
Citation: Lin, R.; Wang, X.; Jiang, Y.

Ecological Efficiency Measurement

and Technical Heterogeneity Analysis

in China: A Two-Stage Three-Level

Meta-Frontier Network Model Based

on Segmented Projection. Systems

2024, 12, 22. https://doi.org/

10.3390/systems12010022

Academic Editor: William T. Scherer

Received: 18 December 2023

Revised: 7 January 2024

Accepted: 9 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Ecological Efficiency Measurement and Technical Heterogeneity
Analysis in China: A Two-Stage Three-Level Meta-Frontier
Network Model Based on Segmented Projection
Ruiyue Lin * , Xinyuan Wang and Yu Jiang

College of Mathematics and Physics, Wenzhou University, Wenzhou 325035, China; wxy_sylviaff@163.com (X.W.);
22461027005@stu.wzu.edu.cn (Y.J.)
* Correspondence: rachel@wzu.edu.cn

Abstract: Due to persistent technological impacts on ecological efficiency (eco-efficiency) and vari-
ations in economic power and resource endowments among regions, considering regional and
temporal heterogeneity becomes imperative. Ecosystems, often divided into economic production
and environmental governance stages, necessitate a holistic assessment incorporating regional, tem-
poral heterogeneity and stage distinctions. To address potential issues of a technology gap ratio (TGR)
exceeding 1 within a two-stage network structure with dual heterogeneity, we introduce a segmented
projection three-layer meta-frontier analysis method. In empirical study, we systematically examined
eco-efficiency, emissions inefficiency and technology gaps across management, regional and temporal
dimensions in 30 Chinese provinces from 2016 to 2020. Findings reveal disparities in management
eco-efficiency, with the central provinces outperforming the east. Regional differences indicate ad-
vanced technology in the east, contributing to superior eco-efficiency. Temporal analysis highlights
the positive role of scientific and technological development. Emissions inefficiency improvements
are noted, necessitating attention toward management and regional technology levels. Eastern
provinces exhibit superior emissions efficiency, emphasizing the role of regional and technological
development. Recommendations include prioritizing environmental governance, strengthening
regional collaborations and implementing policies to bridge technology gaps.

Keywords: data envelopment analysis; eco-efficiency; emissions efficiency; network SBM;
meta-frontier; heterogeneity

1. Introduction

The concept of ecological efficiency (eco-efficiency) was first introduced by Schaltegger
and Sturm [1] and was originally expressed as the fewest ecological resources needed to
meet the most human needs [2]. Later, eco-efficiency was defined formally by the World
Business Council for Sustainable Development [3]. It includes three key targets: minimizing
the use of ecological resources, maximizing the production of goods and services for
humanity and minimizing the adverse impact on the environment. Energy efficiency [4],
environmental efficiency [5,6], carbon emission efficiency [7] and so on, which are regarded
as the subcategories of eco-efficiency, have also attracted wide attention. By evaluating
eco-efficiency, sustainable development level can be comprehensively evaluated from the
perspectives of resources, the economy and the environment. In view of this, eco-efficiency
evaluation has attracted the attention of researchers.

Data envelopment analysis (DEA) [8] is a widely used technique to measure the
efficiencies of decision making units (DMUs). It is unit-invariant and can comprehensively
consider multiple inputs and outputs; especially, it can deal with bad pollution outputs
well. Due to these advantages, eco-efficiency has been widely evaluated by using DEA
models in many studies. Many different types of DEA models, such as the CCR [8], BCC [9],
directional distance function [10] and slacks-based measure (SBM) model [11] are used
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to measure eco-efficiency from various perspectives. Table 1 summarizes the indicators
of these DEA studies mentioned above. We find that most of them consider population
or industry employees, capital and energy as inputs and GDP or other economic benefit
indexes as the output. Most of the undesirable outputs contain CO2 and/or SO2 emissions.

Table 1. Indicators of relevant DEA studies.

Inputs Outputs Undesirable Outputs

Song et al. [12] Capital, employment GDP SO2

Guo et al. [13] Area, population, energy,
energy stock (carry-over) GDP CO2

Cheng et al. [14] Energy, employees, capital GDP Waste water, SO2
Xie et al. [15] CO2, Energy, population GDP –
Shang et al. [16] Energy, capital, labor GDP CO2, SO2
Chen and Lin [17] Energy, capital, labor Gross industrial output CO2

de Araújo et al. [18]
Energy, water, population,
vehicles, territorial area,
felled area

Ratio of gross domestic,
product per capita to area
deforested

–

Teng et al. [19] Population, energy, capital GDP CO2, afforestation area

Zheng [20] Employment, capital, electricity GDP SO2, soot, waste water, PM2.5,
Energy

Matsumoto and Chen [21] Energy, capital, employees,
water Industrial added value Waste gas, waste water, solid

waste, CO2

If there are obvious differences in environmental characteristics, e.g., economic bases
and resource endowment, measuring all DMUs at a similar production technological level
may bias the evaluation results. The meta-frontier analysis [22,23] allows production
technology heterogeneity to be taken into consideration. O’Donnell et al. [24] introduced
this concept into DEA. According to the heterogeneity of production technology, all DMUs
are divided into several groups accordingly. The production technologies of all the DMUs
in the same group are identical. The meta-frontier is the envelope of all group frontiers.
In the meta-frontier analysis, each DMU is assessed with respect to the corresponding
group frontier and the meta-frontier. Then, a performance comparison across groups can
be performed, and the technology gap between the group frontier and the meta-frontier
can be calculated.

Heterogeneity and the meta-frontier analysis are popular topics in existing DEA
studies. By considering regional technology heterogeneity, many studies divide groups to
study the eco-efficiency of provinces in China [25,26]. As the study of meta-frontiers has
deepened, scholars have realized that if there is still technology production heterogeneity
in a group, the group should be divided into several subgroups. Most current studies
considering dual heterogeneity focus on both regional and industrial heterogeneity. Feng
et al. [26] proposed a three-hierarchy meta-frontier approach to study the energy efficiency
of three industries (primary, secondary and tertiary) in three China’s regions (Eastern,
Central and Western). By applying the three-hierarchy meta-frontier DEA model and the
panel data from 2001 to 2018, Tian and Feng [27] measured five key internal factors of
China’s green total-factor productivity.

Wang et al. [28] pointed out that the traditional meta-frontier analysis might gen-
erate the technical gap ratio (TGR) greater than 1 and thus violates the basic property
of the meta-frontier analysis. To overcome this issue, they proposed a segmented pro-
jection approach based on the non-radial directional distance function. On this basis,
Chen et al. [29] introduced a three-level meta-frontier SBM approach to evaluate the total
factor energy efficiency in the Chinese manufacturing industry by considering dual hetero-
geneity and dividing the projection path into three segments. Compared with the study of
Wang et al. [28], the method proposed by Chen et al. [29] considers three frontiers brought
by dual heterogeneity and the inefficiency measured by slacks. See [30–35] for more studies
addressing TGR > 1. Among them, only Yu and Rakshit [34] study uses network DEA [36]
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to analyze the efficiency of internal divisions in depth, and other studies are constructed
using “black-box” DEA models and thus cannot measure the performance of divisions
inside the system.

Network DEA considers the data information of DMUs in each production division
so that it can measure the performance of the whole system and all the divisions. In view
of this advantage, many scholars have studied eco-efficiency by using network DEA [37].
Wang et al. [38] divided ecosystems into the production stage and the governance stage,
and then, to analyze the technological heterogeneity in reducing pollution, they proposed a
two-stage meta-frontier method by using network DEA [36]. More detailed meta-frontier
studies considering stage division can be seen from Yu and Chen [39], although these
studies cannot guarantee that the TGRs are not greater than 1.

Existing meta-frontier studies on eco-efficiency lack a comprehensive perspective that
integrates considerations of regional and temporal heterogeneity, along with the internal
network structure of ecosystems. This paper introduces a novel approach to studying
eco-efficiency using meta-frontier analysis, incorporating stage division, dual heterogeneity
and segmented projection. The key contributions of this research can be highlighted
as follows:

Integration of regional and temporal heterogeneities: The paper makes a significant
contribution by simultaneously incorporating regional and temporal technology hetero-
geneities. This approach enables the definition of group and subgroup frontiers, offering a
more nuanced understanding of eco-efficiency.
Stage-divided analysis: By dividing eco-activities into distinct economic production and
environmental governance stages, the research introduces a valuable perspective. This
stage-oriented analysis facilitates the development of a two-stage three-level meta-frontier
network SBM (NSBM) model, providing insights into eco-efficiency and stage efficiencies.
Tackling TGR issue: The proposed two-stage three-level meta-frontier model addresses a
critical issue in meta-frontier methods, specifically handling instances where the TGRs of
certain indexes exceed 1. This innovation contributes to the robustness and applicability of
meta-frontier analysis.
Comprehensive emissions inefficiency analysis: The paper extends its focus to emissions
inefficiency, treating pollutant emissions as intermediate variables connecting economic pro-
duction and environmental governance stages. The introduced concept of total emissions
inefficiency, encompassing management inefficiency, regional heterogeneity technology
inefficiency and temporal heterogeneity technology inefficiency, provides a comprehensive
framework for analyzing specific sources of emissions inefficiency.
Regional and temporal TGR definition: The research defines and discusses regional and
temporal TGRs, offering a nuanced understanding of these ratios across 30 provinces in
China. This contributes to a more granular evaluation of technological advancements and
disparities in different regions over time.

The reminder of this paper is organized as follows: Section 2 introduces the two-stage
three-level meta-frontier model ensuring TGRs not greater than 1 in the two-stage ecosys-
tem. The emissions inefficiency index and its decomposition as well as the related TGRs
are also introduced. In Section 3, we apply our method to evaluate the eco-efficiency of
30 provinces in China from 2016 to 2020 and analyze the influences from dual heterogeneity
on eco-efficiency and emissions inefficiency. Section 4 offers conclusions and future work.

2. Methodology
2.1. Three-Level Meta-Frontier with the Two-Stage Structure

With the development of science and technology in economic production and envi-
ronmental governance, there are gaps in the technology levels of different periods. In
addition, Oh [40] and Wang et al. [25] indicated that geographic location is a main source
of production technology heterogeneity. Therefore, we take into account both the temporal
technology heterogeneity and the regional technology heterogeneity. We consider three
kinds of frontiers, the regional (sub-group) frontiers, the temporal (group) frontiers and the
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meta-frontier. Assume that there are NG periods and each period t (t ∈ {1, . . . , NG}) is con-

sidered a group. The set of DMUs located in period t is denoted Gt. Let G =
NG⋃
t=1

Gt. Clearly,

Gt1
⋂

Gt2 = ∅ (∀t1, t2 ∈ {1, . . . , NG}, t1 ̸= t2). Considering the regional technology hetero-
geneity, we further divide each group Gt into Nt

SG subgroups. The set of DMUs located in

region v and period t is denoted by SGt
v (v ∈ {1, . . . , Nt

SG}). Of course,
Nt

SG⋃
v=1

SGt
v = Gt, ∀t

and SGt
v1

⋂
SGt

v2
= ∅ (∀v1, v2 ∈ {1, . . . , Nt

SG}, v1 ̸= v2).
By referring to current studies [38,41,42], we divide the activities of each DMU into

two stages, namely the economic production (EP) stage and the environmental governance
(EG) stage. In the EP stage, each DMUj (j ∈ SGt

v, Gt or M) consumes resources (x1
ij, i ∈

{1, . . . , m1}), such as capital and energy, to obtain economic benefits (y1
dj, ∀d ∈ {1, . . . , r1})

while being accompanied by pollutant emissions (zhj, ∀h ∈ {1, . . . , l}), such as SO2, CO2 and
other emissions. In the EG stage, the environmental governance fund (x2

qj, ∀q ∈ {1, . . . , m2})
is used to govern pollutant emissions generated from the EP stage. We think that there
are two kinds of environmental governance results. One is effective governance (y2

wj,
∀w ∈ {1, . . . , r2}) that improves the environment, and the other is governed ineffectively,
which causes economic losses (b2

1j, r ∈ {1, . . . , g}). The detailed two-stage network structure
is shown in Figure 1.

Figure 1. The network structure of the provincial two-stage eco-efficiency.

Figure 2 gives the three-segment projection path in the two-stage structure. The left-
hand side of Figure 2 depicts the frontiers of the EP stage, where the vertical axis represents
inputs X1 or undesirable intermediate variable Z, and the horizontal axis represents outputs
Y1. Note that the intermediate variables in this paper are pollutant emissions. According to
Liu et al. [43], they are the undesirable outputs of stage 1 and the undesirable inputs of stage
2. Therefore, whether in stage 1 or 2, decision-makers hope that the fewer intermediate
variables, the better. The specific piecewise path that a DMU (DMU∈ SGt

v, SGt
v ⊂ Gt, Gt ⊂

G) projects to the meta-frontier of the EP stage (i.e., PM in Figure 2) is as follows. First,
the DMU starts from itself (point A) and projects to the regional frontier of the EP stage (i.e.,
PSt

v in Figure 2), and the projection point is determined as point B. Since the period and
region of the DMUs in each subgroup are the same, its production efficiency depends on its
own management. So, we can evaluate the management production efficiency (MPE) of point
A based on the regional frontier PSt

v. Then, we project point B to the temporal frontier
(i.e., PGt in Figure 2) and denote the project point as point C. Since point B is already on
its corresponding regional frontier, and inefficiencies brought by its management level
have been eliminated, its production efficiency depends on the regional technology. Then,
we can obtain the regional production efficiency (RPE) of point A based on the temporal
frontier PGt and the projection point B. The line segment BC reflects the regional TGR
between the regional frontier and the temporal frontier. Finally, we project point C to the
meta-frontier PM and denote the projection point as point D. Point C is already on its
corresponding temporal frontier, and inefficiencies brought by its management level and
regional technology have been eliminated. Since technology continues to change over time,
we believe that in this projection path, the production efficiency of point C is only affected
by temporal heterogeneity. Therefore, we can obtain the temporal production efficiency (TPE)
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of point A based on the meta-frontier PM and the projection point C. Similarly, the line
segment CD reflects the temporal TGR between the temporal frontier and the meta-frontier.

Figure 2. The three-level meta-frontier with the two-stage network structure.

The right-hand side of Figure 2 shows the frontiers of the EG stage, where the vertical
axis represents inputs X2, undesirable intermediate variable Z or undesirable outputs B2,
and the horizontal axis represents desirable outputs Y2. Point A′ is the point corresponding
point A in the EG stage. The piecewise path that DMU projects to the meta-frontier of the
EG stage (i.e., EM in Figure 2) is A′ → B′ → C′ → D′. The management governance efficiency
(MGE), the regional governance efficiency (RGE) and the temporal governance efficiency (TGE) of
the DMU, corresponding to projection paths A′B′, B′C′ and C′D′, can also be obtained in a
similar way. For ease of description, we refer to the eco-efficiencies of the whole two-stage
system corresponding to the three-segment projections, management eco-efficiency (ME),
regional eco-efficiency (RE) and temporal eco-efficiency (TE).

This segmented projection allows the TGRs relative to variables to range between 0
and 1 in the two-stage ecosystem. Let us take the variable y1 in Figure 2 as an example.
According to Chen et al. [29], the efficiency of y1 relative to the sub-group frontier, the group
frontier and the meta-frontier can be defined as:

EMy1
=

OH
OI

,

ERy1
=

OH
OI + IJ

,

ETy1
=

OH
OI + IJ + JK

,

respectively, where H, I, J and K are the projection of points A, B, C and D onto the y1 axis.
For y1, the TGR between the sub-group frontier and the group frontier as well as that
between the group frontier and the meta-frontier can be expressed as

RTGRy1
=

ERy1

EMy1 =
OI

OI + IJ
,

TTGRy1
=

ETy1

ERy1 =
OI + IJ

OI + IJ + JK
.

Clearly, the above two TGRs range between 0 and 1. The TGRs relative to other
variables also have this property. Therefore, the basic property of the meta-frontier analysis
can be guaranteed in the two-stage ecosystem.

However, if we adopt direct projection, this basic property might be avoided. We still
take the variable y1 in Figure 2 as an example. If the direct projection of point A on the
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temporal frontier PGt is point C′′ and the projection of point C′′ onto the y1 axis is point I′′,
then the efficiency of y1 relative to the group frontier is OH

OJ′′ . As a result, the corresponding

TGR between the sub-group frontier and the group frontier is expressed as OH/OJ′′
OH/OI = OI

OJ′′ ,
which is greater than 1 since OI > OJ′′.

With consideration of the above stage division and dual technology heterogeneity, we
divide the path of projecting the target DMU to the meta-frontier into three segments for
each stage. Then, we can easily explore which factors in which stage lead to the ecological
inefficiency and emissions inefficiency of DMUs.

2.2. Three-Level Meta-Frontier NSBM Model

NSBM [44] is a non-radial NDEA model and is suitable for measuring efficiencies
when inputs and outputs may change non-proportionally. Compared with the original
NSBM proposed by Tone and Tsutsui [44], Kao [45]’s NSBM model does not need to specify
the weight for each stage beforehand, and its system efficiency can be decomposed into
the weighted average of stage efficiencies. Hence, we chose Kao [45]’s NSBM model in the
design of our model. Using the segmented projection presented in Section 2.1, we built the
following NSBM model to assess the overall efficiency of the target DMUo (o ∈ SGt

v, SGt
v ⊂

Gt, Gt ⊂ G, ∀v, t):

E∗
op = min

1− 1
m1

m1
∑

i=1

s1,x−
iop
x1

iop
+1− 1

m2+l

(
m2
∑

q=1

s2,x−
qop
x2

qop
+

l
∑

h=1

sz
hop

zhop

)

1+ 1
r1+l

 r1
∑

d=1

s1,y+
dop
y1

dop
+

l
∑

h=1

sz
hop

zhop

+1+ 1
r2+g

(
r2
∑

w=1

s2,y+
wop

y2
wop

+
g
∑

r=1

s2,b−
rop
b2
rop

)
s.t. x1

iop = ∑
j∈Ω

λ1
j x1

ij + s1,x−
iop , i = 1, . . . , m1,

y1
dop = ∑

j∈Ω
λ1

j y1
dj − s1,y+

dop , d = 1, . . . , r1,

zhop = ∑
j∈Ω

λ1
j zhj + sz

hop, h = 1, . . . , l,

x2
qop = ∑

j∈Ω
λ2

j x2
qj + s2,x−

qop , q = 1, . . . , m2,

y2
wop = ∑

j∈Ω
λ2

j y2
wj − s2,y+

wop , w = 1, . . . , r2,

b2
rop = ∑

j∈Ω
λ2

j b2
rj + s2,b−

rop , r = 1, . . . , g,

zhop = ∑
j∈Ω

λ2
j zhj + sz

hop, h = 1, . . . , l,

∑
j∈Ω

λ1
j zhj = ∑

j∈Ω
λ2

j zhj, h = 1, . . . , l,

λ1
j , λ2

j ≥ 0, j ∈ Ω,

s1,x−
iop , s1,y+

dop , sz
hop, s2,x−

qop , s2,y+
wop , s2,b−

rop ≥ 0, ∀i, d, h, q, w, r,

(1)

where p and Ω have three sets of values, corresponding to three projection paths. If p = R,
then Ω = SGt

v, which means that the optimal value of model (1), E∗
oR, is equal to the ME

of DMUo, i.e., the two-stage system eco-efficiency of DMUo with respect to the regional
frontier. If p = T, then Ω = Gt, which means that model (1) is used to calculate the RE of
DMUo, i.e., the two-stage system eco-efficiency of the projection of DMUo on the regional
frontier with respect to the temporal frontier. If p = M, then Ω = G, which means that
model (1) is used to calculate the TE of DMUo, i.e., the two-stage system eco-efficiency of
the projection of DMUo on the temporal frontier with respect to the meta-frontier. Moreover,
in model (1),

x1
ioR = x1

io, y1
doR = y1

do, zhoR = zho, x2
ioR = x2

io, y2
woR = y2

wo, b2
roR = b2

ro,

x1
ioT = x1

io − s1,x−∗
iR , y1

doT = y1
do + s1,y+∗

dR , zhoT = zho − sz∗
hR,

x2
qoT = x2

qo − s2,x−∗
qR , y2

woT = y2
wo + s2,y+∗

wR , b2
roT = b2

ro − s2,b−∗
rR ,
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x1
ioM = x1

io − s1,x−∗
iR − s1,x−∗

iT , y1
doM = y1

do + s1,y+∗
dR + s1,y+∗

dT ,

zhoM = zho − sz∗
hR − sz∗

hT , x2
qoM = x2

qo − s2,x−∗
qR − s2,x−∗

qT ,

y2
woM = y2

wo + s2,y+∗
wR + s2,y+∗

wT , b2
roM = b2

ro − s2,b−∗
rR − s2,b−∗

rT , ∀i, d, h, q, w, r,

where variables with an asterisk in the upper right corner are the optimal solution of
model (1). In our model, we adopt the free links constraints ∑

j∈Ω
λ1

j zhj = ∑
j∈Ω

λ2
j zhj, ∀h [44],

so that TGRs and efficiency indexes with respect to the intermediate variables are same in
two stages. So we just use sz

hop (∀h) to express them in model (1).
Once we obtain an optimal solution of model (1), the efficiency scores for the two

individual stages can be calculated as

θ1
op =

1− 1
m1

m1
∑

i=1

s1,x−∗
iop
x1

iop

1+ 1
r1+l

 r1
∑

d=1

s1,y+∗
dop
y1

dop
+

l
∑

h=1

sz∗
hop

zhop

 ,

θ2
op =

1− 1
m2+l

(
m2
∑

q=1

s2,x−∗
qop
x2

qop
+

l
∑

h=1

sz∗
hop

zhop

)

1+ 1
r2+g

(
r2
∑

w=1

s2,y+∗
wop
y2

wop
+

g
∑

r=1

s2,b−∗
rop
b2
rop

) , ∀p = R, T, M.

We can also obtain a set of weights as

ω1
op =

1+ 1
r1+l

 r1
∑

d=1

s1,y+∗
dop
y1

dop
+

l
∑

h=1

sz∗
hop

zhop


1+ 1

r1+l

 r1
∑

d=1

s1,y+∗
dop
y1

dop
+

l
∑

h=1

sz∗
hop

zhop

+1+ 1
r2+g

(
r2
∑

w=1

s2,y+∗
wop
y2

wop
+

g
∑

r=1

s2,b−∗
rop
b2
rop

) ,

ω2
op =

1+ 1
r2+g

(
r2
∑

w=1

s2,y+∗
wop
y2

wop
+

g
∑

r=1

s2,b−∗
rop
b2
rop

)

1+ 1
r1+l

 r1
∑

d=1

s2,y+∗
dp
y1

dop
+

l
∑

h=1

sz∗
hop

zhop

+1+ 1
r2+g

(
r2
∑

w=1

s2,y+∗
wop
y2

wop
+

g
∑

r=1

s2,b−∗
rop
b2
rop

) .

(2)

Clearly, we have

E∗
op = θ1

op ∗ ω1
op + θ2

op ∗ ω2
op. (3)

However, model (1) might have multiple optimal solutions so that the values of θ1
op

and θ2
op might not be unique. Therefore, we follow the procedure adopted by Kao and

Hwang [46] and Chen et al. [47] to determine the highest efficiency score of stage 1 or 2
while maintaining the efficiency score of the whole two-stage system. Considering that, in
the real world, economic production is a prerequisite for environmental governance, we
first determine the efficiency of stage 1 and then calculate that of stage 2. Then, we have

θ1∗
op = min

1 − 1
m1

m1
∑

i=1

s1,x−
iop

x1
iop

1 + 1
r1+l

(
r1
∑

d=1

s1,y+
dop

y1
dop

+
l

∑
h=1

sz
hop

zhop

)
s.t. x1

iop = ∑
j∈Ω

λ1
j x1

ij + s1,x−
iop , i = 1, . . . , m1,

y1
dop = ∑

j∈Ω
λ1

j y1
dj − s1,y+

dop , d = 1, . . . , r1,

zhop = ∑
j∈Ω

λ1
j zhj + sz

hop, h = 1, . . . , l,
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x2
qop = ∑

j∈Ω
λ2

j x2
qj + s2,x−

qop , q = 1, . . . , m2,

y2
dop = ∑

j∈Ω
λ2

j y2
wj − s2,y+

wop , w = 1, . . . , r2,

b2p
ro = ∑

j∈Ω
λ2

j b2
rj + s2,b−

rop , r = 1, . . . , g, (4)

zhop = ∑
j∈Ω

λ2
j zqj + sz

hop, h = 1, . . . , l,

∑
j∈Ω

λ1
j zhj = ∑

j∈Ω
λ2

j zhj, h = 1, . . . , l,

2 − 1
m1

m1

∑
i=1

s1,x−
iop

x1
iop

− 1
m2 + l

(
m2

∑
q=1

s2,x−
qop

x2
qop

+
l

∑
h=1

sz
hop

zhop

)
= E∗

op2+
1

r1+l

 r1

∑
d=1

s1,y+
dop

y1
dop

+
l

∑
h=1

sz
hop

zhop

+
1

r2+g

(
r2

∑
w=1

s2,y+
wop

y2
wop

+
g

∑
r=1

s2,b−
rop

b2
rop

),

λ1
j , λ2

j ≥ 0, j ∈ Ω,

s1,x−
iop , s1,y+

dop , sz
hop, s2,x−

qop , s2,y+
wop , s2,b−

rop ≥ 0, ∀j, d, h, q, w, r.

We still let s1,x−∗
iop , s1,y+∗

dop , sz∗
hop, s2,x−∗

qop , s2,y+∗
wop , s2,b−∗

rop (∀j, i, d, h, q, w, r) be the optimal solu-

tion variables of model (4). Then, we can obtain ω1
op and ω2

op by (2). The efficiency score of
stage 2 for DMUo, i.e., θ2∗

op , is calculated as

θ2∗
op =

E∗
op − θ1∗

op ∗ ω1
op

ω2
op

, (5)

where p is identical to that in model (1). By solving models (1) and (4) for three different
sets in the order p = R, T, M, we can obtain ME, MPE, RE, RPE, TE and TPE of DMUo as
well as the corresponding optimal solutions. Thus, by calculating (2) and (5), we can obtain
MGE, RGE and TGE.

2.3. Emissions Inefficiency and TGRs

Compared with other evaluation problems, one of the most significant characteristics
of eco-efficiency evaluation is that it considers the adverse impact on the environment.
In the two-stage ecosystem shown in Figure 1, this adverse impact is represented by
pollution emissions. Therefore, in order to better analyze the two-stage ecosystem, we here
study the inefficiency and TGRs of pollution emissions (i.e., intermediate variables).

In order to further explore the impact of management level on pollutant emissions,
we define the management emissions inefficiency (MI) as the average ratio of the slacks
of intermediate variables in model (4) corresponding to the first projection path to the
sample, i.e.,

MI =
1
h

l

∑
h=1

sz∗
hoR
zho

. (6)

To further explore the impact of regional development level on emissions inefficiency,
we define the regional heterogeneity technology emissions inefficiency (RHI) as the average ratio
of the slacks of intermediate variables in model (4) corresponding to the second projection
path to the sample, i.e.,

RHI =
1
h

l

∑
h=1

sz∗
hoT
zho

. (7)
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By referring to Chen et al. [29], we define the regional TGR with respect to emissions
(RTGR) as the average ratio of the project values of the intermediate variables on the
temporal frontier to those on the regional frontier, i.e.,

RTGR =
1
h

l

∑
h=1

zho − sz∗
hoT − sz∗

hoR
zho − sz∗

hoR
=

1
h

l

∑
h=1

zhoM
zhoT

. (8)

RTGR reflects the gap between the emissions technology level of a specific region
and that of the temporal frontier. The higher the RTGR, the closer the two emissions
technology levels.

To further explore the impact of different temporal technology levels on emissions
inefficiency, we define the temporal heterogeneity technology emissions inefficiency (THI) as the
average ratio of the slacks of the intermediate variables in model (4) corresponding to the
third projection path to the sample, i.e.,

THI =
1
h

l

∑
h=1

sz∗
hoM
zho

. (9)

Similarly, we define the temporal TGR with respect to emissions (TTGR) as the average
ratio of the project values of intermediate variables on the meta-frontier to those on the
temporal frontier. Namely,

TTGR =
1
h

l

∑
h=1

zho − sz∗
hoR − sz∗

hoT − sz∗
hoM

zho − sz∗
hoR − sz∗

hoT
=

1
h

l

∑
h=1

zhoM − sz∗
hoM

zhoM
. (10)

TTGR reflects the gap between the emissions technology level of the temporal frontier
and that of the meta-frontier. Similar, the higher the TTGR, the closer the two emissions
technology levels.

According to Chen et al. [29], we define the total emissions inefficiency (TEI) as

TEI = MI + RHI + THI =
1
h

l

∑
h=1

sz∗
hoR + sz∗

hoT + sz∗
hoM

zho
. (11)

3. Empirical Analysis

Here, all the models were coded with PyCharm 2019.3.1 (Community Edition) soft-
ware, combined with Gurobi and the basic library of Python.

3.1. Data and Indexes

For simplicity, we will refer to provinces, autonomous regions and municipalities as
provinces. We treat provinces as DMUs. Due to the lack of energy data in Tibet and the
differences in statistical methods of Hong Kong and Macao, we only analyzed 30 provinces
in mainland China. Considering that the 13th Five-Year Plan has just been implemented,
we are concerned about the eco-efficiency during its implementation. So, the sampled
period is from 2016 to 2020. A calendar year is treated as one group. In each sample year,
we divided 30 provinces into the eastern, central and western regions with reference to
the three major regions (subgroup) divided by the National Bureau of Statistics of China.
The specific division is shown in Table 2.
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Table 2. Three major regions in China.

Region Province

Eastern Beijing, Tianjin, Shanghai, Shandong, Hebei, Jiangsu, Zhejiang, Fujian,
Guangdong, Hainan, Liaoning

Central Jilin, Heilongjiang, Henan, Shanxi, Anhui, Hubei, Hunan, Jiangxi
Western Chongqing, Sichuan, Guizhou, Yunnan, Guangxi, Shaanxi, Gansu, Qinghai,

Inner Mongolia, Ningxia, Xinjiang

Most relevant studies select capital, energy and labor or population as resource inputs.
See Table 1 for details. By referring to them, the fixed asset investment was chosen as
the capital input and the resident population at year-end was selected as the population
input in this study. Since the main energy consumption in China is still coal, the coal
consumption was selected as the energy input. We chose the gross regional product (GDP)
as the economic benefit. For intermediate variables, although there are a large number of
pollutant emissions to choose, too many indicators will reduce the efficiency discrimination
power of DEA. Considering that most relevant studies [12–16,18–20] choose SO2 and/or
CO2 emissions, we regard SO2 and CO2 emissions as two intermediate variables. We chose
the pollution control investment as an exogenous input of the EG stage. Good air days
can reflect an effective environmental governance effect. Since the capital city and central
cities of a province are usually the focus of environmental governance attention of the
government, we used the average proportion of the number of days with high quality air
(e.g., the days with an air quality index (AQI) of no more than 100) in these cities to the total
number of days observed in the whole year as an effective governance index. In addition,
the direct economic loss caused by meteorological disasters is regarded as an undesirable
output to represent the results of ineffective governance.

Table 3 introduces the data source. The index data are directly or indirectly obtained
from the resources shown in Table 3. Some remarks on the data are presented here.

Table 3. Data resources.

Indicator Index Resource

Resident population at year-end x1
1 National Bureau of Statistics of China

Coal consumption x1
2 National Bureau of Statistics of China

Fixed asset investment x1
3

China Economic and Social Big Data
Research Platform

GDP y1
1 National Bureau of Statistics of China

SO2 emissions z1 National Bureau of Statistics of China
CO2 emissions z2 China Carbon Accounting Database

(https://www.ceads.net.cn, accessed on 10
February 2022)

Pollution control investment x2
1 National Bureau of Statistics of China

Proportion of high-quality air days y2
1 Zhenqi network

(https://www.zq12369.com, accessed on 10
February 2022)

Direct economic loss b2
1 China Meteorological Disaster Yearbook

(1) The data of fixed asset investment from 2016 to 2017 are directly given by the China
Economic and Social Big Data Research Platform, while those from 2018 to 2020 are
calculated using the “fixed asset investment growth over the previous year” index.
This is because the index of fixed asset investment has not been published since 2018,
only fixed asset investment growth over the previous year.

(2) y2
1 is calculated using AQI indexes whose data are derived from the Zhenqi network.

(3) We estimate carbon emissions of provinces using the method proposed by the Intergov-
ernmental Panel on Climate Change (IPCC), which is an internationally acknowledged
method for accounting for carbon emissions and has been recognized by many scholars.

https://www.ceads.net.cn
https://www.zq12369.com
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According to the actual situation and data characteristics, the projection of y2
1 on the

each frontier should not exceed 1. So, we need to add additional constraints in models (1)
and (4). For p = R, Ω = SGt

v, we add y2
wo + s2,y+

woR ≤ 1, w = 1, . . . , r2; for p = T, Ω = Gt,
we add y2

wo + s2,y+∗
woR + s2,y+

woT ≤ 1, w = 1, . . . , r2; for p = M, Ω = G, we add y2
wo + s2,y+∗

woR +

s2,y+∗
woT + s2,y+

woM ≤ 1, w = 1, . . . , r2.
Table 4 presents the descriptive statistics of all variables from 2016 to 2020. We can

see that the average energy consumption in China maintains an increasing trend from
2016 to 2020. The average annual growth rate of energy consumption increases by 2.42%
and 3.48% in 2017 and 2018, respectively, and then the growth rate slows down. Actually,
except for x1

1 showing a downward trend, the averages of inputs and outputs in the EP
stage increase year-by-year. The average SO2 emissions show a clear downward trend, and
the standard deviation among provinces is shrinking, while average CO2 emissions grow
slowly overall. Except x2

1, whose average generally shows a downward trend, the averages
of input and output variables in the EG stage show significant fluctuating trends. All
the above indicates that it is meaningful to discuss the gap among China’s regional and
temporal eco-efficiencies.

Table 4. Descriptive statistics of variables.

x1
1 x1

2 x1
3 y1

1 z1 z2 x2
1 y2

1 b2
1

(106 (106 (108 (108 (104 (107 (108 (%) (108

Persons) Tons) RMB) RMB) Tons) RMB) RMB) RMB)

2016
AVG 26.41 141.65 19.90 24.99 28.49 40.88 27.30 0.72 166.67
STD 16.38 105.47 12.74 19.55 18.50 30.65 26.09 0.16 194.79
Max 67.03 409.39 53.32 82.16 72.98 142.06 126.41 0.99 837.70
Min 3.24 8.48 3.53 2.26 1.34 5.50 1.61 0.43 0.20
2017
AVG 26.40 145.07 20.61 27.69 20.35 41.84 22.72 0.71 100.03
STD 16.46 109.75 14.49 21.65 12.71 31.31 22.78 0.15 126.11
Max 68.58 429.42 55.20 91.65 43.31 145.53 113.10 0.98 588.00
Min 3.27 4.90 1.98 2.47 0.65 5.16 1.53 0.41 0.00
2018
AVG 26.32 150.12 21.84 30.42 17.19 43.01 20.71 0.81 87.90
STD 16.49 123.11 15.83 23.57 10.96 32.16 23.44 0.14 88.34
Max 69.60 489.40 57.47 99.95 36.33 144.03 98.75 1.00 340.50
Min 3.29 2.76 2.18 2.75 0.27 5.00 0.36 0.49 0.90
2019
AVG 26.15 154.09 23.07 32.69 15.23 44.52 20.51 0.77 108.97
STD 16.47 129.67 16.66 25.24 9.32 33.45 20.23 0.14 136.10
Max 69.95 513.32 58.77 107.99 35.24 147.13 95.43 0.99 552.60
Min 3.30 1.83 2.24 2.94 0.19 4.91 0.63 0.49 0.00
2020
AVG 24.96 154.67 23.76 33.60 10.59 44.90 15.14 0.82 123.25
STD 16.32 132.13 17.06 26.04 6.41 34.13 14.57 0.12 135.97
Max 70.39 537.39 58.94 111.15 27.39 145.35 53.13 1.00 602.60
Min 2.79 1.35 2.33 3.01 0.18 4.58 0.05 0.56 0.90

3.2. Eco-Efficiency Affected by Dual Heterogeneities
3.2.1. Management Eco-Efficiency

In the first level projection path, we obtain the results of ME, MPE and MGE. Figure 3
shows their trends in each region and China from 2016 to 2020. In the eastern region,
the MPE is better than the MGE in 2016 and 2020, and both of them are almost equal from
2017 to 2019. In the central region, except 2017, the MPE is better than the MGE in the
remaining years. In the western region and the whole of China, the MPE is better than the
MGE in the five years. Obviously, Figure 3 illustrates that the ME in the eastern region is
the worst. In 2017, the ME in the central region shows a drastic rise. In 2020, ME in each
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region as well as the whole of China show a slight decline and show relatively flat changes
from 2017 to 2019.

In order to better observe the differences of ME values in different regions and pe-
riods, we performed the Mann–Whitney U test [48] on ME in the regional and temporal
dimensions. The Mann–Whitney U test is one of the most widely used statistical tests
in behavioral research. It assumes that two samples are derived two populations that
are identical except for the population mean and is intended to test whether the means
of the two populations differ significantly. We utilized the Scipy package in Python for
calculations and chose the null hypothesis H0 : µ1 ≥ µ2 and the alternative hypothesis
H1 : µ1 < µ2. The resulting p values in the regional dimension are provided in Table 5.
The p values in Table 5 reveal that the ME in the central region is the highest, followed
by that in the western region, and the worst is that in the eastern region. In the temporal
dimension, only the ME in 2019 is better than that in 2020 with the relevant p = 9.77%,
which passes the 10% significance level test. There is no significant difference in ME of
China in other years since all the relevant p values do not pass the 10% significance level
test. For simplicity, we no longer provide these p values in the temporal dimension.

(a) Eastern region (b) Central region

(c) Western region (d) China

Figure 3. Trends of ME, MPE and MGE from 2016 to 2020.

Table 5. Mann–Whitney U test results of ME in the regional dimension.

Region Eastern Central Western

Eastern - 0 0
Central 1 - 0.9974
Western 1 0.0027 -

Figure 4 shows the annual average ME (AME) of each province. From Figure 4,
the management level of the provinces in the eastern region is polarized. Beijing, Tianjin,
Shanghai and Hainan have far higher AME than the remaining seven eastern provinces,
among which Beijing and Shanghai are the provinces with the best AME in the eastern
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region. Seven ME-inefficient provinces in the eastern region (i.e., Hebei, Liaoning, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong) have very poor ME values. They should try their
best to improve their management level in both economic production and environmental
governance. On the whole, the central region has the highest AME and the smallest
difference in AME among provinces. Jiangxi is the province with the best AME in the
central region, which is always 1.0 during the sample period. Anhui and Gansu, as the
provinces with the worst AME in the central and western regions, are still superior to many
provinces in the eastern region.

Figure 4. The AME of each province in China.

3.2.2. Regional Eco-Efficiency

In the second-level projection path, the results of RE, RPE and RGE can be obtained.
Figure 5 shows the trends of RE, RPE and RGE in each region as well as the entirety of
China from 2016 to 2020. It can be seen that in the central and western regions as well as
in the whole of China, RPE is slightly better than RGE from 2018 to 2020. Specially, in the
central region, RPE is better than RGE from 2016 to 2020. The trends of these three regional
eco-efficiency indexes in the central and western regions as well as the whole of China are
similar. From 2016 to 2018, they continue to decline, and from 2018 to 2020, they show flat
changes. From Figure 5, we see the RE in the eastern region is the best, followed by that in
the western region. The RE in the central region is the worst, which is less than 0.2 each
year. Although most eastern provinces have very low ME, they are affected by the positive
effects of excellent regional technology. Furthermore, most central provinces have good
ME, but they are affected by the negative effect of poor regional technology.

We performed the Mann–Whitney U test on RE in both regional and temporal dimen-
sions. In the regional dimension, the detailed p values are shown in Table 6. This results
show that the RE of the eastern region is the best, that of the western region is the second
and that of the central region is the worst. In the temporal dimension, with the relevant
p = 9.53% and 9.90% passing the 10% significance level test, the RE in 2018 and 2019 is
significantly lower than that in 2016. Other relevant p values in the temporal dimension
do not pass the 10% significance level. For simplicity, we do not provide them here. These
results are consistent with those shown in Figure 5.
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(a) Eastern region (b) Central region

(c) Western region (d) China

Figure 5. Trends of RE, RPE and RGE from 2016 to 2020.

Table 6. Mann–Whitney U test results of RE in the regional dimension.

Region Eastern Central Western

Eastern - 1 1
Central 0 - 0
Western 0 1 -

The RE of the eastern region is equal to or close to 1 every year. Only in 2016, 2018
and 2019 do several provinces not reach efficiency. Therefore, we observed the RE slack
variables of these provinces (see Table 7) and analyzed the reasons why these provinces are
not efficient. For Hebei and Fujian in 2016, the positive slack variables are concentrated
on the inputs of the first stage. So, their regional eco-inefficiency mainly derives from the
excessive inputs in the economic production stage. For Tianjin in 2018, except x1

1, y2
1 and b2

1,
there are excesses in the remaining inputs and intermediate products and insufficiency in
the remaining outputs. For Jiangsu, Guangdong and Zhejiang in 2019, positive slacks are
mainly located in the inputs of both stages and z2 (i.e., the SO2 emissions). Although there
are positive slacks in the above provinces, their RE is still excellent. These provinces can
focus on the above weaknesses to improve regional eco-efficiency. All eastern provinces,
including the six provinces mentioned above, are regionally eco-efficient in 2017 and 2022.

Table 7. RE slacks of inefficient eastern provinces.

Year x1
1 x1

2 x1
3 y1

1 z1 z2 x2
1 y2

1 b2
1

Hebei 2016 0.024 0.027 0.037 0 0 0 0 0 0
Fujian 2016 0.019 0.022 0.029 0 0 0 0 0 0
Tianjin 2018 0 1.848 0.690 1.663 0.452 0.405 0.780 0 0
Jiangsu 2019 0.016 0.325 0.085 0 0.001 0.082 0.127 0 0
Zhejiang 2019 0.003 0.067 0.018 0 10−4 0.017 0.026 0 0
Guangdong 2019 0.019 0.388 0.102 0 0 0.098 0.142 0 0.010
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3.2.3. Temporal Eco-Efficiency

In the third-level projection path, the results of TE, TPE and TGE are obtained. Figure 6
shows the treads of TE, TPE and TGE in the regions as well as the whole of China from 2016
to 2020. In the regions as well as the whole of China, TPE outperforms TGE in most years.
This means that in most years, the EP performance depending on temporal technology
is better than the EG performance depending on it in China. We find from Figure 6 that
for the temporal eco-efficiency indexes, there is no significant difference among regions in
China. The results of the Mann–Whitney U test on TE verify this. All the relevant p values
in the regional dimension are greater than 0.3. This characteristic is different from that of
the management eco-efficiency indexes and the regional eco-efficiency indexes, where some
regions are significantly superior to others. The trends of the three temporal eco-efficiency
indexes in the regions and the whole of China are similar. TPE shows a consistent upward
trend in all regions and the country. TE and TGE show small declines in 2018 and both
temporal eco-efficiency indexes rise steadily in the remaining years. The Mann–Whitney U
test results in Table 8 also verify this. In Table 8, almost all of the upper triangle elements in
the Mann–Whitney U test have passed the 5% significance test, which means that the TE of
China increases in general. In 2020, all the three temporal efficiency indexes of each region
and the entire country increase to scores close to 1.

(a) Eastern region (b) Central region

(c) Western region (d) China

Figure 6. Trends of TE, TPE and TGE from 2016 to 2020.

Table 8. Mann–Whitney U test results of TE in the temporal dimension.

Year 2016 2017 2018 2019 2020

2016 - 0 0 0 0
2017 1 - 0.6247 0 0
2018 1 0.3809 - 0 0
2019 1 1 1 - 0.1199
2020 1 1 1 0.883 -
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3.3. Emissions Analysis
3.3.1. Emissions Inefficiency and Its Decomposition

As an essential component of the ecosystem, the emissions of SO2 and CO2 serve as a
crucial link connecting the stages of economic production and environmental governance.
Mitigating inefficiencies in emissions is instrumental in optimizing resource utilization,
mitigating pollution, preserving ecological equilibrium and fostering sustainable economic
development. The investigation and enhancement of emission efficiency play a pivotal role
in achieving a harmonious balance between economic progress and environmental conser-
vation, thus contributing to the establishment of a more sustainable ecological governance
system. Consequently, this section focuses on the analysis of emission inefficiencies.

Figure 7 shows the average provincial MI, RHI and THI for each year and for each
region. From Figure 7a, we find that MI and RHI continue to oscillate. MI weakens in 2017,
recovers in 2018, declines in 2019 and reaches the maximum in 2020. RHI increases from
2016 to 2017, drops in 2018, increases in 2019 and decreases in 2020. This indicates that MI
and RHI have opposite change trends. THI drops significantly from 2016 to 2020. It can
be seen that THI has little effect on TEI in 2019 and 2020. Under the combined effect of
the three inefficiency indexes, TEI does not improve over time. Compared to the average
provincial TEI in 2016, it is downward in 2020, even with the significant increase in RHI
or MI in some years. It can be seen from Figure 7b that the primary source of the TEI of
China is MI, followed by RHI, and THI is the smallest. In the eastern region, MI accounts
for the largest proportion of TEI, followed by THI and the smallest proportion is RHI. For
both central and western regions, RHI accounts for the largest proportion, followed by
MI, and THI accounts for the smallest. Especially for the central region, the emissions
inefficiency mainly derives from the poor regional technology.

Due to the space limitation, Figure 8 shows the TEI and its decomposition from 2016 to
2020 just for several typical provinces. Among the 30 provinces, only four provinces, Beijing,
Shanghai, Hainan and Qinghai, have RHI and MI equal to zero in each sample year. This
means that the inefficiency of the four provinces only derives from the behindhand emission
reduction technology in the corresponding year. The TEI of Shanxi, Inner Mongolia and
Shandong is the largest among the 30 provinces in one sample year. In fact, the three
provinces are extremely inefficient in terms of emissions each year. They do not have the
same inefficiency sources. Shandong’s TEI mainly derives from its own low management
efficiency; Shanxi’s TEI mainly derives from low RHI, except for 2016; and Inner Mongolia’s
TEI is mainly due to low management efficiency, except for 2019. In 2020, only Anhui’s THI
is greater than 0 among the 30 provinces, indicating that the emission reduction technology
in Anhui is relatively bad in 2020.

3.3.2. TGR Analysis

In order to highlight the advantages of our segmented projection method, Table 9
gives the RTGR and TTGR results calculated with the direct projection method, that is,
by using Kao [45]’s NSBM model directly. It can be seen that the TGR results of many
provinces are greater than 1, which has been marked in bold in Table 9. This violates the
basic property of meta-frontier analysis. Table 10 shows the results of RTGR and TTGR
generated by our segmented projection method. Obviously, all the values of of RTGR and
TTGR in Table 10 are not greater than unity. Therefore, our method successfully overcomes
the issue of TGR > 1.

Figure 9 shows RTGR and TTGR of each region and the whole of China from 2016 to
2020. From Figure 9a, we find that the RTGR in the eastern region always has a high level
from 2016 to 2020. In 2018, only the RTGR of Tianjin is 0.83, but the RTGR of other eastern
provinces is equal to 1 from 2016 to 2020. This means that for most eastern provinces, there
is no gap between the regional frontier and the temporal frontier. With the exception of a
slight decline in 2018, TTGR in the eastern region generally shows an upward trend. This
means that for the eastern provinces, technology development has gradually reduced the
temporal gaps in emission technology. We know from Table 10 that all the eastern provinces
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have a TTGR less than one in 2016 and 2018. In 2020, there is no regional technology gap
and no temporal technology gap for all the eastern provinces.

(a) Year

(b) Region

Figure 7. Average TEI and its decomposition.

(a) 2016 (b) 2017

(c) 2018 (d) 2019

(e) 2020

Figure 8. Provincial TEI and its decomposition from 2016 to 2020.
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Table 9. Provincial RTGR and TTGR generated by direct projection.

Province
2016 2017 2018 2019 2020

RTGR TTGR RTGR TTGR RTGR TTGR RTGR TTGR RTGR TTGR

Beijing 1.00 0.32 1.00 1.00 1.00 0.66 1.00 1.00 1.00 1.00
Tianjin 1.00 0.19 1.00 1.00 0.82 0.30 1.00 1.00 1.00 1.00
Hebei 1.00 0.56 0.88 0.62 0.94 0.76 1.02 0.87 1.11 0.97
Liaoning 0.92 0.70 0.94 0.76 1.00 0.86 1.00 0.87 1.00 1.00
Shanghai 1.00 0.60 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00
Jiangsu 1.00 0.32 0.89 0.37 0.98 0.55 2.15 0.49 1.00 1.00
Zhejiang 1.00 0.32 0.89 0.36 0.96 0.49 1.00 0.83 1.00 1.00
Fujian 1.00 0.54 0.88 0.54 1.29 0.65 1.03 0.84 1.08 1.03
Shandong 1.00 0.32 0.89 0.36 0.99 0.62 0.99 0.82 1.00 1.00
Guangdong 1.00 0.36 0.89 0.37 0.98 0.59 1.00 0.78 1.00 1.00
Hainan 1.00 0.90 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00
Shanxi 0.15 0.74 0.05 0.82 0.05 0.86 0.05 0.71 0.04 1.00
Jilin 0.16 0.71 0.14 0.82 0.18 0.86 0.16 0.87 0.16 1.00
Helongjiang 0.15 0.73 0.09 0.82 0.18 0.86 0.11 0.87 0.16 1.00
Anhui 0.20 0.43 0.14 0.49 0.18 0.74 0.14 1.70 0.13 1.02
Jiangxi 0.14 0.73 0.14 0.76 0.15 0.86 0.15 0.87 0.16 1.00
Henan 0.20 0.40 0.18 0.36 0.12 0.66 0.13 0.85 0.11 1.00
Hubei 0.20 0.42 0.20 0.49 0.17 0.79 0.15 0.74 0.12 1.00
Hunan 0.18 0.42 0.18 0.49 0.16 0.67 0.16 0.91 0.14 1.14
Inner Mongolia 0.33 0.67 0.37 0.57 0.24 0.86 0.04 0.87 0.25 1.00
Guangxi 0.55 0.24 0.27 0.82 0.17 0.86 0.33 0.87 0.32 1.00
Chongqing 1.00 0.21 0.24 0.71 0.25 0.86 0.27 0.87 0.26 1.00
Sichuan 0.21 0.42 0.23 0.49 0.21 0.77 0.18 0.94 0.16 1.00
Guizhou 0.24 0.71 0.39 0.82 0.41 0.86 0.41 0.87 0.40 1.00
Yunnan 0.32 0.74 0.30 0.82 0.30 0.86 0.31 0.87 0.30 1.00
Shaanxi 0.26 0.43 1.00 0.65 1.00 0.93 1.00 1.00 1.00 1.00
Gansu 0.53 0.70 0.49 0.82 0.54 0.86 0.55 0.87 0.50 1.00
Qinghai 1.00 0.49 1.00 0.62 1.00 0.87 1.00 0.91 1.00 1.00
Ningxia 0.53 0.22 0.11 0.87 0.15 0.76 0.14 0.79 0.20 0.99
Xinjiang 0.38 0.72 0.20 0.82 0.22 0.73 0.17 1.17 0.17 1.00

It can be seen from Figure 9b that the RTGR in the central region is very low and shows
a downward trend as a whole. This means that in the central region, the gap between the
regional frontier and the temporal frontier is large and is widening. From Table 10, we
see that in the sample period, all the central provinces obtain a small RTGR. In contrast,
the TTGR in the central region increases steadily year-by-year. In 2020, only one central
province has a TTGR less than 1, and the rest are equal to 1. The gap between the temporal
frontier and the meta-frontier is shrinking in the central region.

As can be seen from Figure 9c, 2016 is a special year for the western region. In this year,
the RTGR is larger than the TTGR. From Table 10, the RTGR values of Chongqing, Guizhou,
Shaanxi and Qinghai in 2016 are equal to one. This may be due to the positive regional
results brought by the development of China’s western regions and the advancement of the
“Belt and Road” construction. Obviously, the RTGR in the western region is higher than that
in the central region, but it also shows a decreasing trend generally. This indicates that the
gap between the regional frontier and the temporal frontier in the western region is smaller
than that in the central region, but it is also widening. The TTGR in the western region
shows an increasing trend year-by-year. In 2020, the TTGR of all western provinces is equal
to 1, which means that there is no gap between the temporal frontier and the meta-frontier.

For the whole of China (see Figure 9d), RTGR has continued to decline since 2016,
indicating that the gap between the regional frontier and the temporal frontier is increasing.
Conversely, TTGR generally rises over the sample period. Namely, the gap between the
temporal frontier and the meta-frontier shrinks from 2016 to 2020 in general. China’s
emissions inefficiency is jointly affected by both regional and temporal heterogeneities,
and RTGR is bigger than TTGR in 2016. With the development of technology from 2017
to 2020, RTGR is smaller than TTGR. So, the two kinds of heterogeneity have different
effects on TGR. To a certain extent, this characteristic verifies the rationality of considering
regional and temporal heterogeneities in this paper.
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(a) Eastern region (b) Central region

(c) Western region (d) China

Figure 9. RTGR and TTGR from 2016 to 2020.

Table 10. Provincial RTGR and TTGR generated by our segmented projection method.

Province
2016 2017 2018 2019 2020

RTGR TTGR RTGR TTGR RTGR TTGR RTGR TTGR RTGR TTGR

Beijing 1.00 0.32 1.00 1.00 1.00 0.66 1.00 1.00 1.00 1.00
Tianjin 1.00 0.19 1.00 1.00 0.83 0.65 1.00 1.00 1.00 1.00
Hebei 1.00 0.56 1.00 0.54 1.00 0.66 1.00 0.70 1.00 1.00
Liaoning 1.00 0.44 1.00 0.71 1.00 0.86 1.00 1.00 1.00 1.00
Shanghai 1.00 0.60 1.00 1.00 1.00 0.84 1.00 1.00 1.00 1.00
Jiangsu 1.00 0.32 1.00 0.64 1.00 0.54 1.00 0.88 1.00 1.00
Zhejiang 1.00 0.32 1.00 0.32 1.00 0.47 1.00 0.97 1.00 1.00
Fujian 1.00 0.54 1.00 0.46 1.00 0.62 1.00 0.74 1.00 1.00
Shandong 1.00 0.32 1.00 0.32 1.00 0.62 1.00 0.96 1.00 1.00
Guangdong 1.00 0.32 1.00 0.81 1.00 0.58 1.00 0.87 1.00 1.00
Hainan 1.00 0.90 1.00 1.00 1.00 0.87 1.00 1.00 1.00 1.00
Eastern 1.00 0.44 1.00 0.71 0.98 0.67 1.00 0.92 1.00 1.00
Shanxi 0.15 0.90 0.05 1.00 0.05 0.87 0.05 1.00 0.04 1.00
Jilin 0.16 0.82 0.14 1.00 0.18 0.87 0.16 1.00 0.16 1.00
Heilongjiang 0.15 0.87 0.09 1.00 0.18 0.87 0.11 1.00 0.16 1.00
Anhui 0.20 0.60 0.14 0.64 0.19 0.74 0.17 0.67 0.15 0.96
Jiangxi 0.14 0.90 0.14 1.00 0.15 0.87 0.15 1.00 0.16 1.00
Henan 0.20 0.40 0.18 0.38 0.12 0.66 0.13 1.00 0.11 1.00
Hubei 0.20 0.49 0.20 0.46 0.17 0.62 0.14 1.00 0.13 1.00
Hunan 0.18 0.52 0.18 0.53 0.16 0.58 0.16 0.66 0.14 1.00
Central 0.17 0.69 0.14 0.75 0.15 0.76 0.13 0.92 0.13 0.99
Inner Mongolia 0.61 0.36 0.48 0.72 0.22 0.87 0.04 1.00 0.20 1.00
Guangxi 0.55 0.24 0.30 1.00 0.17 0.87 0.33 1.00 0.33 1.00
Chongqing 1.00 0.21 0.25 1.00 0.25 0.87 0.27 1.00 0.29 1.00
Sichuan 0.21 0.49 0.23 0.45 0.22 0.51 0.19 0.67 0.16 1.00
Guizhou 1.00 0.21 0.59 0.67 0.41 0.87 0.41 1.00 0.40 1.00
Yunnan 0.62 0.38 0.31 0.98 0.30 0.87 0.32 1.00 0.30 1.00
Shaanxi 1.00 0.21 1.00 0.65 1.00 0.93 1.00 1.00 1.00 1.00
Gansu 0.98 0.48 0.90 0.63 0.54 0.87 0.55 1.00 0.50 1.00
Qinghai 1.00 0.50 1.00 0.62 1.00 0.87 1.00 0.91 1.00 1.00
Ningxia 0.53 0.21 0.11 1.00 0.15 0.77 0.14 0.79 0.20 1.00
Xinjiang 0.72 0.41 0.20 1.00 0.22 0.61 0.18 1.00 0.13 1.00
Western 0.75 0.34 0.49 0.79 0.41 0.81 0.40 0.94 0.41 1.00
China 0.69 0.47 0.58 0.75 0.55 0.74 0.55 0.93 0.55 1.00

4. Discussion and Suggestions
4.1. Discussion

Building upon the aforementioned empirical findings, we turn our attention to the
discussion of eco-efficiency within each category, coupled with an exploration of emission
inefficiency and TGR.



Systems 2024, 12, 22 20 of 24

(1) In the realm of management eco-efficiency, several noteworthy observations emerge:

• Over the majority of sample years, the managerial performance in economic
production across most Chinese provinces surpasses that in environmental gov-
ernance.

• Contrary to the conventional pattern where the eastern region outperforms
the central and western regions, the central provinces exhibit commendable
management eco-efficiency, while the eastern provinces lag behind.

• Throughout China, the overall management technical level remains relatively sta-
ble across the sample period, except for 2020, when a discernible change occurs.

(2) In the context of regional eco-efficiency, additional insights surface:

• In the majority of provinces and sample years, economic production influenced
by regional technologies outperforms environmental governance determined by
the same technologies.

• In Central and Western China, regional eco-efficiency, as determined by regional
technologies, shows a declining trend year-by-year, eventually stabilizing. This
trend signifies a widening and stabilizing gap in eco-efficiency dependent on
regional technologies between the central and western regions versus the eastern
regions.

• The technological advancements in economic production and environmental
governance in the eastern provinces significantly outpace those in the central and
western provinces, resulting in excellent regional eco-efficiency in the eastern
region and a comparative disadvantage for the central region.

(3) In the domain of temporal eco-efficiency, the following observations can be made:

• For the majority of provinces in most years, TPE surpasses TGE, akin to the
patterns observed in MPE versus MGE, as well as RPE versus RGE. This consis-
tent pattern indicates that, in most provinces and years, their management level,
regional production technology and temporal production technology are more
conducive to economic production than environmental governance.

• Temporal efficiency indexes generally exhibit a positive trend, indicating the in-
creasing role of scientific and technological development in promoting economic
production and environmental governance. Moreover, this trend is not specific
to any one region, as there is no significant regional difference in the promoting
effect of scientific and technological development on economic production and
environmental governance.

(4) Regarding emissions inefficiency, the following discoveries come to light:

• The emissions efficiency of most provinces has gradually improved, despite some
fluctuations in the TEI in intervening years.

• The ongoing development of technology in economic production and environ-
mental management in China weakens emissions inefficiency dependent on
temporal technology.

• Poor management levels represent the primary obstacle to improving emissions
efficiency in the eastern region, while the level of regional technology is the
major factor contributing to emissions inefficiency in the central and western
regions. For the western region, poor management also plays a significant role in
emissions inefficiency. To enhance national emissions efficiency, concerted efforts
are required to improve both management and regional technology levels.

(5) Turning to the results of TGR, several key observations are made:

• Similar to the eco-efficiency indexes, the eastern provinces exhibit clear regional
advantages in emissions efficiency, with emission reduction technology showing
continuous development. This underscores that the superior emissions efficiency
in the eastern provinces results from a combination of regional and technological
advancements.
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• While the development of emission reduction technologies aids the central and
western provinces in reducing emissions inefficiency, their lower RTGR empha-
sizes the importance of learning advanced emission reduction technologies from
the eastern provinces to narrow the regional technology gap and prevent further
widening.

• The role of national technology in promoting emissions efficiency increases
steadily over the years. Macro policies, such as the “Opinions of the Central
Committee of the Communist Party of China and the State Council on Accelerat-
ing the Construction of Ecological Civilization” in April 2015, act as accelerators
for improving TTGR. Additionally, attention should be paid to the widening gap
in emissions efficiency caused by regional differences.

4.2. Suggestions

Building on the preceding discussions, the following suggestions are proposed:

(1) Enhancing eco-efficiency necessitates a balanced consideration of both economic
production and environmental governance. Rather than solely pursuing economic de-
velopment at the expense of environmental concerns, it is crucial for the government
to take a proactive stance in augmenting its capabilities in environmental governance.
This involves increased investments in environmental management, reinforced super-
vision of local industrial enterprises and concerted efforts to address pollution at its
source. Such measures aim to realize high-quality and sustainable development.

(2) To enhance eco-efficiency and mitigate emissions, the eastern region can concentrate
on elevating its own management proficiency by drawing insights from the successful
management experiences of the central provinces. Simultaneously, the central region
should focus on narrowing the regional technology gap through intensified technical
exchanges with the eastern region and the adoption of advanced technologies and
valuable resources. The western region should navigate a balanced approach, addressing
both management enhancement and regional technology considerations. At the national
level, government policies should be introduced to incentivize provinces in promoting
effective management practices and reducing regional technology disparities.

5. Conclusions, Limitations and Future Work

The existing studies do not consider stage division as well as both regional and
temporal technology heterogeneity on the premise of ensuring that TGRs are not greater
than 1. To fill the gaps of existing research, the following work was carried out in this study:

Theoretically, we introduced a three-level meta-frontier NSBM approach for a two-
stage network structure. We first considered both regional and temporal technology
heterogeneities to build three kinds of frontiers: regional frontiers, temporal frontiers and
the meta-frontier. Furthermore, the activities of the DMUs were divided into the EP stage
and the EG stage. The intermediate variables connecting the two stages are the pollutant
emissions. Based on these, a three-level meta-frontier NSBM approach was built, and nine
efficiency indexes are proposed. In order to deeply analyze the emissions efficiency, we
defined the indexes of MI, RHI as well as THI and constructed the TEI index. In addition,
in order to analyze the technology gaps, we constructed RTGR and TTGR indexes.

In application, we used the proposed three-level meta-frontier NSBM model to evalu-
ate the eco-efficiency of 30 Chinese provinces during the 13th Five-Year Plan period. The
empirical results demonstrate that the economic production performance is better than
the environmental governance performance for most provinces in most years. Large gaps
exist in regional and temporal eco-efficiencies. The central region has the best management
eco-efficiency, followed by the western region and the eastern region; the eastern region has
the best regional eco-efficiency, followed by the western region and the central region; and
the temporal eco-efficiencies of the three regions generally increase year-by-year. Based
on the TEI and its decomposition inefficiency indexes, it can be seen that MI accounts for
the largest proportion of the TEI of China, followed by RHI, and THI accounts for the
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smallest. In addition, for the entirety of China, the gap between the regional frontier and
the temporal frontier has widened since 2016, and the gap between the temporal frontier
and the meta-frontier generally shrinks from 2016 to 2020.

Our study takes a comprehensive approach, considering region, time, stage and
network structure. By dividing ecological activities into economic production and envi-
ronmental governance stages, we gain a detailed understanding of ecological efficiency
dynamics. The incorporation of emission efficiency analysis and the application of a two-
stage three-level meta-frontier network model address the challenge of TGR exceeding 1.
This multifaceted research perspective enhances insights into the critical factors influencing
ecological and emission efficiency. However, our study has limitations.

(1) The availability of data restricted the length of our sample period, limiting the scope
of our analysis.

(2) Too many inputs and outputs will reduce the efficiency discrimination ability of
DEA models. In order to maintain the efficiency discrimination ability, the proposed
three-level meta-frontier NSBM approach only takes the emissions of SO2 and CO2 as
intermediate variables and does not consider other pollutants.

(3) The three-level meta-frontier NDEA model proposed in this paper only considers the
regional and temporal technology heterogeneities.

In future research work, we can carry out further research involving the following
aspects:

(1) In order to discriminate the eco-efficiency and meanwhile to consider more pollutant
emissions, such as waste gas, waste water and solid waste, the three-level meta-
frontier network cross-efficiency [49,50] or the super-efficiency [51] approach can
be built.

(2) We can consider other heterogeneities according to the actual situation, such as
industry categories and scales, to introduce more production frontiers and propose
the corresponding multi-level meta-frontier NDEA models.

(3) The Tobit regression model [52] is one of the commonly used methods for discussing
the external factors that affect efficiency. Due to the space limitation, we did not use the
Tobit regression here. To analyze the significance of external influencing factors for the
emissions inefficiency or eco-efficiency scores, we can select appropriate explanatory
variables for Tobit regression analysis.

Author Contributions: Conceptualization, R.L. and X.W.; Formal analysis, R.L.; Investigation, R.L.
and Y.J.; Methodology, R.L. and X.W.; Data collection, Y.J.; Project administration, R.L.; Software,
X.W.; Validation, R.L.; Writing-original draft, R.L. and X.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China [grant
number 71971163].

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Schaltegger, S.; Sturm, A. Ökologische rationalität: Ansatzpunkte zur ausgestaltung von ökologieorientierten managementinstrumenten.

Die Unternehm. 1990, 44, 273–290. Available online: http://www.jstor.org/stable/24180467 (accessed on 1 January 2020).
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