Anticipation”, “Supply-Anticipation”, and “Demand-Supply-Balancing” were
introduced and analyzed with regard to passenger waiting times and operational efficiency.
The results show that “Demand-Anticipation” leads to the highest waiting time while
the “Demand-Supply-Balancing” leads to the most favorable results in waiting time and
operational efficiency. While these studies have simulated the impact of SAVs on urban
parking demand, to further enlarge the benefit of SAVs by replacing traditional fuel with
electricity, it is necessary to take the vehicle range and charging behavior of these service
providers into consideration to reveal the relationship between charging related parameters
(e.g., vehicle range and charging rate) and traditional metrics (e.g., parking demand, VMT
and waiting time). Also, even though the mentioned research has confirmed that the
SAVs would increase the total VMT due to empty travel, limited research has divided the
total VMT into different parts to find out which part counts the most. This should not
be overlooked since a clear understanding of this issue would be of great significance for
operators to increase the overall performance of the SAV fleet by reducing empty travel.

Combining the upward trend of vehicle electrification and the promise of automation
comes SAEVs [26,27]. A regional, discrete-time, agent-based model was proposed to
explore the management of a fleet of SAEVs and the results indicated that SAEVs can
serve nearly all requests with an average response time between 7 and 10 min [2]. A
novel agent-based simulation framework was developed for electric vehicles by researchers
considering the queuing issue in the fast charging stations [28]. By simulating an adaptive
strategy based on implicit communication through booking systems in the charging station,
the experiment results verified the effectiveness of the proposed approach in terms of route
planning and reduction in total travel times within the whole system. Using MATSim, a
multi-agent modeling platform, simulated performance characteristics of the SAEV fleet
serving travel requests across the Austin, Texas 6-county region. It had been pointed out
that reducing charging time and increasing fleet size can lower the response time but
improving the vehicle range did not appear to do the same [6]. In the meantime, in order
to reveal the impacts of SAEV in regard to socioeconomic heterogeneity, reference [29]
modeled this new kind of mobility service with different pricing schemes with the help
of MATSim. The results indicated that compared with reducing fares, reducing travel
time for customers plays a much more important role in SAEV service usage. They also
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pointed out that women tend to use SAEVs for shorter trips in regard to gender. As for
the environmental effects of this new travel mode, reference [30] extends a multimodal
transport model to simulate an increase in the market share of EVs to reveal their impacts
from the environmental perspective. Their work based on MATSim pointed out that even
the reduction in emissions could be limited if only short trips were served by EV. The
impact can be higher if the government is able to target users with longer trips, at the cost
of an optimized deployment charging stations for the sustainable development of such
mobility service. After that, by taking economic metrics into consideration, the previous
model was modified and pointed out that SAEV with longer vehicle range and charging
station with fast charging rate can not only provide the best service for travelers but also the
most profitable choice for companies providing mobility services using SAEV [7]. An agent-
based simulation of SAEVs was performed across the Rouen Normandie metropolitan area
in France to explore the impacts of different charging types and vehicle battery capacities
on service efficiency. The results indicated that a faster charging rate results in higher
performance, which means shorter response time. They also reveal the importance of
choosing the right battery capacity to avoid the overlaps between demand and charging
peak times [8]. By coupling charging and repositioning events and verifying the rightness
of this kind of synergy using an agent-based model, the response time was 39% lower
after coupling these two events [9]. Focusing on the environmental impact of SAEV and
the First-Mile-Last-Mile system, research results showed that improving vehicle range can
provide a better service [1]. The charging dispatching problem is also important for the
mobility service provided by SAEVs, reference [31] tries to address this issue through their
proposed traffic simulation framework based on a simulator Simulation Urban Mobility
(SUMO) to improve the efficiency of charging station usage and save time for SAEVs users.
Various Deep Reinforcement Learning (DPL) algorithms were performed to verify the
robustness of their developed framework. Reference [12] evaluated the impact of charging
infrastructure on SAEVs’ service performance using an open-source agent-based simulation
platform MATSim. The charging station within the simulation was generated to minimize
the distance between the demand point and the charging station. The simulation results
indicated that the combination of faster charging and such charging station planning would
perform better than other scenarios but the battery swapping station would be better.
Combining agent-based simulation and hybrid algorithm, reference [32] first allocated the
charging demand based on the simulation output and then, used the proposed algorithm
to site and size charging stations to meet the charging demand. However, even though
most of the aforementioned research has revealed the impact of SAEV on response time, the
parking demand, which is another important parameter to consider when it comes to urban
transportation management, is still omitted. Additionally, when it comes to the charging
policy, existing studies paid little attention to the relationship between the requests and the
availability of charging stations, which should not be overlooked if the service providers
and policymakers hope to increase the fleet performance to meet the high travel demand in
peak time.

3. Materials and Methodology
3.1. Data Description

The simulation experiments designed in this study are based on several real datasets,
including the parking lot dataset and charging station dataset provided by the
Shenzhen government (https://opendata.sz.gov.cn, accessed on 25 August 2023) and
a dataset containing trajectory information of the taxis running within the city for one day
(https://people.cs.rutgers.edu/~dz220/data.html, accessed on 25 August 2023). Due to the
nature of these former two datasets, the parking lots and charging stations in this research
are assumed to be separated. Therefore, the situation of parking lots with charging func-
tions is not considered here. The research area was limited to a circle located at the center of
Luohu District, with a two miles diameter not only to reveal the effect of the introduction
of SAEVs on the city’s critical area but also because of the fact that the selected area would

https://opendata.sz.gov.cn
https://people.cs.rutgers.edu/~dz220/data.html
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generate much more travel requests and the research of this kind of area is necessary. The
pre-processing process of these datasets and the processed data are elaborated as follows.

3.1.1. Travel Data

The following Table 1 shows an example of the unprocessed taxi trajectory dataset.

Table 1. Overview of the Original Taxi Trajectory Dataset.

Taxi ID Time Longitude Latitude Occupancy Status Speed

34745 20:27:43 113.8068 22.62325 1 27
34745 20:24:07 113.8099 22.6274 0 0

. . . . . . . . . . . . . . . . . .
28265 21:35:13 114.3215 22.7095 0 18
28265 9:08:02 114.3227 22.6817 0 0

Note: For Occupancy Statue, 1-with passengers and 0-without passengers. And the unit for Speed is mile/h.

The dataset includes a total of 1,155,654 pieces of records. According to Table 1,
the dataset does not give the specific origin and destination of these trips, instead, the
GPS location information and the corresponding instantaneous speed of the vehicle at
certain points are given. In order to transform this dataset into a usable travel dataset,
TransBigData, an open-sourced toolkit (https://transbigdata.readthedocs.io/en/latest/
index.html, accessed on 25 August 2023) is used to exclude the anomalous data and to
obtain the specific origin and destination of these trips. Fours steps including

1. Filtering to exclude data outside the research area;
2. Excluding data with instantaneous changes in Occupancy Status;
3. Rasterizing the GPS data and counting the amount of data in each raster;
4. Extracting the origin and destination points from the GPS data are taken before 13,380

pieces of OD (Original-Destination) data are shown in Table 2.

Table 2. Overview of the OD dataset after TransBigData.

Trip ID Start Time Start LON. Star LAT. End Time End LON. End LAT.

0 0:19:41 114.013016 22.664818 0:23:01 114.0214 22.663918
1 0:41:51 114.021767 22.6402 0:43:44 114.02607 22.640266

. . . . . . . . . . . . . . . . . . . . .
13378 23:03:45 114.118484 22.547867 23:20:09 114.133286 22.61775
13379 23:36:19 114.112968 22.549601 23:43:12 114.089485 22.538918

Note: Start and End refer to origin and destination, respectively, while LON. and LAT. refer to longitude and
latitude, respectively.

3.1.2. Parking Lots Data

The original parking lot dataset contains 716 off-street parking lots in Luohu Dis-
trict, Shenzhen, with a total of 111,845 parking spaces. In the process of spatial visual-
ization of these parking lots, it is found that not all the parking lots in the dataset are
located within the Luohu District, therefore, the parking lots outside of Luohu District
are excluded by using the tbd.clean_outofshape function in the TransBigData toolkit. Af-
ter manually removing the parking lots with the help of a visualization map, a total of
308 parking lots with 3557 parking spaces within the study area were finally selected as
shown in the following table (Table 3).

https://transbigdata.readthedocs.io/en/latest/index.html
https://transbigdata.readthedocs.io/en/latest/index.html
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Table 3. Overview of the parking lot dataset after TransBigData and manual modification.

ID Price (RMB) * Longitude Latitude Capacity

1 5 114.1408886 22.5565399 8
2 5 114.1378183 22.5588927 6

. . . . . . . . . . . . . . .
307 5 114.112597 22.5791201 25
308 15 114.1068256 22.5834787 20

* Note: The exchange rate between RMB and USD on the day of data collection (2023.08.25) is 0.1385 which
indicated that 1 RMB equal to 0.1385 USD.

The following figure (Figure 1) shows the spatial distribution of parking lots according
to their parking capacity and parking price.
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3.1.3. Charging Stations Data

The initial charging station dataset includes 904 charging stations, providing
11,034 charging spaces. However, it only contains the address information of the sta-
tions, and there is no GPS location, which is not friendly to the subsequent experiments.
Therefore, by using a Python script and the open-source Gaode API, these addresses are
converted into points with GPS location information. After the tbd.clean_outofshape step,
the number of charging stations within the study area was ultimately determined to be
267 with 2075 charging spaces, as shown in Table 4, and the spatial distribution of these
stations according to their charging capacity is shown in Figure 2.

Table 4. Overview of the charging station dataset after TransBigData and manual modification.

ID Property Longitude Latitude Capacity

1 public 114.117447 22.545063 2
2 public 114.118273 22.543836 2

. . . . . . . . . . . . . . .
266 public 114.181697 22.559031 10
267 public 114.183742 22.612863 4
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3.2. Multi-Agent-Based Model Specification for SAEVs’ Charging and Parking

The proposed multi-agent simulation model, based on Anylogic, contained four kinds
of agents: Traveler, SAEV, Parking Lot, and Charging station. The whole system can be
summarized in Figure 3, the description of all states defined for these four kinds of agents
can be found in Table 5, and the transitions between these states are shown in Figure 4.
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Table 5. State description of the multi-agent simulation model.

Agent State Description

Traveler

WAIT TO DEPART Initial state of a Traveler agent waits for departure.

WAIT FOR SERVICE The Traveler’s request has been successfully assigned to a SAEV
and it is waiting for the arrival of this specific SAEV.

WAIT FOR MATCH The Traveler’s request cannot be assigned to a SAEV and it has to
be waited until there is an available one.

TO DESTINATION BY SAEV The Traveler is now taken to its destination by a SAEV.

SAEV

IN THE INITIAL SPOT Initial state of an SAEV agent where it waits for requests.

DRIVING TO PICK-UP The state that the SAEV is driving to the pick-up point of the
matched request.

AT PICK-UP POINT The state that the SAEV has arrived at the pick-up point of the
matched request.

DRIVING TO DROP-OFF The state that the SAEV is driving to the drop-off point of the
matched request.

AT DROP-OFF POINT The state that the SAEV has arrived at the drop-off point of the
matched request and checking the battery status.

AVAILABLE TO SERVE The state indicates that battery level is sufficient for the
upcoming request.

DRIVING TO TARGET PARKING LOT The state indicates that the SAEV is driving to the target
parking lot.

AT PARKING LOT The state indicates that the SAEV has arrived at its target
parking lot.

DRIVING TO CHARGE STATION The state indicates that the SAEV is driving to a
charging station.

AT CHARGE STATION The state indicates that the SAEV has arrived at the charging
station.

Parking Lot
PARKING AVAILABLE The state indicates that there is an available parking space in the

parking lot.

FULLY OCCUPIED The state indicates that there is no available parking space in the
parking lot.

Charging Station
CHARGING AVAILABLE The state indicates that there is an available charging space in the

charging station.

FULLY OCCUPIED The state indicates that there is no available charging space in the
charging station.

3.2.1. Traveler Agent

For each Traveler, its initial state at the beginning of the simulation is called “WAIT
TO DEPART”. As the simulation proceeds, the Traveler generates a travel request based
on the OD dataset, and the generated request will be instantly assigned to the nearest
available SAEV. After the request has been successfully assigned, the Traveler changes
its state to “WAIT FOR SERVICE” before the matched vehicle arrives. After the SAEV
arrives and confirms the destination of this specific request, the Traveler, again, changes
its state to “TO DESTINATION BY SAEV”. If the request cannot be instantly assigned, in
other words, all SAEVs are busy with requests that have been assigned to them before,
the Traveler would update its state to “WAIT FOR MATCH” and the request will be stored
into a collection called “Request list”, which will automatically remove these requests once
there is an available SAEV according to the First-In-First-Out principle. The time spent
by the Traveler waiting for the arrival of a SAEV was called “Response time”, which is an
important indicator to evaluate the efficiency of the current transportation system. After
the Traveler arrives at its destination, the SAEV completes its service and the travel request
is satisfied.
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3.2.2. SAEV Agent

There are three phases for the SAEV agent, servicing phase, parking phase, and
charging phase. At the beginning of the simulation, the SAEV are placed in the initial spot,
a spot located at the center of the research area to indicate that all SAEVs start their daily
work from here, and their state starts at “IN THE INITIAL SPOT”.

The servicing phase begins after receiving the message “CHECK REQUEST QUEUE”
from the system, the SAEV starts to check the collection called “Request list” which is used
to store requests that need to be served. If the collection is empty, the parking phase begins,
in order to reduce the cost of parking behavior and benefit the SAEV service provider
economically, thanks to their self-driving ability, the SAEV would drive to PLtarget which
can be chosen using the following Formulas (1) and (2):

PL =

{
PLavail if CPSs < PC
PLfull if CPSs = PC

(1)

PLtarget = min
cost

{PLavail} (2)

where,
PL denotes the collection formed by all parking lots within the research area;
PLavail, PLfull indicate two collections that contain available parking lots and fully

occupied ones, respectively;
CPSs refers to current parked spaces, PC refers to parking capacity;
PLtarget denote the specific parking lot the SAEV would drive to;
Ctotal indicates the cost of choosing these parking lots as a target one at that specific

simulation time, which can be calculated by Equation (3) where Cpp indicates the price of
the parking lot, Ce f refers to the energy fee caused due to the travel to the parking lot [33]
while Crt represents the road toll charged driving there. l indicates the distance from the
current location of the SAEV to the target parking lot, δ denotes the unit price of energy
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consumed by the SAEVs, in this case, the value is pre-set as 10, t represents the time spent
to the parking lot and ε was the unit road toll with a pre-set value of 7:

Ctotal = Cpp + 14.58 × l × δ × (l/t)−0.68︸ ︷︷ ︸
Ce f

+ ε × l︸︷︷︸
Crt

(3)

Once the SAEV starts to drive to PLtarget, its state would switch to “DRIVING TO
TARGET PARKING LOT”, at the same time, the value of CPSs in PLtarget would be increased
by 1. At the time the SAEV arrives at PLtarget, its state updates to “AT PARKING LOT”,
the system will count this specific moment as the start of a parking demand and record
the time when the SAEV leaves the parking lot to accumulate the parking demand. But if
the “Request list” is not empty, which means that there are requests that need to be served,
then the servicing phase continues and the nearest available SAEVs (the SAEV that has
not been matched to a request or the SAEV in the state called “AVAILABLE TO SERVE” to
each of these requests will be assigned to them and update their state to “DRIVING TO
PICK-UP”. Once the SAEV arrives at the specific pick-up point, its state update to “AT
PICK-UP POINT”, this is the state that confirms the destination of this specific request.
“DRIVING TO DROP-OFF” is the state after the confirmation of the trip destination and by
the time it arrived at the drop-off point, its state changes to “AT DROP-OFF POINT”. At the
drop-off point, the SAEV will receive a message called “CHECK BATTERY STATE” from
the system, and it will check its battery level, if the remaining power can cover the pre-set
minimal range (in this study, 20%), its state will transfer to “AVAILABLE TO SERVE” to
get ready for the next upcoming service and start checking the “Request list” again. But
if the remaining power is lower than the minimal range, the charging phase begins. The
SAEV will drive to CStarget for charging and switch its state to “DRIVING TO CHARGING
STATION”. The CStarget can be chose using Formulas (4) and (5):

CS =

{
CSavail if COSs < CC
CSfull if COSs = CC

(4)

CStarget =

min
occ

{CSavail} if Requetlist is Empty

min
dis

{CSavail} if Requestlist is not Empty
(5)

where,
CS denotes the collection formed by all charging stations within the research area;
CSavail, CSfull indicate two collections that contain available charging stations and fully

occupied ones, respectively;
COSs refers to current occupied spaces, CC refers to charging capacity;
CStarget denotes the specific charging station the SAEV would drive to; and,
occ and dis indicate the current occupied spaces of the charging station and the distance

from the position of SAEV to the charging station, respectively.
The above charging policy considers the relationship between the current requests

and the availability of charging stations. In order to reduce the response time of traveler,
when there is a request waiting to be served, the SAEV would drive to the closest charging
station to reduce the time spent on driving. However, if the request list is empty, the
SAEV would choose the charging station with the least occupied spaces to increase the
possibility of an available charger when it arrives and increase the utilization rate of existing
charging facilities.

Accordingly, the COSs of CStarget would be increased by 1. When the SAEV arrives and
starts charging, its state changes to “AT CHARGING STATION” and similar to before, the
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system counts this specific moment as the start of a charging demand. The charging rate, CR,
and the expected charged level, ECL, can be decided by Formulas (6) and (7), respectively:

CR =

{
GC if “Request list” is empty
FC if “Request list” is not empty

(6)

ECL =

{
TotalRange if “Request list” is empty
AvailRange if “Request list” is not empty

(7)

where,
GC, FC refer to the general charging rate and fast charging rate, respectively;
TotalRange indicates the SAEV would not leave the charging station until it is fully

charged (100%) and, AvailRange indicates the SAEV would leave the charging station once
it is charged to the pre-set value, which is 80% in this research.

As soon as the SAEV drives out of CStarget, its COSs would accordingly decrease by
1 and the system accumulates the value of this finished charging demand. The recharged
SAEV will check the “Request list” after leaving CStarget and drive to serve if there are any
requests waiting, otherwise, they make a parking choice again. The final state of SAEV is
“AT PARKING LOT”, indicating all requests have been served and all SAEVs are within
satisfied battery level.

3.2.3. Charging Station Agent and Parking Lot Agent

There are only two states in each Charging station agent, called “CHARGE AVAILABLE”
and “FULLY OCCUPIED”, respectively. The transactions between these two states are
decided by one parameter called charge capacity (CC) and one variable called COSs. When
the value of COSs is equal to CC, which means that all charging spaces of the charging
station are occupied, and the state changes to “FULLY OCCUPIED”, when there is a
vehicle leaving the charging station, the state changes to “FULLY OCCUPIED”. Similar
to the Parking Lot agent, the two states are called “PARKING AVAILABLE” and “FULLY
OCCUPIED”, as shown in the figure above. When the value of CPSs is less than PC, the
parking lot agent updates its status to “PARKING AVAILABLE”. When the value of CPSs
is equal to PC, the state changes to “FULLY OCCUPIED”. Apart from these parameters
and variables that affect state changes, there are two variables for both these two kinds
of agents called “charging time” and “parking time”, respectively, to reflect the charging
demand and parking demand at each charging station and parking lot.

3.3. Simulated Scenarios and Experiment Setting

Scenarios with different SAEVs’ fleet sizes which in this case is equal to the ratio of the
number of SAEVs to the number of total requests, vehicle range which refers to the driving
capacity of a SAEV with 100% battery level, and charging rate are designed to evaluate
their impact on urban parking demand, charging demand, VMT, and response time. Since
SAEVs can provide car-sharing services, unlike the private conventional vehicle, there
should be one vehicle for one request to serve the travel demand immediately, even a small
penetration rate of SAEVs can serve all requests within a reasonable response time [1,7].
After several warm-up simulations, a 5% penetration rate for 13,380 trips (which has only
699 SAEVs) was chosen as the base case as the average response time can be maintained to
a relatively short time between 5 to 8 min, and the value will constantly increase to 10%
(1338 SAEVs) in 1% increments. Additionally, as the research area is not quite large,
which only contains the traffic entities within 2 miles of the district center, we minimized
the vehicle range accordingly. It was assumed that the vehicle range increased from
120 miles to 200 miles, in 20 mile increments. In order to simplify the calculation of SAEVs’
charging time, mile/h is used as the unit of charging rate, which indicates the distance
a SAEV can drive after pre-unit of time charging. The general charging rate varies from
30 mile/h through 50 mile/h, in 5 mile/h increments, while the fast charging rate varies
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from 60 mile/h through 100 mile/h, in 10 mile/h increments [6]. Table 6 provides a
summary of all pre-set parameters. Additionally, in order to verify the effectiveness of
the proposed charging policy in reducing the response time and decreasing the total VMT
while increasing the utilization of the existing parking and charging facilities, comparison
experiments were conducted where the SAEVs would choose the target charging station
simply based on the distance.

Table 6. Summary of all simulated scenarios parameters.

Vehicle Range (mile) 120 140 160 180 200 NA
Charging rate

(GC/FC) (mile/h) 30/60 35/70 40/80 45/90 50/100 NA

Fleet size (%) 5 6 7 8 9 10
Note: GC refers to general-charging, FC refers to fast-charging. Base case parameters are shown in bold.

Apart from the above parameters set, we assumed that:

• All SAEVs were fully charged at the beginning of the simulation;
• If the remaining power of a SAEV is not enough to cover the distance to the nearest

charging station, it will transfer to the target charging station within 0.01 s as soon as
it runs out of power;

• Due to the size of the research area and the fact that even in a scenario with the largest
fleet size, there would be only 1338 SAEVs within the network, which is a relatively
small number of vehicles, so the effect of road congestion on SAEVs’ speed is not
considered throughout the whole process, in other words, the SAEVs maintain a fixed
speed throughout the whole simulation.

The output indicators of the simulation experiment include the parking demand,
charging demand, total VMT, and average response time. The former two are counted
in hours and would be accumulated through the whole simulation period. The spatial
distribution of these two kinds of demand will be demonstrated on the map. At the same
time, the total VMT will be divided into different parts to find out which part accounts for
the most by counting the exact time SAEV arrived at different origins and destinations. The
total VMT can be calculated by Formula (8):

VMTTOTAL = VMT_I + VMT_E + VMT_P + VMT_CS (8)

where,
VMTTOTAL indicates the total VMT generated by a SAEV during the whole simulation

period;
VMT_I, VMT_E, VMT_P, and VMT_CS indicate the VMT generated by a SAEV start-

ing from the initial point, start point, end point, parking lot, and charging station respec-
tively. They can be calculated by Formulas (9)–(12):

VMT_I = VMT_IS + VMT_IP (9)

VMT_E = VMT_ENS + VMT_EP + VMT_ECS (10)

VMT_P = VMT_PS (11)

VMT_CS = VMT_CSS + VMT_CSP (12)

where,
VMT_IS and VMT_IP denote the VMT generated by a SAEV starting from the initial

point to one start point or to one parking lot, the latter one can only take place at the very
beginning of the simulation as the number of requests then is less than the number of
idle SAEVs;
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VMT_ENS, VMT_EP and VMT_ECS indicate the VMT generated by a SAEV starting
from one endpoint to the next start point, the parking lot and the charging
station, respectively;

VMT_PS indicates the VMT generated by a SAEV starting from one parking lot to one
start point;

VMT_CSS and VMT_CSP indicates the VMT generated by a SAEV starting from one
charging station to one start point and to one parking lot, respectively.

The average response time can be calculated by Formula (13):

T =

m
∑

n=1
tn
2 − tn

1

m
(13)

where,
tn
1 indicates the time the nth request was generated, tn

2 indicates the time the matched
SAEV (for request n) arrived, and m indicates the number of the total travel demand within
the whole system, in this case, the value of m is 13,380.

The simulation will stop when all requests have been served and all the SAEVs have
been parked at the parking lots.

4. Results and Discussion
4.1. Parking Demand and Charging Demand

The results of parking demand and charging demand in each scenario are shown in
Figures 5 and 6 separately.
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According to Figures 5 and 6, as the fleet size continues to rise, the parking demand
increases by nearly two times, from 547.47 h when the fleet size is only 5% (which is
669 SAEVs) to 1481.33 h with the maximized fleet size. The charging demand also saw
an increase when the fleet size kept rising and the value doubled (from 4743 h to 9236 h).
This is not unexpected as a larger fleet size means more SAEVs within the system are ready
to serve and the travel request can be satisfied quicker, which increases the possibility of
SAEVs becoming idle and choosing to park, and more SAEVs would inevitably increase
the charging demand as the total number of SAEVs within the system that may need
recharging has been increased, even though they may not drive to serve after charging. It
is obvious that the charging demand in all scenarios (varying from 3436 h to 17,397 h) is
much higher than the parking demand (376~2423 h). This is an expected result because
compared with parking lots, charging stations can not only offer a place to park but also a
place to recharge vehicles’ batteries. Charging is a time-consuming process, which may
also help these idle SAEVs that cannot find any requests at off-peak hours without doing
nothing, in this case, recharging their batteries if necessary. For the car-sharing SAEVs, they
can reduce their parking time by constantly serving different requests if there are any, for
those that need recharging, the duration at the charging station can also be seen as the time
waiting for the new requests, so it can be said that charging demand should be the one
need to be concerned more compared with its parking counterpart after taking charging
behavior and vehicle range into consideration.

Unlike the parking demand, which seems not to be effectively affected by the change
in the charging rate, it is expected to see that the charging demand experienced a decrease
as the charging rate increased (from 16,867 h to 3436 h). This is reasonable since a faster
charging rate means less time spent in a charging station, which will shorten the time for
SAEVs spent on charging and therefore increase the charging station’s turnover efficiency
and be seen as an effective way to reduce the time for SAEV to find an available charger.
However, it is not possible to unlimitedly increase the charging rate since the reduction
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become much smaller and may not be an economical way to do so, even though this study
did not place any limitations on this value, there should be some due to safety and power
resource allocation considerations.

Increasing the vehicle range causes an increase in parking demand, as the vehicle
range increases from 120 miles to 200 miles, the parking demand increases from 376 h to
698 h, while the charging demand keeps the value constant at 4800 h. The increase in
parking demand may be because a larger vehicle range means a wider service range, a
SAEV can serve more travel needs without being recharged, which makes some other
SAEVs idle for some time, and consequently need to choose a parking lot. The constant
charging demand may be because the total miles traveled to serve these requests are firm,
so the change in vehicle range may only affect which SAEV is chosen to serve the traveler,
which would not pose a threat to the total generated charging demand.

The proposed charging policy would increase the parking demand and charging
demand in all scenarios, while the increase for charging is less noticeable (maximal value
is 8%) than parking (from 49% to 70%). This may come from taking charging availability
into consideration when choosing a charging station, all SAEVs within the system have a
higher level of power, the possibility of charging a SAEV is not so common compared with
the need to park as there may not be queued request and none of these idle SAEV were
need to be charged and would be ready to serve request whenever there are any.

4.2. VMT

The VMT generated by empty driving due to SAEVs’ self-driving ability has been
considered a great waste of road resources and energy (electricity for SAEVs). So, it is
necessary to clarify the origin of VMT and control it accordingly.

As shown in Figure 7, the total VMT rises as the fleet of SAEVs increases, but the
increment is not significant which indicates that although more SAEVs on the road network
will lead to more VMT, the impact is not significant. Also, as the vehicle range increases,
the total VMT within the system increases significantly. The reason for this increase is the
increase in the VMT_ENS part, possibly because increasing the vehicle range will inevitably
expand the SAEVs’ service range and increase the possibility of long-distance migration
within its service range for request servicing. On the contrary, as the charging rate increases,
the total VMT decreases significantly, mainly due to a significant decrease in the VMT_ENS
part. This noticeable reduction may be because a fast charging rate brings less charging
time, and the former requests served by relocated SAEVs which are far away from the start
points can now be assigned to closer SAEVs which missed these requests due to the longer
charging time they previously spent in the charging stations. This kind of situation occurs
quite frequently based on the dramatic decrease in VMT_ENS.

The major part of the total VMT generated is VMT_ENS, while the others only ac-
counted for small portions. The increase in vehicle range leads to higher values in VMT_PS,
mainly because a wider service range brought by higher vehicle range enables SAEVs to
serve more requests without recharging, while these not close enough to requests must
drive to parking lots. A possible reason why VMT_CSP increases, as the fleet size be-
comes larger, may be the increase in the number of vehicles capable of providing services
within the system reduces the possibility of demand queues, making it more likely for fully
recharged SAEVs to drive to park once they leave the charging station. The large amount
of VMT_ENS (nearly 90%) in all BAU (Business as usual) scenarios indicates that although
relocating SAEVs to the next service immediately after they completed the previous one
can increase the vehicle utilization rate, it can also increase the VMT within the entire road
network. Since the effect of road congestion is not considered in this research, in reality,
the more vehicles on the road, the more likely it is to cause congestion. Therefore, it is
necessary to have a reasonable scheduling and allocation scheme of vehicles to reduce
long-distance migration, thereby reducing excessive empty VMT, energy consumption, and
road occupancy.
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For scenarios with a charging policy, the total VMT is likely to show a rising trend
as the fleet size and the vehicle range go up, similarly, even with some fluctuations, the
total VMT also increase as the charging rate rises. The value of total VMT is much higher
compared with BAU scenarios, mainly coming from the increase in the portion VMT_CSP
part. This part of VMT also shows a positive relationship with fleet size, charging rate, and
vehicle range. This is not unexpected because more SAEVs within the system means that
there would be more vehicles ready to serve so during the charging process of some SAEVs,
requests might be satisfied by other vehicles and these recharged vehicles may drive to park
after finishing charging. A faster charging rate can reduce the time spent in the charging
station and therefore enable the recharged SAEVs to return to the system quicker to serve
the waited travel requests. Similarly, a larger vehicle range can ensure a longer time before
the SAEV requires recharging, even if there were some of them below the expected battery
level, others with the same vehicle range but not have been assigned to any requests can be
the alternative when travelers need to be served, so after these recharged SAEVs out of the
charging station, the only thing they have to do is drive to a parking lot.
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4.3. Average Response Time

The average response time in different simulation scenarios can be found in Figure 8.
As the fleet size increases, the average response time decreases from 7.99 min (5%) to
3.92 min (10%). This is reasonable as more SAEVs in the system lead to fewer orders being
in the queue, therefore reducing the response time. However, it is worth noting that the
reduction is becoming smaller which indicates that continuously increasing the number of
vehicles in the transportation system can be an effective way to control the response time
but the positive effect may be a threshold and an optimal value of the fleet size.
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As can be seen from the figure, the charging rate has a significant impact on the re-
sponse time. The average response time at a charging rate of 30/60 miles/h
(12.24 min) is almost 2 times longer than a charging rate of 50/100 miles/h (1.34 min). A
faster charging rate can reduce the time SAEVs spend at charging stations and enable faster
replenishment of available SAEVs into the service system. The change of vehicle range also
shows a similar trend to the charging rate, the response time saw its peak value (which is
11.99 min) in a scenario with the smallest vehicle range, in this case, 120 miles, and as the
vehicle range continue to rise, the response time reduces to 4.58 min. This can be explained
from the point of view that before vehicles consume their entire battery capacity, vehicles
with longer ranges can provide service with a shorter response time. After that, even a
longer charging time would be required for SAEVs with longer vehicle range, the overall
result of the simulation indicates that this would not affect the total response time within
the whole simulation process, it is reasonable to say that vehicles with larger vehicle range
can provide mobility service with a shorter response time. As it is not feasible to expect all
SAEVs to complete all requests without recharging, therefore, to reduce response time, it
is recommended to consider a combination of increasing the number of service vehicles,
increasing the charging rate, and increasing the vehicle range.

It is also clear to see that in scenarios with the application of the proposed charging
policy, the response time has been reduced to varying levels, from 2.5% to 18.9%. As the
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charging policy considers the current requests and the availability of the charging station,
on one hand, during the peak hour, the SAEVs would choose the closest charging station to
prioritize the charging demand so that they can finish the charging process as quickly as
possible in order to serve the request if there are requests waiting to be satisfied. On the
other hand, SAEVs would like to be easily charged as they would choose a charging station
with minimal occupied spaces when in off-peak hours, this would reduce the time spent on
driving to an available charging station and increase the number of ready-to-serve SAEVs
in the traffic system. Both of these two kinds of charging behaviors were designed to fulfill
the charging demand as soon as possible, the only different is the former one does this
when it has to, and the latter one does this in advance to avoid poor battery state. Therefore,
it is reasonable to see a reduction in response time after the implementation of the policy.

5. Conclusions and Future Work

SAEVs can provide car-sharing mobility services, reducing the total number of vehicles
within the entire transportation system which will directly reduce the need for parking
and reduce the pollution by using environmentally friendly electric power. But the vehicle
range and their charging behavior can sometimes become barratries to further benefit
the transportation system. This research proposed a multi-agent-based simulation model
that considers both vehicle range and charging behavior of SAEVs and reflects their real-
time battery level by monitoring their driving mileage. Based on a real dataset from the
Luohu District in Shenzhen, various scenarios with different fleet sizes, charging rates, and
vehicle ranges are explored to evaluate the impact of SAEVs on parking demand, charging
demand, total VMT, and average response time and relationship between these indicators
are revealed, and a charging policy consider the current requests and the availability of
charging station are proposed and verified. The results indicate that after considering the
charging behavior of SAEVs, the charging demand within the whole system is much more
than the parking demand as SAEVs only park when their battery level is satisfied and there
are no requests waiting to be served. Larger fleet size and longer vehicle range can lead to
more parking demand while changing the charging rate would not influence the parking
demand. A larger fleet size would result in more charging demand and a faster charging
rate, which can dramatically reduce charging demand, while the change in vehicle range
would not have an impact on the charging demand. The total VMT will increase as the fleet
size becomes larger or the vehicle range increases and will decrease as the charging rate
increases. Moreover, a large portion of VMT is generated by SAEVs relocating from the
destination of the last service to the origin of the next request. This portion of VMT can be
reduced by rational scheduling of SAEVs within the network. The average response time
would decrease as the fleet size goes bigger, the charging rate goes faster and the vehicle
range goes larger. But the reduction caused by fleet size changes is not as remarkable as
the other two, which indicates that unlimitedly increasing the number of SAEVs in the
system will not always shorten the response time as we expected. Therefore, to improve the
quality of mobility service in terms of response time, it is reasonable to combine the change
in fleet size, charging rate, and vehicle range. To verify the effectiveness of the proposed
charging policy, the results of the comparison experiments show that when considering
the current requests and the availability of charging stations, the response time would
be further reduced by 2.5% to 18.9% in different scenarios, the parking demand would
increase as there would be more SAEVs to be idle and choose to park, the charging demand
would not be influenced much; however, the total VMT would increase because a great
number of VMT is generated during the SAEVs driving to the parking lot after recharge.

The main contribution of this paper is threefold. Firstly, a multi-agent-based simulation
model considering the vehicle range and charging behavior was proposed to reveal the
relationship between fleet size, charging rate, vehicle range, parking demand, charging
demand, VMT, and average response time.Secondly, the VMT has been divided into parts
according to the different origins and destinations of SAEVs during the whole simulation
process to clearly the portion of each part. Thirdly, the proposed charging policy considers
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the current request and the availability of charging stations was verified to be effective in
reducing the response time.

However, there are some limitations of this research that should be addressed in future
studies. First, the calculation of battery consumption and the recharging process should be
more precise. Second, due to the poor performance of the used computer, the simulation
experiment has narrowed down the research area to a specific scope, within a 2 mile radius
of the Luohu District center, and the vehicle range has also been reduced accordingly. In
future research, expanding the research area and using a more accurate vehicle range should
be taken into consideration. Additionally, apart from fixed charging service providers such
as charging stations mentioned here, a novel mobile charging approach provided by mobile
charging vehicles should as be considered in future studies since the combination of these
two can combine the advantages of both to serve SAEVs in dynamic and static ways [34,35],
which may be the solution to a much more sustainable mobility system. Finally, this
paper did not consider the impact of road congestion on vehicle speed, which should be
incorporated into the transportation simulation model in future research.

Author Contributions: Conceptualization, Y.Z. and X.Y. (Xiaofei Ye); methodology, Y.Z.; software,
Y.Z.; validation, Y.Z. and X.Y. (Xiaofei Ye); formal analysis, Y.Z.; resources, Y.Z.; data curation, Y.Z.;
writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z. and X.Y. (Xiaofei Ye);
visualization, Y.Z.; supervision, X.Y. (Xiaofei Ye), X.Y. (Xingchen Yan), T.W., J.C. and P.Z.; funding
acquisition, X.Y. (Xiaofei Ye), T.W. and P.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Provincial Uni-
versities of Zhejiang (SJLY2023009), Transportation Technology Plan Project of Ningbo, Zhejiang
(202214), the National “111” Centre on Safety and Intelligent Operation of Sea Bridge (D21013),
National Natural Science Foundation of China (Nos. 71971059, 52262047, 52302388, 52272334 and
61963011), the Natural Science Foundation of Jiangsu Province, China (no. BK20230853), the Specific
Research Project of Guangxi for Research Bases and Talents [grant number AD20159035], in part
by Guilin Key R&D Program [grant number 20210214-1], and Liuzhou Key R&D Program [grant
number 2022AAA0103].

Data Availability Statement: Data used in this research can be found through these links provided
in Section 3.1 Data description.

Acknowledgments: The authors thank their mentors who provided instructions on writing this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, L.; Pantelidis, T.; Chow, J.Y.J.; Jabari, S.E. A real-time dispatching strategy for shared automated electric vehicles with

performance guarantees. Transp. Res. Part E Logist. Transp. Rev. 2021, 152, 102392. [CrossRef]
2. Richter, M.A.; Hess, J.; Baur, C.; Stern, R. Exploring the Financial Implications of Operating a Shared Autonomous Electric Vehicle

Fleet in Zurich. J. Urban Mobil. 2021, 1, 100001. [CrossRef]
3. Zhang, W.; Guhathakurta, S.; Fang, J.; Zhang, G. Exploring the impact of shared autonomous vehicles on urban parking demand:

An agent-based simulation approach. Sustain. Cities Soc. 2015, 19, 34–45. [CrossRef]
4. Zhang, W.; Guhathakurta, S. Parking Spaces in the Age of Shared Autonomous Vehicles: How Much Parking Will We Need and

Where? Transp. Res. Rec. J. Transp. Res. Board 2017, 2651, 80–91. [CrossRef]
5. Yan, Q.; Feng, T.; Timmermans, H. Private owners’ propensity to engage in shared parking schemes under uncertainty: Compari-

son of alternate hybrid expected utility-regret-rejoice choice models. Transp. Lett. 2023, 15, 754–764. [CrossRef]
6. Chen, T.D.; Kockelman, K.M.; Hanna, J.P. Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle &

charging infrastructure decisions. Transp. Res. Part A Policy Pract. 2016, 94, 243–254.
7. Loeb, B.; Kockelman, K.M.; Liu, J. Shared autonomous electric vehicle (SAEV) operations across the Austin, Texas network with

charging infrastructure decisions. Transp. Res. Part C Emerg. Technol. 2018, 89, 222–233. [CrossRef]
8. Loeb, B.; Kockelman, K.M. Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case

study for Austin, Texas. Transp. Res. Part A Policy Pract. 2019, 121, 374–385. [CrossRef]
9. Li, Y.; Li, X.; Jenn, A. Evaluating the emission benefits of shared autonomous electric vehicle fleets: A case study in California.

Appl. Energy 2022, 323, 119638. [CrossRef]

https://doi.org/10.1016/j.tre.2021.102392
https://doi.org/10.1016/j.urbmob.2021.100001
https://doi.org/10.1016/j.scs.2015.07.006
https://doi.org/10.3141/2651-09
https://doi.org/10.1080/19427867.2022.2088568
https://doi.org/10.1016/j.trc.2018.01.019
https://doi.org/10.1016/j.tra.2019.01.025
https://doi.org/10.1016/j.apenergy.2022.119638


Systems 2024, 12, 61 20 of 20

10. Gonçalves Duarte Santos, G.; Birolini, S.; de Almeida Correia, G.H. A space–time-energy flow-based integer programming model
to design and operate a regional shared automated electric vehicle (SAEV) system and corresponding charging network. Transp.
Res. Part C Emerg. Technol. 2023, 147, 103997. [CrossRef]

11. Zhang, T.Z.; Chen, T.D. Smart charging management for shared autonomous electric vehicle fleets: A Puget Sound case study.
Transp. Res. Part D Transp. Environ. 2020, 78, 102184. [CrossRef]

12. Vosooghi, R.; Puchinger, J.; Bischoff, J.; Jankovic, M.; Vouillon, A. Shared autonomous electric vehicle service performance:
Assessing the impact of charging infrastructure. Transp. Res. Part D Transp. Environ. 2020, 81, 102283. [CrossRef]

13. Liao, Z.; Taiebat, M.; Xu, M. Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and
environmental co-benefits. Appl. Energy 2021, 302, 117500. [CrossRef]

14. Nemoto, E.H.; Issaoui, R.; Korbee, D.; Jaroudi, I.; Fournier, G. How to measure the impacts of shared automated electric vehicles
on urban mobility. Transp. Res. Part D Transp. Environ. 2021, 93, 102766. [CrossRef]

15. Dean, M.D.; Gurumurthy, K.M.; de Souza, F.; Auld, J.; Kockelman, K.M. Synergies between repositioning and charging strategies
for shared autonomous electric vehicle fleets. Transp. Res. Part D Transp. Environ. 2022, 108, 103314. [CrossRef]

16. Grahn, R.; Qian, S.; Hendrickson, C. Environmental impacts of first-mile-last-mile systems with shared autonomous electric
vehicles and ridehailing. Transp. Res. Part D Transp. Environ. 2023, 118, 103677. [CrossRef]

17. Fagnant, D.J.; Kockelman, K.M. The travel and environmental implications of shared autonomous vehicles, using agent-based
model scenarios. Transp. Res. Part C Emerg. Technol. 2014, 40, 1–13. [CrossRef]

18. Harper, C.D.; Hendrickson, C.T.; Samaras, C. Exploring the Economic, Environmental, and Travel Implications of Changes in
Parking Choices due to Driverless Vehicles: An Agent-Based Simulation Approach. J. Urban Plan. Dev. 2018, 144, 04018043.
[CrossRef]

19. Zhong, H.; Li, W.; Burris, M.W.; Talebpour, A.; Sinha, K.C. Will autonomous vehicles change auto commuters’ value of travel
time? Transp. Res. Part D Transp. Environ. 2020, 83, 102303. [CrossRef]

20. Stinson, M.; Zou, B.; Briones, D.; Manjarrez, A.; Mohammadian, A. Vehicle ownership models for a sharing economy with
autonomous vehicle considerations. Transp. Lett. 2023, 15, 1–17. [CrossRef]

21. Zhang, W.; Wang, K. Parking futures: Shared automated vehicles and parking demand reduction trajectories in Atlanta. Land Use
Policy 2020, 91, 103963. [CrossRef]

22. Millard-Ball, A. The autonomous vehicle parking problem. Transp. Policy 2019, 75, 99–108. [CrossRef]
23. Kumakoshi, Y.; Hanabusa, H.; Oguchi, T. Impacts of shared autonomous vehicles: Tradeoff between parking demand reduction

and congestion increase. Transp. Res. Interdiscip. Perspect. 2021, 12, 100482. [CrossRef]
24. Liu, Z.; Li, R.; Dai, J. Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on

data-driven modeling approach. Transp. Res. Part A Policy Pract. 2022, 156, 206–226. [CrossRef]
25. Winter, K.; Cats, O.; Martens, K.; van Arem, B. Relocating shared automated vehicles under parking constraints: Assessing the

impact of different strategies for on-street parking. Transportation 2020, 48, 1931–1965. [CrossRef]
26. Kim, S.; Lee, U.; Lee, I.; Kang, N. Idle vehicle relocation strategy through deep learning for shared autonomous electric vehicle

system optimization. J. Clean. Prod. 2022, 333, 130055. [CrossRef]
27. Ma, B.; Hu, D.; Wang, Y.; Sun, Q.; He, L.; Chen, X. Time-dependent Vehicle Routing Problem with Departure Time and Speed

Optimization for Shared Autonomous Electric Vehicle Service. Appl. Math. Model. 2023, 113, 333–357. [CrossRef]
28. García-Magariño, I.; Palacios-Navarro, G.; Lacuesta, R.; Lloret, J. ABSCEV: An agent-based simulation framework about smart

transportation for reducing waiting times in charging electric vehicles. Comput. Netw. 2018, 138, 119–135. [CrossRef]
29. Müller, J.; Straub, M.; Naqvi, A.; Richter, G.; Peer, S.; Rudloff, C. MATSim Model Vienna: Analyzing the Socioeconomic Impacts

for Different Fleet Sizes and Pricing Schemes of Shared Autonomous Electric Vehicles. In Proceedings of the Transportation
Research Board 100th Annual Meeting 2021, Washington, DC, USA, 5–29 January 2021.

30. De Wolf, D.; Diop, N.; Kilani, M. Environmental impacts of enlarging the market share of electric vehicles. Environ. Econ. Policy
Stud. 2022. [CrossRef]

31. Song, Y.; Zhao, H.; Luo, R.; Huang, L.; Zhang, Y.; Su, R. A sumo framework for deep reinforcement learning experiments solving
electric vehicle charging dispatching problem. arXiv 2022, arXiv:2209.02921.

32. Zhang, H.; Sheppard, C.J.R.; Lipman, T.E.; Zeng, T.; Moura, S.J. Charging infrastructure demands of shared-use autonomous
electric vehicles in urban areas. Transp. Res. Part D Transp. Environ. 2020, 78, 102210. [CrossRef]

33. Gardner, L.M.; Duell, M.; Waller, S.T. A framework for evaluating the role of electric vehicles in transportation network
infrastructure under travel demand variability. Transp. Res. Part A Policy Pract. 2013, 49, 76–90. [CrossRef]

34. Cui, S.; Yao, B.; Chen, G.; Zhu, C.; Yu, B. The multi-mode mobile charging service based on electric vehicle spatiotemporal
distribution. Energy 2020, 198, 117302. [CrossRef]

35. Cui, S.; Ma, X.; Zhang, M.; Yu, B.; Yao, B. The parallel mobile charging service for free-floating shared electric vehicle clusters.
Transp. Res. Part E Logist. Transp. Rev. 2022, 160, 102652. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.trc.2022.103997
https://doi.org/10.1016/j.trd.2019.11.013
https://doi.org/10.1016/j.trd.2020.102283
https://doi.org/10.1016/j.apenergy.2021.117500
https://doi.org/10.1016/j.trd.2021.102766
https://doi.org/10.1016/j.trd.2022.103314
https://doi.org/10.1016/j.trd.2023.103677
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000488
https://doi.org/10.1016/j.trd.2020.102303
https://doi.org/10.1080/19427867.2021.2007681
https://doi.org/10.1016/j.landusepol.2019.04.024
https://doi.org/10.1016/j.tranpol.2019.01.003
https://doi.org/10.1016/j.trip.2021.100482
https://doi.org/10.1016/j.tra.2022.01.001
https://doi.org/10.1007/s11116-020-10116-w
https://doi.org/10.1016/j.jclepro.2021.130055
https://doi.org/10.1016/j.apm.2022.09.020
https://doi.org/10.1016/j.comnet.2018.03.014
https://doi.org/10.1007/s10018-022-00350-0
https://doi.org/10.1016/j.trd.2019.102210
https://doi.org/10.1016/j.tra.2013.01.031
https://doi.org/10.1016/j.energy.2020.117302
https://doi.org/10.1016/j.tre.2022.102652

	Introduction 
	Previous Studies 
	Materials and Methodology 
	Data Description 
	Travel Data 
	Parking Lots Data 
	Charging Stations Data 

	Multi-Agent-Based Model Specification for SAEVs’ Charging and Parking 
	Traveler Agent 
	SAEV Agent 
	Charging Station Agent and Parking Lot Agent 

	Simulated Scenarios and Experiment Setting 

	Results and Discussion 
	Parking Demand and Charging Demand 
	VMT 
	Average Response Time 

	Conclusions and Future Work 
	References

