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Abstract: Individual model verification is a common practice that increases the quality of design on
the left side of the Vee model, often before costly builds and prototypes are implemented. However,
verification that spans multiple models at higher levels of abstraction (e.g., subsystem, system,
mission) is a complicated endeavor due to the federated nature of the data. This paper presents a
tool-agnostic approach to higher-level verification tasks that incorporates tools from Semantic Web
Technologies (SWTs) and graph theory more generally to enable a three-pronged verification approach
to connected data. The methods presented herein use existing SWTs to characterize a verification
approach using ontology-aligned data from both an open-world and closed-world perspective.
General graph-based algorithms are then introduced to further explore structural aspects of portions
of the graph. This verification approach enables a robust model-based verification on the left side
of the Vee model to reduce risk and increase the visibility of the design and analysis work being
performed by multidisciplinary teams.

Keywords: digital engineering; model-based systems engineering; ontology; Semantic Web;
verification; multi-domain modeling

1. Introduction

In systems engineering, a primary goal of system design and analysis is the view of
the system as a whole—both the sum of its parts and the emergent properties that are
seen at the system level. An important aspect of this effort is extensive verification and
validation (V&V) that provides evidence that the design complies with the requirements
(verification) at each level of abstraction (e.g., component, subsystem, system, mission) and
that the compliant system satisfies the stakeholders needs and purposes (validation).

In the classic Vee model, V&V happens on the right side of the Vee model. In essence,
this effort occurs in designed and built test subjects, whether components, subsystems,
systems, etc. While it is true that this process is not entirely linear (early validation of the
system or mission can begin before all lower-level designs have been completed and passed
their own V&V phase), the bulk of V&V occurs after detailed design work at the respective
level of abstraction has been completed and implemented.

At lower levels of abstraction, a different approach has evolved that allows for a good
portion of V&V work to be performed on the left side of the Vee model through model-
based engineering (MBE). In MBE, design and analysis models can be built to provide
high levels of confidence that designs are meeting requirements before a prototype has
been built.

This becomes murkier as design moves higher on the Vee model to the subsystem,
system, and mission levels. These require a level of collaboration between models, which
has seen more limited adoption, although it is gaining ground in research and industry
practice [1–3]. Digital engineering (DE) is a common term for an umbrella domain whose
objective is to “computationally integrate” the model-based systems engineering (MBSE)
tools and concepts with each other and the digital models created in other engineering
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disciplines practicing MBE. According to the United States Defense Acquisition University
(DAU) glossary, DE is “an integrated digital approach that uses authoritative sources of
systems’ data and models as a continuum across disciplines to support lifecycle activities
from concept through disposal [4]”. Implicit in this umbrella domain is the study of how
to connect different digital models in a way that yields the greatest benefits—do digital
models connect just to pass data between each other, or can they connect in a way that
yields insights that are emergent at the system level?

One approach is at the tool level. For example, the Ansys ModelCenter product [1]
provides a multi-domain, multi-model method for verification and analysis, but it is tied
to a specific tool implementation. This requires a tool-to-tool integration that can be
brittle in nature [5], and it ties system-level verification to a specific tool vendor. Another
approach focuses on the MBSE model itself. An example is SAIC’s Digital Engineering
Validation Tool [2], which provides a rules-based analysis to systems modeled in SysML.
This approach is domain neutral (SysML models can describe multiple domains), but it is
model dependent—the verification only analyzes a SysML model.

This leads to the research question examined in this paper: how can model verification
be approached in a tool-agnostic manner that reaches across the DE ecosystem to produce
model verification at higher levels of abstraction? This question requires a knowledge
representation that allows models originating from different sources to be represented in a
common manner that can then be reasoned on to perform the required verification tasks.

The research presented in this paper introduces a three-pronged methodological
approach to verification that enables a multi-model view of the verification problem. It
utilizes SWTs and graph theory to develop a robust, tool-agnostic representation of relevant
system/mission data and applies Description Logic reasoning (using the Pellet reasoner),
closed-world constraints (using the Shapes Constraint Language (SHACL)), and graph-
based analysis to perform verification tasks. The results of the individual prongs are
aggregated together to provide high-level model verification results across a broad range
of requirement types. The research then implements this three-pronged approach to the
verification of digital threads in a multi-model analysis setting. It provides assurance of
the methodology through extensive testing of failure paths found in the requirements
when applied to a catapult case study. This implementation of the methods presented
demonstrates the capacity for an extensible analytic method for verification in the multi-
model setting.

2. Background and Related Work

The research contribution presented in this paper builds on the literature related
to graph-based knowledge representation as well as model verification, both in the SE
context. While these fields are not entirely independent, they can be pursued separately
and must be addressed separately. Thus, this section discusses the relevant literature from
the SE discipline along three avenues: Semantic Web Technology, graph theory, and model
verification. It then provides a brief overview of previously published research by the
authors that forms the foundational framework that will be used and extended to address
model verification using a suite of graph-based analyses.

2.1. Semantic Web Technologies

SWTs are a suite of technologies and a field of research centered around graph data
structures and ontology. While many definitions of ontology have been developed, for
purposes related to computational use in a systems engineering context, the definition
from Wagner et al. is appropriate: “An ontology is a directed labeled graph that is identified by
a unique IRI (Internationalized Resource Identifier) and that describes a set of things by a set of
propositional statements that are regarded to be true in some context” [6].

The formal representation of knowledge and propositional statements of a compu-
tationally enabled ontology allow for reasoning using formal mathematical logic. This
capability has been explored some in the systems engineering literature. Hennig et al. use
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the Unified Modeling Language (UML) to align system-related data to ontologies. They
present several different reasoning tasks that can be performed once data has been aligned
to ontologies, including the automatic creation of Critical Items Lists (CILs) and allocation
of different subsystems to the various engineering disciplines responsible for some aspect
of the design [7]. Eddy et al. use semantic rules in reasoning to generate potential designs
from a data source for consideration by an engineering team [8]. The Ontology Modeling
Language (OML) uses an ontology-backed modeling language to facilitate automated
checks for satisfiability and consistency [6]. Yang et al. provide a rich review of ontologies
in SE [9].

One proposed advantage in using ontologies for knowledge representation is to
enable interoperability between different tools using the suite of underlying ontologies as
the common vocabulary to transfer knowledge between various tool metamodels. This
interoperability pursuit has been discussed in engineering research. NASA’s Jet Propulsion
Lab (JPL) has developed the openCAESAR platform and OML to support interoperability
between elements of a design process [5,6,10]. Moser’s Engineering Knowledge Base
(EKB) also aims to use ontologies to provide interoperability in intelligent engineering
applications (IEAs) [11].

While interoperability is a key theoretical advantage to the use of ontologies, in
practice, ontologies have been plagued with interoperability concerns that stem from
differing philosophical approaches to their development [12]. To help address this concern,
ontologies are often developed across a spectrum of abstractions. Top-level ontologies
(TLOs) are abstract ontologies meant to provide philosophical underpinning for lower-level
ontologies. Examples include the Basic Formal Ontology [12] and the Unified Foundational
Ontology [13]. While TLOs are often not directly applicable themselves, ontologies built
from a common TLO foster interoperability among mid-level and domain ontologies [12].
Mid-level ontologies expand on a TLO to provide more structure to domain specialists
in building their own domain ontologies. An example of a set of mid-level ontologies is
the Common Core Ontologies [14], built using BFO. Domain ontologies describe domain-
specific concepts. They are the level at which domain experts can be engaged to take the
body of knowledge available in a given domain and translate it into ontological form.
Application ontologies are specific to a given application. This may be an application in
a software context, such as an ontology that describes the SysML descriptive modeling
language [15].

SWTs allow explicit knowledge to be expanded via automated Description Logic (DL)
inferencing based on knowledge captured in ontology terms in the form of logical expres-
sions. This is undertaken using an open-world assumption (OWA), where information
is not assumed to be complete. Thus, things like minimum cardinality are not directly
assessable using SWT reasoners. Other SWT tools such as the Shapes Constraint Language
(SHACL) permit closed-world rules to be executed against ontology-tagged graphs.

2.2. Graph Theory

Ontologies provide a markup language for graphs of data, making them specialized
forms of a more general graph structure. Graphs are characterized by nodes and edges that
connect the nodes. In its most basic form, a graph’s edges are bidirectional, but a directed
edge can be introduced to make the graph a directed graph, or digraph. Further, edges can
be labeled to specify things like the relationship the edge represents. Thus, an ontology is a
“directed, labeled graph” [6].

Graph data representations are studied in the mathematical field of graph theory
and have been used to perform analysis and design algorithms for solving problems such
as the traveling salesman problem, shortest path problems, and network topology [16].
Graph representation within the systems engineering domain has seen broader inquiry
and application beyond ontology-aligned graph representation.

Medvedev et al. transformed an OPM model to a directed graph representation using
the Neo4j graph data store [17]. Using this graph representation, they were able to perform
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several analyses on the graph representation of the system, including longest/shortest
path calculations, centrality metrics (including PageRank and Eigenvector centrality), and
neighborhood queries [17]. Cotter et al. [18] analyzed SysML models through graph repre-
sentations of the models to analyze relationships between entities using this representation
to automatically detect different architecture patterns being used in the SysML models [18].
Mordecai et al. [19] looked at using mathematical category theory and graph data structures
in their approach. This structure allows for tool-agnostic representation of data that can
be transformed in various ways to provide reporting and analysis value. Herzig et al.
use a graph-centric pattern-matching approach to detect inconsistencies between multiple
viewpoints defined in SysML models [20].

2.3. Verification Tasks

Madni and Sievers delineate between traditional system verification, which answers
the question “Does the design meet the requirements?”, and model verification, which
answers the question “Is the model trustworthy?” [3]. They elaborate on this by noting that
verification should assess that a “model is sufficiently accurate to trust its predictions” [3].
This could be reframed as a model’s adherence to its own set of requirements. According
to NASA’s Handbook for Models and Simulation, model verification is “the process of de-
termining the extent to which [a model or simulation] is compliant with its requirements
and specifications as detailed in its conceptual models, mathematical models, or other
constructs” [21]. This is separate from model validation, which also plays a part in the
trustworthiness of the model. Madni and Sievers describe model validation as answering
the question “Does the model accurately describe the system?” [3]. NASA similarly defines
model validation as “the process of determining the degree to which a model or a simula-
tion is an accurate representation of the real world from the perspective of the intended
uses of the [models and simulations]. . .” [21].

Model verification allows movement of portions of the verification task to the left side
of the traditional systems Vee model for earlier verification. Madni and Sievers discuss
five different approaches to model verification: “Model Appraisal; Guided Modeling,
Simulation; Formal Proof; and Digital Twin and Digital Thread” [3]. Their category of
formal proof includes formal logic to assess model trustworthiness. Chapurlat et al. and
Nastov et al. [22,23] give similar approaches to model verification. Chapurlat et al. [24]
propose the executable, verifiable, and interoperable Domain-Specific Modeling Language
(xviDSML) and formal approaches to enable model verification. This approach of using
a modeling language that addresses verification within its syntax as a primary modeling
language in design can be compared to research at NASA’s Jet Propulsion Lab (JPL) using
the Ontological Modeling Language (OML) as a primary modeling language to describe
systems in a verifiable way [5,6,10].

The overall approaches cited by Madni and Sievers and Chapurlat et al. can be used
to perform model verification based on model requirements in multiple contexts, including
models of the system under design as well as models of the analysis system being used
in the design process. Additionally, model verification could refer to application-specific
requirements, such as a model’s adherence to a specific design methodology such as the
object-oriented systems engineering method (OOSEM) [25].

Rodano and Giammarco looked at verification of well-formed system architectures
and verified the architectures based on a list of axioms [26]. While their lists are useful
guides for developing verification rules for well-formedness questions in other contexts,
another important contribution of their work is the recognition of the inherent flexibility
needed in some verification tasks. Questions regarding the well-formed construction of a
model will by nature vary depending on context.

In this paper, verification of model well-formedness is performed using a context-
specific definition of well formed and an aggregation of deductive methods to check
the structure of the model. It models verification in the context of an ontology-aligned
representation of a model. Instead of adjusting the primary modeling language of the
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system under analysis, this research performs transformation from more traditional tooling
to a verifiable representation (ontology-aligned data) using the mapping interface of DEFII.
It focuses the use case on well-formed checks of a digital-thread system of analysis.

2.4. Digital Engineering Framework for Integration and Interoperability

The Digital Engineering Framework for Integration and Interoperability (DEFII) is an
approach to DE using SWTs [27] (Figure 1). At its core, DEFII enables users to align system
data to ontologies that provide formalized definitions of domain knowledge, mission
data, etc. This alignment allows for a tool-agnostic authoritative source of truth (AST)
that facilitates interoperability via exchanges of mission and system data. In the AST,
information is stored in a triplestore that aligns individual parameters with ontologies.
This enables a common data source approach to ensure information consistency. However,
the alignment to ontologies and the graph-based representation of the data hold data in a
form that can be mined for additional insights.
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The DEFII framework affords three different types of interfaces: the Mapping Interface,
the Specified Model Interface, and the Direct Interface.

The Mapping Interface takes a tool- or model-first perspective. Models being rep-
resented in SysML or another modeling language are parsed to determine ontologically
relevant material captured by the model in a process called “mapping”. This parsing and
mapping can be very tool specific, but it can conceptually refer to a broader modeling
language or structured data. For example, mapping from a SysML model is often per-
formed via explicit tagging of the model with stereotypes that correspond to classes in the
ontology [27,28].

The Specified Model Interface takes an ontology-aligned data-first perspective. It
exposes data to external tools in a specified way that enables tools to interact with the data
without having knowledge of the underlying ontologies. The interface is specified through
the use of a Model Interface Specification Diagram (MISD) [27], typically defined in SysML.
This interface references the ontology-aligned data and presents the data in a tool-agnostic,
ontologically unaware format to be read and written to by various tools.

The Direct Interface uses SWT tools to directly access the ontology-aligned data. Tools
like the SPARQL Protocol and RDF Query Language (SPARQL) [29] queries and Shapes
Constraint Language (SHACL) [30] shapes use the Direct Interface. This interface can be
compared to a data analyst using the Structured Query Language (SQL) to query databases
directly. The ability to interact with specificity enables unique opportunities to analyze and
manipulate the data.



Systems 2024, 12, 27 6 of 35

3. Methods
3.1. Semantic System Verification Layer

DEFII is intended to enable expansion across each interface. One such expansion is the
introduction of the System Semantic Verification Layer (SSVL) [31], as shown in Figure 1.
This verification layer uses a direct interface into the ontology-aligned data to perform
various verification tasks. To date, SHACL has been used to test for regular expressions and
existence [31] and SPARQL has been used to test for various open- and closed-world rules
based on a limited completeness definition [32]. The SSVL has been extended considerably
in the methods of the research presented.

3.2. Extend SSVL to Apply Three-Pronged Verification Approach

Once the system under analysis has been properly defined, the verification layer itself
can be applied. The SSVL enables direct interaction with the ontology-aligned data using
different tools to implement open- and closed-world reasoning. Three broad approaches
are used in the proposed SSVL: Description Logic reasoning, SHACL constraints, and
graph-based algorithms (Table 1).

Table 1. Example requirements categorized by verification prong.

# Requirement Verification Prong

1 All entitles of type A shall have as attribute at most 1 instance of B DL Reasoning

2 All entities of type C shall have as attribute at least 1 instance of D SHACL Constraint

3 A subgraph showing composition shall be a weakly connected digraph Graph-Based

3.2.1. Description Logic Reasoning

DL reasoning is the first prong of the verification layer. Ontology-aligned data should
be internally consistent. Given a robust ontology definition, many different types of
verification tasks can be performed in this framework.

Requirement 1 in Table 1 shows a DL-reasoning task. DL reasoning permits evaluation
of two variable logical expressions subject to an OWA. In Requirement 1, maximum
cardinality is identified as a constraint. An ontology might define a restriction on Class A
such that “Class A hasAttribute max 1 Class B”. This restriction will allow a DL reasoner
to check for consistency in the instance data aligned to the ontology definitions. An
inconsistency will be detected if Class A is connected to more than one instance of Class B
via the object property hasAttribute.

3.2.2. Closed-World Constraint Analysis

The second prong of verification uses SHACL to analyze the same dataset. While DL
reasoning is a powerful tool for consistency checks and the creation of logical entailments,
it is limited in analysis due to the OWA. Questions of existence or minimum cardinality
are typically unanswerable using DL reasoning with an OWA. SHACL uses “shapes” to
identify nodes within larger graph patterns that are evaluated against some constraint.
More complex checks are achieved using advanced features [33] such as SHACL SPARQL,
which enables custom constraints provided as SPARQL queries instead of using built-in
constraint types.

Requirement 2 in Table 1 is a minimum cardinality restriction of the form Class C hasAt-
tribute min 1 Class D. Since missing relations are not assumed to be non-existent under the
OWA, reasoning under a CWA is needed. A SHACL shape can express restrictions such as
that of Requirement 2. The full verification suite will often include many shapes.

3.2.3. Graph-Based Analysis

Graph-based analysis is the third prong of the verification layer. While graph-based
analysis is not specific to SWT, a range of analyses are enabled if the data can be assessed
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in a pure graph format. Flattening the multi-digraph ontology-aligned data into a simpler
directed graph where all edges denote the same or similar relationships allows for these
types of analyses.

For Requirement 3 in Table 1, a SPARQL query that pulls all nodes with the hasPart
composition relationship could result in the creation of a subgraph that only displays
the portions of the ontology-aligned data related to composition. This could then be
assessed to determine if it is weakly connected. A series of subgraphs across a series of
relationships (sequence, composition, etc.) could be created to verify many aspects of the
ontology-aligned data’s structure.

A SPARQL query can be used to construct a subgraph that looks at specific object
properties. Using the NetworkX Python library [34], a simple digraph can be created using
ordered pairs. More complicated queries can add additional details to the graph, such as
node and edge labels or edge weights. These can be ingested during graph creation, and
the NetworkX library can be used to perform additional graph-based analyses. For large
graphs that need a defined structure, general graph algorithms are well suited for analysis.

3.2.4. Update/Develop Ontologies to Align with Verification Tasks

The DEFII framework centers around ontology-aligned data. The SSVL accesses
ontology-aligned data via the Direct Interface provided by the DEFII framework. Thus,
proper ontological definitions and alignment to those definitions is a preliminary step to
performing the verification. Depending on the verification definition developed above,
this may require development of a completely new ontology. However, if the verification
needs are primarily domain focused, an existing domain ontology may provide adequate
coverage already or only need to be expanded to accommodate the particular verification
tasks identified.

3.2.5. Update Mapping to Accommodate Ontologies as Needed

Depending on the context, existing mapping may need to be updated to enable
mapping to the ontologies created or updated in this method. In previous research [27],
mapping is specific to the Cameo tool suite for SysML models annotated with Basic Formal
Ontology (BFO)-conformant ontology terms. The mapping is thus specific to Cameo’s
implementation of the SysML language, and it also ignores parts of the SysML structure
that do not aid in domain understanding of the system under design or analysis. Mapping
from a different tool or to capture aspects outside of the domain representations currently
used requires additional effort.

3.2.6. Aggregate Analyses to Form Top-Level Verification

Once the above steps are complete, the three-pronged verification approach can be
implemented. The results aggregated together produce a top-level result, where failure
(denoted as the numeric 1) of any prong results in a failure of the general verification task:

DL ∨ SHACL ∨ GRAPH = TopLevelResult (1)

Note that inconsistent ontologies that produce errors in the DL-reasoning prong of
the approach may have downstream effects as other analyses may depend on logical
entailments produced by reasoning.

This method is recursive and iterative. While ontology development was included as
a subsection of the DL-reasoning prong, ontology development is needed to perform all
three prongs of the verification task as they all use ontology-aligned data. Additionally,
some forms of reasoning may be used to simplify and generalize the verification tasks. For
example, in an aircraft design, a verification rule may require that the aircraft have landing
gear. However, the ontology may have many different types of landing gear identified as
subclasses of a more general landing gear class. Using taxonomical reasoning, any instance
of a subclass of landing gear could automatically be classified as the more general landing
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gear, so a verification rule could be written at a higher level of abstraction to cover all
landing gear types without specifying each type.

3.3. Verify Extended SSVL Approach

To verify the extended SSVL approach, a systematic test of the requirements defined
above is needed. In previous research [32], four rules were defined in an abbreviated
definition of a complete digital thread. In that example, faults were seeded in a manually
verified model under test to verify each fault could be recognized independently and in
combination with the other faults (16 tests total). The method presented here builds on this
approach but modifies it in two important ways.

First, it is often the case that the rules identified can be violated in multiple ways. For
example, a constraint that says a particular instance must have exactly two of a particular
property can be violated by having less than two or more than two. Thus, rules must be
further analyzed to determine all potential failure paths. Initial verification of the method
should consider all failure paths.

Second, while four rules are useful for demonstration purposes, it is likely that a
verification suite being used in practice will have far more than four rules. For example, in
the results below, 26 failure paths are identified. This results in 67,108,864 (226) potential
combinations for single failures of each failure path. SAIC’s Digital Validation Tool for
SysML model validation contains 224 rules, or 2.7 × 1067 potential failure combinations [2].
This presents a combinatorial problem. An exhaustive test of all combinations becomes
infeasible. To provide confidence in verification capabilities, a three-part test is presented:

1. Mapped-Graph Single Failure—This result aims to test each failure path in isolation
from beginning to end. This means that, where possible, faults are seeded directly
into the tool where they are expected to originate. This process tests both recognition
of the failure path and the mapping process for translating the model with seeded
fault into the ontology-aligned data.

2. Generated-Graph Single Failure—This result aims to test that a programmatically
generated graph produces results in line with a fully mapped graph. A base case
(no faults) generated from the standard mapping procedure can be used as a starting
point. Additional graphs can be generated to seed the base graph with the identified
faults associated with each failure path. These results can then be compared to the
results from the Mapped-Graph Single Failure results.

3. Generated-Graph Random Failure Selection—This result aims to test random com-
binations of the seeded faults to ensure that multiple failures can be detected. It
uses the base mapped graph and the methods used for seeding individual faults
used in Step 2 and combines these with a random number generator to generate
random combinations of the seeded failure. The random number is represented in
binary with the number of digits determined by the number of failure paths identified
(a 1 in the corresponding digit denotes that a particular failure path should be in-
serted). Further filtering for mutually exclusive failures may be needed depending on
the context. These randomly generated failure graphs can then be used to test the veri-
fication suite to detect if the results produced are expected based on the failure of each
individual fault.

While this portion of the methods will be repeated as the verification suite is expanded
or applied to different verification requirements, it will not be needed for each system or
mission to which the expanded SSVL is applied. Verification suites can be built and verified
themselves separately from individual projects and system efforts. Where they will need to
be re-verified based on an extension of modification of the definition will probably begin
as a heuristic, experience-based judgement to begin while additional research considers
this question.
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3.3.1. Application Context—Digital Thread

The methods presented in this paper are theoretically applicable across many different
verification contexts. To provide initial verification of the methods, these results apply the
methods to a digital-thread application context. In this context, the methods are used to
provide model verification for a multi-model analysis in a catapult case study.

3.3.2. Definition of System of Analysis in the DEFII Framework Context

The digital thread is a key DE concept. While the precise definition of the digital thread
is debated in the literature [35], in general, the digital thread looks to connect various models
from across domains to a central design or analysis regimen designed to achieve certain
objectives. DAU defines the digital thread as “An extensible, configurable and component
enterprise-level analytical framework that seamlessly expedites the controlled interplay
of authoritative technical data, software, information, and knowledge in the enterprise
data-information-knowledge systems, based on the Digital System Model template, to
inform decision makers throughout a system’s life cycle by providing the capability to
access, integrate and transform disparate data into actionable information” [4]. The concept
of the system of analysis (SoA) can be considered a subtype of the digital thread and refers
to an analyzing system that can be scoped across multiple levels of abstraction (mission,
system, subsystem, etc.) and where results from multiple models can be used to arrive at
the analysis objectives of the SoA itself. A simple SoA could be a linear system, where each
analysis feeds the next analysis, with the final result being the analysis objectives (Figure 2).
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However, Figure 3 shows a slightly more complicated example of an SoA. Models
1 and 2 independently feed Model 3. Model 1 also produces a top-level analysis objective,
but the other two analysis objectives are produced by Model 3. Here, the sequencing of
models is important, and changes to Model 1 necessitate a rerun of Model 3. As SoAs
become more complicated, the directed graphs that represent the individual parameters,
inputs, and outputs of the various models become more complicated. This makes visual,
manual “checking” of the construction more difficult and prone to error.

The SoA as constructed here is used by the DEFII framework to produce a model
interface that allows for each model represented in the diagram to be presented via REST
API from which external tools can access and manipulate data. This aggregation of multiple
models to show how the system under analysis and intermediate models interact with
each other to produce high level analysis objectives is referred to as the assessment flow
diagram (AFD) and is based on Cilli’s work on the integrated systems engineering decision
management (ISEDM) approach to trade studies [36]. Implementation of this method places
some requirements on how the digital thread is formed. Further, the DEFII framework has
some requirements for accurately producing the interface, including proper alignment of
the model to BFO [12] and Common Core Ontologies (CCOs) [14], which are compliant
ontologies to describe domain details.
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Verification related to the construction of the SoA is an appropriate test of the methods
presented in this paper. The structure of an SoA can be clearly defined and articulated and
provides opportunities to test each prong of the expanded SSVL. Applying the methods
to the SoA construction not only verifies the methods but also produces artifacts that will
be useful for future research and application to industry by providing a way to check the
SoAs that are currently being used and those that will be created in the future.

3.3.3. Establish Definition of Verification Task—Well-Formed Construction of an SoA

The first step to expanding the SSVL to verify the well-formed construction of the SoA
is to clearly define what a well-formed SoA is. The requirements for well-formed SoAs can
be divided into the following categories:

1. Allowed Connection—these requirements specifically look at how the SoA is con-
nected. This includes how the system under analysis is connected, how different
models are connected to each other, etc. Since connections are what make the edge
aspects of the network, these requirements are important.

2. Specification Requirements—these requirements describe things that should exist as
part of a well-formed SoA.
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3. DEFII Requirements—these requirements are specific to an SoA as implemented using
the DEFII framework. Generally, they will refer to ways that the SysML model should
be configured in order for the expected mapping to align the ontology data.

4. Graph-Based Requirements—these requirements are specific to a graph-based analysis
of a subgraph of the ontology-aligned data.

Consider the following ten requirements (Table 2).

Table 2. Requirement list for well-formed system of analysis.

# Requirement Requirement Category Assessment Approach Context
Dependent

1
Termination points shall not connect to like
points (input–input, output–output, value

property–value property)

Allowed
Connection DL Reasoning No

2 Each SoA Connector shall be terminated at
exactly two unique points

Allowed
Connection DL Reasoning, SHACL No

3 Each SoA Connector shall be connected to a
minimum of one <<model>> element

Allowed
Connection SHACL No

4 Models shall not connect to themselves Allowed
Connection DL Reasoning No

5 At least one analysis objective shall be present Specification SHACL No

6 Tool specification shall be included Specification SHACL Yes

7 All value properties shall be tagged with a value
in the loaded ontologies DEFII SHACL No

8 Models shall be instantiated (there should be a
value associated with every entry from the AFD) DEFII SHACL No

9
Constraint parameters shall be directional (in

SysML—have <<DirectedFeature>> stereotype
with provided or required applied)

DEFII SHACL No

10 SoA shall form a Directed Acyclic Graph (DAG)
when ordered by sequence Graph-Based Graph Analysis Yes

In addition to category, each requirement is divided into assessment approach and
context dependence. The assessment approach is a classification step to clarify where
the verification task will be performed. Context dependence is an extra classifier that
acknowledges that an application context needs flexibility to adapt to different use cases,
organizations, etc.

3.3.4. Develop the SoA Ontology

Ontology development occurs across different levels of abstractions, from TLOs that
provide philosophical underpinning to a suite of ontologies to promote interoperability to
application ontologies that are used for specific tasks but may not be tied to any TLO. The
SoA ontology is an ideal candidate for development as an application ontology. The SoA
ontology can be used across domains to describe a particular application (SoA verification).
As such, an SoA ontology’s tags need not follow a TLO’s rigid guidelines regarding
definition and inheritance as they are not meant to promote inoperability. Moreover, the
use of the application ontology creates a more lightweight solution, which results in a
more limited subset of data to be used for reasoning tasks. This is advantageous from a
computing perspective as higher levels of reasoning can be applied without overtaxing
computational resources.

The SoA ontology was built based on the axioms and types needed to describe the
abstract SoA (Figure 3) and DEFII ontology term-tagging requirements (in SysML using
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the stereotype feature) using terms from a reference ontology. There are several elements
to consider:

• System Under Analysis Value Properties (SuAVP)—these are base elements that will
be manipulated by the SoA. They represent relevant system, mission, environment,
etc. parameters. In DEFII, these value properties must be tagged with a class from a
top, mid-, or domain ontology.

• Models—these models are the intermediate simulations, analysis models, etc., that are
used in the SoA to characterize the system under analysis. The models include inputs
and outputs. In DEFII, these models must be tagged to identify them as models in
this context.

• Analysis Objectives—these are the objectives of the SoA. They can be included in the
mission, system, etc., architecture, or they could be defined at the analysis level as
external values that are being analyzed. In DEFII, these objectives must be tagged
with a class from a top, mid-, or domain ontology.

• Connectors—these are connections between the relevant items to define the graph of
the SoA. They show how the intermediate models connect to each other and how they
relate to the system under analysis and the analysis objectives. In SysML, these are
represented as binding connectors in a parametric diagram.

There are a few other elements not readily apparent on the parametric diagram in
Figure 3 that nonetheless need to be captured in the ontology definition.

• System Blocks—the system architecture uses composition relationships between blocks
to show the architectural hierarchy. While this is not necessarily explicitly displayed
in the parametric diagram, these describe the relation between SuAVPs and the sys-
tem. In DEFII, these objectives must be tagged with a class from a top, mid-, or
domain ontology.

• High-Level Analysis Block—DEFII requires the definition of a high-level “Act of
Analysis” to aggregate the models and systems associated with any given analysis. In
SysML, this is a block (an example can be seen in Figure 11).

Given the elements shown above, a rough outline of the ontological terms can be
created (Figure 4). Protégé [37] was used to develop the ontology.
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Intermediate elements refer to things not explicitly captured in the SoA, such as blocks
of a system architecture, that need to be evaluated to determine well-formedness. Ports
are subclassed by directed ports according to Requirement 9, which states that a port
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must include direction (implying that a check for undirected ports needs to result in an ill-
formed result).

Two primary classes were chosen: the SoA Structural Element and SoA Instance Ele-
ment. These correspond to SysML’s definitional components (e.g., blocks, value properties,
etc.) and instances of those definitional components, respectively. Within the semantic
layer, these classes tag sets of named individuals related by an SoA_is_related_to object
property (Figure 5).
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Beyond the class names and taxonomy, additional relations can be added to provide
for a richer ontology capable of reasoning and expanding the knowledge base. For example,
cardinality can be established to check for aspects of Requirement 1: an SoA Connector can
connect to a maximum of one input, output, SuAVP, and objective. Likewise, Requirement
3 specifies that the connector have exactly two termination points (min and max cardinality
set to two). Declaring object properties as functional allows for limits related to cardinality.
For example, the SoA_terminated_to_source object property requires that it can only be
used once per connector—if a connector has two “sources,” this should be considered an
inconsistent result. Composition can also be captured in the definition (Figure 6).
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The SoA instance element class and subclasses mirror the SoA structural element class
and subclasses in most respects. SoA Connectors do not need to be instantiated—they
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are only on the definition side. Additionally, the SoA_is_related_to object property relates
each instance to its corresponding structural element. This object property is symmetric
in that the relationship goes both directions. However, structural elements can have this
relationship with many different instances, but instance elements can have this relationship
with only one structural element. Additional details on ontology creation can be found in
Appendix A.

3.3.5. Update Mapping to Incorporate New Aspects Introduced in Ontology Development

With a base SoA ontology created, a mapping update is needed to extract SoA infor-
mation from the model. In DEFII, the SysML stereotype is used to explicitly identify the
terms in the SysML model that are related to ontology terms.

Since the mapping of the SoA is meant to be sparse and map only elements related to
the SoA application ontologies, an element’s relationship to the domain ontologies is not
explicitly mapped into the ontology-aligned data. However, there is a need to verify that
some elements that are part of the SoA have a domain ontology term to which they align
(e.g., Requirement 7). To accomplish this, the mapping process examines the terms that
are part of the SoA and checks that they have a corresponding term in the relevant BFO
compliant ontologies. The results of this check are stored as SoA_exists data properties; if
there is a corresponding ontology term, the SoA_exists property is true for the element. This
allows for verification that elements are properly tagged for later mapping to the domain
ontology for use in the broader DEFII framework.

3.3.6. DL Reasoning

Where possible, DL reasoning using the Pellet reasoner [38] was used to implement
rules. As these are based off the mapping extensions and ontology definition, no additional
development was needed.

3.3.7. Develop SoA Constraint Analysis

As many of the requirements listed in Table 2 specify constraints about existence, they
are evaluated using SHACL’s closed-world construct. SHACL constraints are written as
shapes that specify the pattern that needs to be checked. Figure 7 shows a simple SHACL
shape that checks for the existence of an SoA Analysis Instance (Requirement 8). The
“targetNode” designator allows for the shape to apply the constraint listed on all instances
of a particular class—in this case, the SoA Analysis Instance class. Thus, a series of shapes
can be built to address closed-world reasoning concerns.
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Constraints for more specific requirements were targeted using SHACL SPARQL
(Figure 8). For example, the SSVL verifies that SuAVP is properly instantiated by using
SPARQL to formulate a query confirming a node’s existence in relation to other elements in
the model.

SHACL support was added to DEFII using the library pySHACL [39] in Python.
This also allows for custom results messages that can be dynamically created based on
variable names from the SPARQL query, providing a useful means to troubleshoot an ill-
formed SoA.
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3.3.8. Develop Subgraph Generation and Analysis

The SoA use case also requires graph-based analysis. A simple example of a graph-
based analysis is the detection of cycles in a directed graph. While it may be possible to
construct a SPARQL ASK query to determine in pure SWTs whether there were cycles in an
SoA, graph-based analysis provides a more general solution for assessing the graph. This
is especially true since the transformation from ontology-aligned data to a simple digraph
is both a simple procedure and a useful transformation to have for many future analyses
unrelated to well-formed construction checks, such as impact analysis.

To look for sequencing, the current approach uses the SoA_terminates_toward and
SoA_informs object properties to establish the two different relationships that relate to
sequencing in the ontology-aligned graph. Nodes connected by these properties were first
extracted via SPARQL, resulting in an ordered list of nodes that was then transformed into
digraphs and analyzed using the NetworkX [34] Python library (Figure 9).

3.4. Apply SoA Analysis to Catapult Case Study

While the requirements and verification suite were developed using a simple, abstract
SoA, a more complex, domain-based case study provides more insight into the capabilities
provided by the approach and provides better assessment of the methods presented. A
mechanical catapult system, which is a capability of a larger mission environment, was
chosen as the application domain for demonstrating results [40] (Figure 10).

In the mission and system architecture, five analysis objectives were chosen:

• Impact Angle;
• Flight Time;
• Circular Error Probable (CEP);
• Range;
• Impact Velocity.
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To determine the values for these five analysis objectives, a series of intermediate
models are used. A geometry model that uses commercial CREO CAD software provides
geometry information for various designs. A Fire Simulation model developed in MATLAB
simulates the firing of the catapult. Multiple error models developed in Python provide
error analyses. The application of these models to a top-level analysis block and the system
under analysis is shown in the SoA bdd (Figure 11).
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The connections between the models, system under analysis, and analysis objectives
are shown in a parametric diagram representation of the AFD (Figure 12). The AFD gives
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specific details on how the models are connected to each other and has implicit sequencing
information in it.
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In this example, there are several layers of abstraction (mission, system, subsystem,
etc.) visible and value properties from multiple levels of abstraction inform the AFD. The
commercial CAD software model provides many of the base design parameters that have
been characterized in the SysML model, and the simulation and error analysis models
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transform those base design parameters into the higher-level analysis objectives. The
model graph is not too complex that observation of the AFD cannot easily yield the correct
sequencing of model runs, but there are enough connections and relations to communicate
the complicated nature that higher levels of multidisciplinary analysis require.

4. Results

Verification of the catapult case study begins with a manually verified SoA. In this base
case (C0), all tests pass, and the SoA is declared well formed according to the definition
detailed above. To verify that faults can be detected, faults can be systematically seeded
into the base case to verify the pattern can be identified. However, as noted in the Methods
section, each requirement must be analyzed to determine the different failure paths that
could result in a failure of the requirement. For example, Requirement 1 states that like
components cannot be connected. However, this requirement can be violated in multiple
ways—an output can connect to an output, an input can connect to an input, etc. Thus,
the requirements were expanded to identify each type of violation encompassed by a
requirement, which resulted in 26 unique failure paths (Table 3). These are used to create
initial test cases.

Table 3. Expanded requirement list.

C# Req # Description

1 Termination points shall not connect to like points (input–input, output–output, value property–value property)

C1 1a Input → Input

C2 1b Output → Output

C3 1c SoA Objective → SoA Objective

C4 1d Value Property of SuA → Value Property of SuA

C5 1e Value Property of SuA → SoA Objective

2 Each SoA Connector shall be terminated at exactly two unique points

C6 2a SoA Connector with 1 terminus

C7 2b SoA Connector with 3 termini

C8 3 Each SoA Connector shall be connected to a minimum of one <<model>> element

4 Models shall not connect to themselves

C9 4a Output → Output of same model

C10 4b Input → Input of same model

C11 4c Output → Input of same model

C12 5 At least one objective shall be present and identified

C13 6 Tool Spec shall be included for all models

7 All blocks and VPs associated with SoA shall be stereotyped with value in ontology

C14 7a Block shall be stereotyped

C15 7b SuAVP shall be stereotyped

C16 7c SoA Objective shall be stereotyped (beyond SoAObjective)

8 Models shall be instantiated (there shall be a value associated with every entry from the AFD)

C17 8a No Analysis Instantiation

C18 8b Instantiation with model missing

C19 8c Instantiation with SuAVP missing

C20 8d Instantiation with Objective missing
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Table 3. Cont.

C# Req # Description

C21 8e Instantiation with Tool Spec Missing

9 Constraint Parameters shall be directional (in SysML—have <<DirectedFeature>> stereotype with provided or
required applied)

C22 9a No DirectedFeature

C23 9b DirectedFeature without direction specified

C24 9c DirectedFeature with providedRequired specified

10 SoA shall form a Directed Acyclic Graph (DAG) when ordered by sequence

C25 10a Output of model to input of previous model

C26 10b Output of model to Value Property to create a cycle

While each requirement is independent, there are several test cases that will produce
failures in multiple ways. For example, the test that an output of a model cannot connect
to an input of the same model can be detected by open-world reasoning, closed-world
reasoning, and graph analysis.

4.1. Open-World Reasoning Result

Test Case C10 states that an input of one model cannot connect to another input of the
same model. This is one of the ways that a model can connect to itself. Figure 13 shows
a partial parametric diagram with the seeded fault. Table 4 provides the results from the
three-pronged analysis. This test case only fails DL reasoning and passes the closed-world
and graph analyses used in this research. A message is provided to guide the modeler
toward the inconsistent elements that need to be resolved.
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Table 4. Results for C10 showing inconsistency discovered through DL reasoning.

Scenario
Name

Scenario
Description DL Reasoning SHACL GRAPH Pellet Message

C10

Gravity to Air
Temp Inputs on
Fire Simulation

Model

1 0 0

1) Functional SoA_terminated_to_target
09de70c2-0dfd-4599-8ebe-1dfaab9b7d61_SoA

SoA_terminated_to_target
69ec40fc-3edd-4635-8e56-f21431071a86_SoA

09de70c2-0dfd-4599-8ebe-1dfaab9b7d61_SoA
SoA_terminated_to_target

a4f578a8-ce36-4417-ad15-81f982ebf855_SoA

The Pellet reasoner’s explanation shows that the SoA_terminated_to_target object prop-
erty is a functional property. Yet, the object property is used twice for element “09de70c2-
0dfd-4599-8ebe-1dfaab9b7d61_SoA.” This results in an inconsistency in the ontology.
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Note that while a SHACL constraint could be defined to catch this failure, the authors
consider it best practice to apply restrictions in DL reasoning where possible. Robust
ontological definitions have reuse value outside of this verification task by enabling better
reasoning capability that can be used elsewhere. Thus, creation of a constraint within the
ontology definition is often the better option when available for reusability and maintainability.

4.2. Closed-World Reasoning Result

Test Case C16 states that an SoA Objective must be tagged with an ontology term
beyond the SoAObjective tag (which is only an application ontology term). This is a
question of existence that requires a closed-world reasoning approach to answer. Figure 14
shows the specification for the objective in question, which has the domain ontology term
CircularErrorProbability removed. Table 5 shows the results of the three analyses.
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Table 5. Results for C16 showing SHACL violation.

Scenario
Name Scenario Description DL Reasoning SHACL GRAPH SHACL Messages

C16
Removed

CircularErrorProbability
(CEP) from objective

0 1 0
Violation: Requirement 7—Value

Property: ‘CEP’ is not tagged with a
loaded ontology term

The SHACL message uses variables captured in the SPARQL-based constraint to
construct a descriptive message that enables quick navigation of the model to correct
the defect.

4.3. Graph-Based Analysis Result

C25 and C26 are both specifically tied to the graph-based Requirement 10, which states
that the SoA must be a DAG. Figure 15 shows a portion of a traditional directed graph
view (created using GEPHI [41]) of the SoA with the detected cycle annotated. This cycle
was created in C26. It is not a violation for an output port to be used to inform an SuAVP.
Likewise, it is not a violation for that same SuAVP to act as an input to a model. Both of
these are performed with the geometry model and represent clear use cases for design tasks
in a multidisciplinary design project. However, the cycle is created by allowing the SuAVP
that is written to feedback into a model that eventually affects the model that created
this output.

4.4. Mapped and Generated Single-Test Results

The first two tests involve mapped and generated single-test results. Mapping oc-
curred from variations on the base, manually verified test case (C0). Generated results
began with this same base case but programmatically inserted failures to the graph. RD-
FLib [42] was used to interact with the graphs in python.
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Table 6 shows the Mapped Results and the Generated Single Failure results. Top-level
results match between the two. At the individual prong level, C1 and C2 show differences
in the graph-based analysis. This can be attributed to the inconsistency of the ontology.
In the Mapped Results, graph generation was built on an inconsistent ontology that still
contained entailments, which enabled a cycle to be created and detected. In the generated
results, the underlying graph was slightly different, so the reasoned graph did not produce
a cycle. This reveals an important principle that inconsistent ontologies may produce errors
downstream.

Table 6. Mapped-graph vs. generated-graph single results.

Mapped Results Generated Results

Scenario
Name

DL
Reasoning SHACL GRAPH DL

Reasoning SHACL GRAPH

C0 0 0 0
C1 1 0 1 1 0 0
C2 1 0 1 1 0 0
C3 1 1 0
C4 1 1 0
C5 1 1 0
C6 0 1 0 0 1 0
C7 1 0 0
C8 0 1 0 0 1 0

C9 1 0 0 1 0 0

C10 1 0 0 1 0 0

C11 1 0 1 1 0 1

C12 0 1 0 0 1 0

C13 0 1 0 0 1 0

C14 0 1 0 0 1 0

C15 0 1 0 0 1 0

C16 0 1 0 0 1 0

C17 0 1 0 0 1 0

C18 0 1 0 0 1 0

C19 0 1 0 0 1 0

C20 0 1 0 0 1 0
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Table 6. Cont.

Mapped Results Generated Results

Scenario
Name

DL
Reasoning SHACL GRAPH DL

Reasoning SHACL GRAPH

C21 0 1 0 0 1 0

C22 0 1 0 0 1 0

C23 0 1 0 0 1 0

C24 0 1 0 0 1 0

C25 0 0 1 0 0 1

C26 0 0 1 0 0 1
Gray Cells Indicate Test Not Performed; Red Cells Indicate Difference Between Mapped and Generated Results.

Additionally, C3, C4, C5, and C7 were only built using the generated approach. These
represent failures that would more likely be created with a mapping error than with a
SysML modeling issue. For example, C7 checks for an SoA connected with three terminals.
This is not possible in Cameo’s SysML authoring suite—a SysML binding connector can
only connect to two points. However, it is possible for an error in mapping or an SoA
generated from a source different than SysML to produce an SoA connector with more than
two terminals.

4.5. Generated-Graph Random Failure Test Results

While the previous two tests looked at each fault in isolation, the third test checks
for combinations of patterns to build trust in the results. One hundred additional test
cases were generated at random. A random number represented in binary (26 digits) was
generated, with 1 indicating that the corresponding failure be inserted and 0 indicating
that the corresponding failure be omitted. For example, RTC1 seeds ten separate faults
(C1, C4, C10, C12, C14, C15, C20, C24, C25, and C26). Additionally, mutually exclusive test
cases were noted, and generated test cases were filtered to account for these limitations.
For example, C3 and C12 require objectives and no objectives, respectively, so they are
incompatible to be tested together.

Expected results are generated using OR logic between the individual results for
each seeded defect (Table 7). The full 100 test cases passed with expected results (see
Appendix B).

Table 7. Abbreviated results from Generated-Graph Random Failure.

Scenario Name Scenario Description Expected
Result DL Reasoning SHACL GRAPH Pass

RTC1 11100010000110101000001001 [1, 1, 1] 1 1 1 TRUE

RTC2 11100101000110011111110100 [1, 1, 1] 1 1 1 TRUE

RTC3 01101111000110001000010010 [1, 1, 1] 1 1 1 TRUE

RTC4 00100111000000000000010110 [1, 1, 0] 1 1 0 TRUE

RTC5 01001000100101011001101001 [1, 1, 1] 1 1 1 TRUE

RTC6 11100111001001000010101000 [1, 1, 1] 1 1 1 TRUE

RTC7 01001011000000001110111000 [1, 1, 1] 1 1 1 TRUE

RTC8 00110101001011000010100001 [1, 1, 0] 1 1 0 TRUE

RTC9 11010101100011111110001000 [1, 1, 1] 1 1 1 TRUE
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Table 7. Cont.

Scenario Name Scenario Description Expected
Result DL Reasoning SHACL GRAPH Pass

RTC10 10010000001000010001100111 [1, 1, 1] 1 1 1 TRUE

. . . . . . . . . . . . . . . . . . . . .

RTC91 00100101001011000110110101 [1, 1, 0] 1 1 0 TRUE

RTC92 00100110101010101101000011 [1, 1, 0] 1 1 0 TRUE

RTC93 01000110000001100000001001 [1, 1, 1] 1 1 1 TRUE

RTC94 11000111001101001101011101 [1, 1, 1] 1 1 1 TRUE

RTC95 01100001001010101010000011 [1, 1, 1] 1 1 1 TRUE

RTC96 01000001100010111010000010 [1, 1, 1] 1 1 1 TRUE

RTC97 10011010101111000000110100 [1, 1, 1] 1 1 1 TRUE

RTC98 10110000010101101011100001 [1, 1, 1] 1 1 1 TRUE

RTC99 11011010000110100010000010 [1, 1, 1] 1 1 1 TRUE

RTC100 11110001100110010110101000 [1, 1, 1] 1 1 1 TRUE

5. Discussion

Application of the expanded SSVL to a system of analysis shows correct operational
results of the current SSVL implementation. Analyses using both SWTs and graph-based
analysis are performed to provide model verification that accounts for multiple constraint
types and perspectives on the model data. With the catapult and SoA analysis, this
translates to higher confidence in construction of a particular type of digital thread (the
SoA), which in turn builds confidence in the analysis objective results of the SoA. Further,
application to two case studies (the abstract SoA and the catapult) emphasizes the flexibility
of the method and the domain-neutral nature of the SoA analysis.

Additionally, the discovery of inconsistencies in the SoA’s construction can provide
partial validation of the digital thread. An error in configuration may produce an incon-
sistent result related only to verification—the SoA was not built according to the model
requirements. However, in a complex SoA, an inconsistency could be detected when each
intermediate analysis team believes their analyses are “correct.” This result would still be
a verification result—the SoA was not built according to the model requirements—but it
would also yield a validation result that would promote discussion amongst the individual
teams to determine how their analysis models interact and produce inconsistent results
that may produce a model outcome that does not accurately represent the problem they are
trying to solve.

During testing it was observed that inconsistencies caused by violations of rules and
detected by the DL-reasoning prong may produce downstream effects. It is thus recom-
mended that these issues be remediated prior to pursuing the next two prongs of the SSVL
approach. Nonetheless, extensive testing shows top-level results using the three-pronged
verification approach are effective. Errors seeded intentionally and programmatically were
consistently detected. Further, the types of failures detected as patterns are not always
readily assessed via manual inspection. For example, a cycle in a graph may be several
layers deep, making visual inspection more difficult to perform. However, by transforming
the SoA into a directed graph view based on sequencing information, a cycle could be
detected using standard algorithms from graph theory for cycle detection.

Over the course of developing the ontologies, SHACL shapes, and graph analysis,
several previous errors were also discovered in the catapult AFD, which has been used
extensively for other research. One parameter had an incorrect stereotype that had never
been noticed, and several parameters that were present but not used in various iterations
of the model were not instantiated. Thus, even a well-established model was found to be ill
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formed. While the ill-formed nature of the model did not affect operation of the model in its
given research context, ill-formed models can produce negative consequences that are not
readily apparent, which underscores the value of developing methods for systematically
checking models.

The methods are easily extended by enriching the ontology definition, adding shapes
to identify additional constraints, and using more graph-based analyses. This extensibility
provides flexible application of the methods and for effective customization to better fit
specific systems, applications, organizations, etc.

Verification of the methods was performed using an SoA ontology and well-formedness
definition and mapping from a SysML v1 model. However, the methods presented are
tool-agnostic, which creates opportunity for expansion beyond SysML v1 as the generation
point. For example, the additional test cases produced in the Results section were created
using the Python library RDFLib [42]; while these were built using adaptations of the base
case that was mapped from SysML, it would not be difficult to use a package like RDFLib
to author completely original SoAs or make desired modifications to an existing SoA. Alter-
natively, SoAs could be defined in the new SysML v2 [43] and mapped to ontology-aligned
data. The methods provide flexibility and extensibility.

5.1. Limitations

The results produced in this research are for a catapult model. Research sponsors
provided the surrogate models used as intermediate analysis models in the digital thread.
Because these models are surrogates to enable collaborative research in an open environ-
ment, the models have not been connected to real-world implementations of the systems
designed. As the case study presented in this research focuses on model verification of the
digital thread and not verification of the individual model analyses, the lack of hardware
implementation is seen as reasonable. However, physical verification does reinforce trust
in model verification, so this limitation is acknowledged.

Requirements used in the SoA use case are developed heuristically. Each requirement
is included to address particular concerns or applications, but the developed requirements
are limited in scope and should be seen as a starting point to tailor to a particular application
or organization’s standard practices and may have gaps depending on the context.

The testing methodology chose one instance of each failure path to seed into the model
being verified. Multiple instances of the same failure path in different parts of the model
were not tested (due to combinatorial explosion). However, the implementation approach
to verification along each prong of the SSVL is not expected to yield different results based
on multiple instances of the same failure path.

As mentioned above, some SHACL constraints required SHACL SPARQL, an ad-
vanced SHACL feature [33]. Unfortunately, this advanced feature is not supported by as
many tool vendors as the basic SHACL specification. However, pySHACL [39], an open-
source SHACL validation engine connected to the popular open-source RDFlib Python
library [42], has included the SPARQL advanced feature. Given the relatively small size of
the SoA repository, using a third tool may be a viable option even if a different triplestore
is used for primary operation.

5.2. Future Work

Verification of the methods was based on an SoA application ontology and a catapult
analysis case study. Additional work to verify the methods in other settings, including
domain verification and system/mission level requirements verification, is a potentially
fruitful avenue of future research. While the methods will certainly work at other lev-
els of abstraction, application to different types of verification tasks will surely be in-
structive to how to best use and potentially expand the methods to provide more robust
verification functionality.

Even within the same use case, future research can yield new insights. Well-formed
construction is a static query—was the SoA setup correctly? Given the graph-based view



Systems 2024, 12, 27 26 of 35

and the explicit connection to sequence in the definition of the SoA, dynamic queries on
status of the SoA become apparent. For example, the SSVL might instead verify that the
current state of the SoA is well formed or trustworthy. Additionally, there are elements of
construction that do not necessarily need to depend on the system modeler. There may be
ways to automate expansion according to an ontological definition of a context-dependent
SoA that would enable the ontology to enrich the knowledge base further and reduce
repeat work by human intervention, both increasing efficiency and reducing the risk of
accidental error.

While graph-based assessments provide useful insight into the construction of the SoA,
there is also a wealth of directions to bring the broader graph theory corpus of knowledge
into the systems world through the representation used in this research. Critical path
analysis across multiple edge weightings and automated runs of a multi-model digital
thread are a few examples of research that could expand the representation.

The verification of the methods developed ways to automatically seed failures into an
existing base graph to generate additional failure cases. Techniques built in this verifica-
tion step could be extended to provide automated or assisted generation of graphs. For
example, certain SoAs that are commonly used in an organization could serve as reference
architectures in graph representation that could be programmatically customized to fit the
current design space. Further research into the automated generation of graphs may also
be worthwhile.

6. Conclusions

The research presented in this paper demonstrates a three-pronged analysis that uses
graph approaches, including Semantic Web Technologies and broader graph theoretic
algorithms, to assess ontology-aligned data. The methods presented are applied to veri-
fication of the construction of a particular form of the multi-model, multi-domain digital
thread, termed the system of analysis. This verification of the SoA was then applied to a
catapult case study to demonstrate how the general method presented in this research can
be further refined to address specific use cases. Each prong of the analysis—open-world
reasoning based on Description Logic, closed-world reasoning based on constraints defined
in SHACL, and graph-based structural analysis—provides a portion of the verification task
assessing the SoA as constructed. When the results are aggregated, a robust assessment of
overall construction is delivered. These results provide a baseline that can be extended into
a broader verification approach for multi-model system designs and analyses.
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Appendix A. System of Analysis Ontology

The following system of analysis ontology is provided as a series of screenshots showing
various aspects of the classes, object properties, data properties, and subclass axioms.
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Appendix B. Generated Test Case Full Results

Table A1. Unabbreviated Results from Generated-Graph Random Failure.

Scenario Name Scenario Description Expected
Result DL Reasoning SHACL GRAPH Pass

RTC1 10101100000010011100111111 [1, 1, 1] 1 1 1 TRUE

RTC2 01110000001010001011011111 [1, 1, 1] 1 1 1 TRUE

RTC3 01100000001111000000110000 [1, 1, 1] 1 1 1 TRUE

RTC4 00100001100110110110001011 [1, 1, 1] 1 1 1 TRUE

RTC5 01111100000110001011000101 [1, 1, 1] 1 1 1 TRUE

RTC6 11101000000100111110101010 [1, 1, 1] 1 1 1 TRUE

RTC7 01101001001010010100010011 [1, 1, 1] 1 1 1 TRUE

RTC8 00111001100000000000011100 [1, 1, 0] 1 1 0 TRUE

RTC9 00101001001100101101001010 [1, 1, 0] 1 1 0 TRUE

RTC10 10111010101011011111011110 [1, 1, 1] 1 1 1 TRUE

RTC11 00011000101011011001110110 [1, 1, 1] 1 1 1 TRUE

RTC12 01010101001000011100100011 [1, 1, 1] 1 1 1 TRUE
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Table A1. Cont.

Scenario Name Scenario Description Expected
Result DL Reasoning SHACL GRAPH Pass

RTC13 11001100100011001111010000 [1, 1, 1] 1 1 1 TRUE

RTC14 00101100000010000111110001 [1, 1, 0] 1 1 0 TRUE

RTC15 01100111101110001001001001 [1, 1, 1] 1 1 1 TRUE

RTC16 10111010101010000010111111 [1, 1, 1] 1 1 1 TRUE

RTC17 01011100000110011101101111 [1, 1, 1] 1 1 1 TRUE

RTC18 00101011101000011000001000 [1, 1, 1] 1 1 1 TRUE

RTC19 10010100001010000001101100 [1, 1, 1] 1 1 1 TRUE

RTC20 00100000101110110011000001 [1, 1, 1] 1 1 1 TRUE

RTC21 01101011101101000001011011 [1, 1, 1] 1 1 1 TRUE

RTC22 00101011101110010111110100 [1, 1, 1] 1 1 1 TRUE

RTC23 10000110001011111011100010 [1, 1, 1] 1 1 1 TRUE

RTC24 01011110001011101011000011 [1, 1, 1] 1 1 1 TRUE

RTC25 11101111000000010110010011 [1, 1, 1] 1 1 1 TRUE

RTC26 00011000000100011011000011 [1, 1, 1] 1 1 1 TRUE

RTC27 11001011000111100010000011 [1, 1, 1] 1 1 1 TRUE

RTC28 10100100101111001111000011 [1, 1, 1] 1 1 1 TRUE

RTC29 00011111001111010101000100 [1, 1, 1] 1 1 1 TRUE

RTC30 11101001100101001000000010 [1, 1, 1] 1 1 1 TRUE

RTC31 11010010001010000011111101 [1, 1, 1] 1 1 1 TRUE

RTC32 01110001101101000011101100 [1, 1, 1] 1 1 1 TRUE

RTC33 10001101001010011111101000 [1, 1, 1] 1 1 1 TRUE

RTC34 10000101000001101000100011 [1, 1, 1] 1 1 1 TRUE

RTC35 01001000010101011101110101 [1, 1, 1] 1 1 1 TRUE

RTC36 10011001001100011111001001 [1, 1, 1] 1 1 1 TRUE

RTC37 11111101001111011110100001 [1, 1, 1] 1 1 1 TRUE

RTC38 10000000011010100000001001 [1, 1, 1] 1 1 1 TRUE

RTC39 00011010000001011111111100 [1, 1, 1] 1 1 1 TRUE

RTC40 11110100101101010010001110 [1, 1, 1] 1 1 1 TRUE

RTC41 01101011000010011100111000 [1, 1, 1] 1 1 1 TRUE

RTC42 00110001000000100010100010 [1, 1, 0] 1 1 0 TRUE

RTC43 00100101100110011111000001 [1, 1, 1] 1 1 1 TRUE

RTC44 00100011001001000111100010 [1, 1, 0] 1 1 0 TRUE

RTC45 01000001100011111000100000 [1, 1, 1] 1 1 1 TRUE

RTC46 00010000000111010100011100 [1, 1, 1] 1 1 1 TRUE

RTC47 11011101100010111100000010 [1, 1, 1] 1 1 1 TRUE

RTC48 10010000101001001100010100 [1, 1, 1] 1 1 1 TRUE

RTC49 11011010101100001100100111 [1, 1, 1] 1 1 1 TRUE

RTC50 00010100101011111000100011 [1, 1, 1] 1 1 1 TRUE

RTC51 01011000100011010110110011 [1, 1, 1] 1 1 1 TRUE

RTC52 10010000001000000000001101 [1, 1, 1] 1 1 1 TRUE
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Table A1. Cont.

Scenario Name Scenario Description Expected
Result DL Reasoning SHACL GRAPH Pass

RTC53 00111000101110101001001000 [1, 1, 0] 1 1 0 TRUE

RTC54 01010100101110110101001011 [1, 1, 1] 1 1 1 TRUE

RTC55 00100011001110000011001011 [1, 1, 0] 1 1 0 TRUE

RTC56 10110001000100000000000001 [1, 1, 1] 1 1 1 TRUE

RTC57 01101010000000010001000011 [1, 1, 1] 1 1 1 TRUE

RTC58 11001101000011001100110011 [1, 1, 1] 1 1 1 TRUE

RTC59 01010000101111110100101001 [1, 1, 1] 1 1 1 TRUE

RTC60 11111000101111000111110101 [1, 1, 1] 1 1 1 TRUE

RTC61 10010011001111101010100011 [1, 1, 1] 1 1 1 TRUE

RTC62 11010111001100101001000001 [1, 1, 1] 1 1 1 TRUE

RTC63 01001001100000001110101000 [1, 1, 1] 1 1 1 TRUE

RTC64 10100011001010000001100000 [1, 1, 1] 1 1 1 TRUE

RTC65 11011101001111000001011001 [1, 1, 1] 1 1 1 TRUE

RTC66 10000011100000001111101000 [1, 1, 1] 1 1 1 TRUE

RTC67 11000000011010010001101001 [1, 1, 1] 1 1 1 TRUE

RTC68 11111111000010001110111010 [1, 1, 1] 1 1 1 TRUE

RTC69 00000001001110010001111111 [1, 1, 1] 1 1 1 TRUE

RTC70 01010001000101100110001010 [1, 1, 1] 1 1 1 TRUE

RTC71 01000111100010001110000011 [1, 1, 1] 1 1 1 TRUE

RTC72 00111000010110010001000101 [1, 1, 1] 1 1 1 TRUE

RTC73 10000111001000010011100111 [1, 1, 1] 1 1 1 TRUE

RTC74 11010111000011010001101100 [1, 1, 1] 1 1 1 TRUE

RTC75 11110110000010001100101111 [1, 1, 1] 1 1 1 TRUE

RTC76 11001110100010101000000010 [1, 1, 1] 1 1 1 TRUE

RTC77 11101111100001011111011011 [1, 1, 1] 1 1 1 TRUE

RTC78 11010111000100000111110101 [1, 1, 1] 1 1 1 TRUE

RTC79 10010011000000011101011100 [1, 1, 1] 1 1 1 TRUE

RTC80 10111000000100000010111001 [1, 1, 1] 1 1 1 TRUE

RTC81 11011011000110001001100110 [1, 1, 1] 1 1 1 TRUE

RTC82 10011100101110011001110001 [1, 1, 1] 1 1 1 TRUE

RTC83 00100100100011011100100111 [1, 1, 1] 1 1 1 TRUE

RTC84 00000000000010011101011111 [1, 1, 1] 1 1 1 TRUE

RTC85 01101000011011001011010110 [1, 1, 1] 1 1 1 TRUE

RTC86 01011001100100011100111111 [1, 1, 1] 1 1 1 TRUE

RTC87 10110011101010010101001011 [1, 1, 1] 1 1 1 TRUE

RTC88 10000101101000011110010110 [1, 1, 1] 1 1 1 TRUE

RTC89 10110011000001000111101101 [1, 1, 1] 1 1 1 TRUE

RTC90 01010101100100001111001000 [1, 1, 1] 1 1 1 TRUE

RTC91 01001000000001000001110111 [1, 1, 1] 1 1 1 TRUE

RTC92 11010100100000011010110110 [1, 1, 1] 1 1 1 TRUE
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Table A1. Cont.

Scenario Name Scenario Description Expected
Result DL Reasoning SHACL GRAPH Pass

RTC93 11110111000001110101100000 [1, 1, 1] 1 1 1 TRUE

RTC94 10101000101101010110101010 [1, 1, 1] 1 1 1 TRUE

RTC95 10110100100010000011011100 [1, 1, 1] 1 1 1 TRUE

RTC96 00101001101000110011100010 [1, 1, 1] 1 1 1 TRUE

RTC97 11111110001010011011100011 [1, 1, 1] 1 1 1 TRUE

RTC98 01001000011110111010001000 [1, 1, 1] 1 1 1 TRUE

RTC99 10010001101101001100011111 [1, 1, 1] 1 1 1 TRUE

RTC100 11110110101000001111110111 [1, 1, 1] 1 1 1 TRUE

References
1. Ansys ModelCenter|MBSE Software. Available online: https://www.ansys.com/products/connect/ansys-modelcenter

(accessed on 19 August 2023).
2. SAIC. Digital Engineering Validation Tool. Available online: https://www.saic.com/digital-engineering-validation-tool (accessed

on 11 December 2022).
3. Madni, A.M.; Sievers, M. Model-Based Systems Engineering: Motivation, Current Status, and Research Opportunities. Syst. Eng.

2018, 21, 172–190. [CrossRef]
4. Defense Acquisition University Glossary. Available online: https://www.dau.edu/glossary/Pages/Glossary.aspx#!both%7CD%

7C27345 (accessed on 15 May 2022).
5. Wagner, D.A.; Chodas, M.; Elaasar, M.; Jenkins, J.S.; Rouquette, N. Semantic Modeling for Power Management Using CAESAR.

In Handbook of Model-Based Systems Engineering; Madni, A.M., Augustine, N., Sievers, M., Eds.; Springer International Publishing:
Cham, Switzerland, 2022; pp. 1–18. ISBN 978-3-030-27486-3.

6. Wagner, D.A.; Chodas, M.; Elaasar, M.; Jenkins, J.S.; Rouquette, N. Ontological Metamodeling and Analysis Using openCAESAR.
In Handbook of Model-Based Systems Engineering; Madni, A.M., Augustine, N., Sievers, M., Eds.; Springer International Publishing:
Cham, Switzerland, 2022; pp. 1–30. ISBN 978-3-030-27486-3.

7. Hennig, C.; Viehl, A.; Kämpgen, B.; Eisenmann, H. Ontology-Based Design of Space Systems. In The Semantic Web—ISWC 2016;
Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2016; Volume 9982, pp. 308–324. ISBN 978-3-319-46546-3.

8. Eddy, D.; Krishnamurty, S.; Grosse, I.; Wileden, J. Support of Product Innovation With a Modular Framework for Knowledge
Management: A Case Study. In Proceedings of the Volume 2: 31st Computers and Information in Engineering Conference, Parts
A and B, Washington, DC, USA, 28–31 August 2011; ASMEDC: Washington, DC, USA, 2011; pp. 1223–1235.

9. Yang, L.; Cormican, K.; Yu, M. Ontology-Based Systems Engineering: A State-of-the-Art Review. Comput. Ind. 2019, 111, 148–171.
[CrossRef]

10. Wagner, D.; Kim-Castet, S.Y.; Jimenez, A.; Elaasar, M.; Rouquette, N.; Jenkins, S. CAESAR Model-Based Approach to Harness
Design. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; IEEE: New York, NY, USA,
2020; pp. 1–13.

11. Moser, T. The Engineering Knowledge Base Approach. In Semantic Web Technologies for Intelligent Engineering Applications; Biffl, S.,
Sabou, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 85–103; ISBN 978-3-319-41488-1.

12. Arp, R.; Smith, B.; Spear, A.D. Building Ontologies with Basic Formal Ontology; MIT Press: Cambridge, MA, USA, 2015.
13. Guizzardi, G.; Wagner, G.; Almeida, J.P.A.; Guizzardi, R.S.S. Towards Ontological Foundations for Conceptual Modeling: The

Unified Foundational Ontology (UFO) Story. Appl. Ontol. 2015, 10, 259–271. [CrossRef]
14. CUBRC, Inc. An Overview of the Common Core Ontologies; CUBRC, Inc.: San Diego, CA, USA, 2020.
15. Shani, U. Can Ontologies Prevent MBSE Models from Becoming Obsolete? In Proceedings of the 2017 Annual IEEE International

Systems Conference (SysCon), Montreal, QC, Canada, 24–27 April 2017; IEEE: New York, NY, USA, 2017; pp. 1–8.
16. Riaz, F.; Ali, K.M. Applications of Graph Theory in Computer Science. In Proceedings of the 2011 Third International Conference

on Computational Intelligence, Communication Systems and Networks, Bali, Indonesia, 26–28 July 2011; IEEE: New York, NY,
USA, 2011; pp. 142–145.

17. Medvedev, D.; Shani, U.; Dori, D. Gaining Insights into Conceptual Models: A Graph-Theoretic Querying Approach. Appl. Sci.
2021, 11, 765. [CrossRef]

18. Cotter, M.; Hadjimichael, M.; Markina-Khusid, A.; York, B. Automated Detection of Architecture Patterns in MBSE Models. In
Recent Trends and Advances in Model Based Systems Engineering; Madni, A.M., Boehm, B., Erwin, D., Moghaddam, M., Sievers, M.,
Wheaton, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 81–90; ISBN 978-3-030-82082-4.

https://www.ansys.com/products/connect/ansys-modelcenter
https://www.saic.com/digital-engineering-validation-tool
https://doi.org/10.1002/sys.21438
https://www.dau.edu/glossary/Pages/Glossary.aspx#!both%7CD%7C27345
https://www.dau.edu/glossary/Pages/Glossary.aspx#!both%7CD%7C27345
https://doi.org/10.1016/j.compind.2019.05.003
https://doi.org/10.3233/AO-150157
https://doi.org/10.3390/app11020765


Systems 2024, 12, 27 35 of 35

19. Mordecai, Y.; Fairbanks, J.P.; Crawley, E.F. Category-Theoretic Formulation of the Model-Based Systems Architecting Cognitive-
Computational Cycle. Appl. Sci. 2021, 11, 1945. [CrossRef]

20. Herzig, S.J.I.; Qamar, A.; Paredis, C.J.J. An Approach to Identifying Inconsistencies in Model-Based Systems Engineering. Procedia
Comput. Sci. 2014, 28, 354–362. [CrossRef]

21. NASA. NASA Handbook for Models and Simulations: An Implementation Guide for Nasa-Std-7009a; NASA: Washington, DC, USA, 2019.
22. Chapurlat, V.; Nastov, B.; Bourdon, J. A Conceptual, Methodological and Technical Contribution for Modeling and V&V in MBSE

Context. In Proceedings of the 2022 IEEE International Symposium on Systems Engineering (ISSE), Vienna, Austria, 24 October
2022; IEEE: New York, NY, USA, 2022; pp. 1–8.

23. Nastov, B.; Chapurlat, V.; Pfister, F.; Dony, C. MBSE and V&V: A Tool-Equipped Method for Combining Various V&V Strategies.
IFAC-PapersOnLine 2017, 50, 10538–10543. [CrossRef]

24. Chapurlat, V. UPSL-SE: A Model Verification Framework for Systems Engineering. Comput. Ind. 2013, 64, 581–597. [CrossRef]
25. Lykins, H.; Friedenthal, S. Adapting UML for an Object Oriented Systems Engineering Method (OOSEM). INCOSE Int. Symp.

2000, 10, 490–497. [CrossRef]
26. Rodano, M.; Giammarco, K. A Formal Method for Evaluation of a Modeled System Architecture. Procedia Comput. Sci. 2013, 20,

210–215. [CrossRef]
27. Dunbar, D.; Hagedorn, T.; Blackburn, M.; Dzielski, J.; Hespelt, S.; Kruse, B.; Verma, D.; Yu, Z. Driving Digital Engineering

Integration and Interoperability through Semantic Integration of Models with Ontologies. Syst. Eng. 2023, 26, 365–378. [CrossRef]
28. Jenkins, J.S.; Rouquette, N.F. Semantically-Rigorous Systems Engineering Modeling Using SysML and OWL. In Proceedings

of the International Workshop on Systems & Concurrent Engineering for Space Applications (SECESA 2012), Lisbon, Portugal,
17–19 October 2012; p. 8.

29. SPARQL 1.1 Overview. Available online: https://www.w3.org/TR/sparql11-overview/ (accessed on 3 March 2021).
30. Shapes Constraint Language (SHACL). Available online: https://www.w3.org/TR/shacl/ (accessed on 15 May 2022).
31. Dunbar, D.; Hagedorn, T.; Blackburn, M.; Verma, D. Use of Semantic Web Technologies to Enable System Level Verification in

Multi-Disciplinary Models. In Advances in Transdisciplinary Engineering; Moser, B.R., Koomsap, P., Stjepandić, J., Eds.; IOS Press:
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