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Abstract: This paper addresses the critical issue of managing biomass parks, a key component in
the shift towards sustainable energy sources. The research problem centers on optimizing the man-
agement of these parks to enhance production and economic viability. Our aim was to bridge the
gap in current research by developing and applying mathematical models tailored for biomass park
management. The study commenced by constructing a basic model based on assumptions such as
uniform biomass and steady input rates. Progressing from this initial model, we explored sophis-
ticated control strategies, including Pontryagin’s maximum principle and dynamic programming,
and employed numerical methods to tackle the nonlinearities and complexities inherent in biomass
management. Our approach’s scope extended to predicting and managing biomass flow, highlighting
each method’s distinct advantages. The simple model laid the groundwork for understanding,
while optimal control techniques revealed the system’s intricate dynamics. The numerical methods
provided practical solutions to complex equations. We found that while each method is beneficial on
its own, their combined use can significantly improve decision-making in biomass park management.
This research emphasizes the importance of aligning the chosen method with specific operational
challenges and desired outcomes for optimal efficacy, offering both theoretical insights and practical
applications in the field of renewable energy management.

Keywords: biomass storage parks management; biomass energy recovery; mathematical modeling;
logistics optimization

1. Introduction

The role of biomass storage parks as complementary sources in the realm of renewable
energy production has gained attention in the pursuit of a more sustainable and greener
energy mix [1]. Biomass, which is made from organic matter, is one of the more promising
options since it offers a practical and environmentally benign alternative to fossil fuels that
are quickly running out and harming the environment [2]. Given their potential, it is clear
that biomass parks require the best possible management in order to maximize energy
production and maintain the long-term financial viability of these endeavors [3].

A deeper understanding of the optimal management of biomass storage parks has
been necessitated by the increased reliance on them in the renewable energy sector. The
potential for biomass as a sustainable energy source is emphasized in numerous studies.
However, comprehensive literature addressing the efficient management of biomass stor-
age parks is found lacking. In this paper, gaps in the current literature will be identified,
and methods by which the manuscript intends to address these gaps will be described. Re-
garding detailed management strategies for biomass parks, general guidelines on biomass
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management are offered, but a comprehensive strategy accounting for the diverse charac-
teristics and challenges of different biomass types seems absent. A variability in biomass
type, composition, and moisture content, each having distinct storage requirements, is
observed [4]. A comprehensive set of best practices accounting for this variability, which is
essential for maintaining biomass integrity and maximizing energy yield, is not present in
the current literature [5–7].

Considering economic models for biomass park operations, a gap in models tailored
specifically for such operations has been noted [8]. The financial viability of biomass parks
has been acknowledged, but the literature is sparse on in-depth models that consider both
operational costs and potential energy production revenues [9]. The absence of such de-
tailed financial assessments could potentially deter the long-term sustainability and growth
of these parks [10]. While potential energy production from biomass is a primary focus
of the current literature, insights into optimal infrastructure and techniques for biomass
storage remain limited [11]. The importance of storage conditions, which can influence
the quality of biomass and its subsequent energy yield, is evident [12]. However, detailed
studies and guidelines on these storage solutions have yet to be extensively explored.

Regarding the impact of external factors on biomass storage, the adverse effects of
elements such as climatic conditions, pests, and microbial activities on stored biomass
quality are acknowledged [13]. However, systematic studies evaluating the extent of these
impacts in diverse geographical and climatic settings are not extensively found in the
literature [14]. Although the importance of technology in improving the efficiency of
biomass storage parks is recognized, literature critically evaluating the recent technological
advancements and their benefits in biomass storage management appears limited [15].

While the significance of biomass as a renewable energy source is understood, its
optimal integration with other energy sources, such as solar and wind, has not been
thoroughly examined [16]. Integrative models emphasizing the combined use of biomass
with other renewable energies seem underrepresented in the current literature [17]. Also,
biomass storage parks, like other energy production methods, have environmental and
socio-economic implications [18]. An in-depth assessment of these impacts in the literature,
encompassing both their positive and negative aspects, is deemed essential for ensuring
the sustainability and community acceptance of biomass parks.

The aim of this paper is to delineate a clear, structured approach to optimize biomass
park management, a task characterized by its multifaceted nature. The problem is defined
by several objectives, variables, parameters, and constraints that must be systematically
addressed. This paper begins by establishing a basic mathematical model in Section 3.1,
introducing key variables and parameters, such as input rates and biomass types, and
setting fundamental constraints. This model serves as a foundation for more complex anal-
yses. In Section 3.2, the model is refined to align more closely with real-world conditions,
introducing additional variables and parameters. Section 3.4 further elaborates on the
operational constraints that bind these variables, providing a more realistic framework
for the model. The culmination of this process is in Section 3.5, where an optimal control
model is presented, integrating all previously mentioned elements into a cohesive structure.
Advanced optimization techniques, such as Pontryagin’s maximum principle and dynamic
programming, are explored in Section 4. These sections (Sections 4.1 and 4.2, respectively)
demonstrate the practical application of these techniques, detailing how they handle the
complex interplay of variables and constraints within the model. Section 4.3 then delves
into the numerical methods, discussing their value in solving nonlinear equations or mod-
els with a large number of variables, which may not be feasible through purely analytical
approaches. This paper is structured to provide a comprehensive guide to decision-makers,
stakeholders, and business managers. It offers a toolkit for managing biomass storage parks
effectively, contributing to the broader vision of a future powered by renewable, sustainable,
and economically viable energy sources. The systematic exploration of the topic is laid out
clearly across six sections, beginning with the introductory context in Section 2, followed
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by the development of the mathematical model, its practical applications, analysis of the
results in Section 5, and concluding with the research findings in Section 6.

2. Scenario Description

In the pursuit of sustainable energy solutions, the management of biomass parks
has emerged as a critical area of focus [19]. This involves understanding the dynamics
of biomass flow, storage, and utilization within these parks. To create a structured and
clear problem statement for managing a specific biomass park, the following elements are
defined and organized:

Objective: To optimize the management of biomass flow, storage, and utilization in a
biomass park.

Variables:

1. Types of Biomass: Trunks (T), chips (E), and bales (F).
2. Production Batches: In use (U), waiting (W), and in preparation (P).
3. Biomass Storage Capacity: Maximum of 1400 tons, equal to two weeks of consumption.

Parameters:

1. Biomass Inflow Rate (E): Constant rate of biomass entering the park, measured
in tons/day.

2. Gasification Rate (G): Rate of biomass processing, assumed constant, in tons/day.
3. Current Biomass Storage (S): Amount of biomass stored in the park, in tons.

Constraints:

1. Homogeneity of Biomass: Biomass is treated as homogeneous in the model.
2. Constant Inflow Rate: The rate of biomass entering the park is constant.
3. Constant Gasification Rate: The gasification process occurs at a steady rate.

Mathematical Model: A simplified mathematical model is developed using these
variables and parameters. The central equation is an ordinary differential equation,
dS/dt = E− G, representing the net biomass in the park, considering the inflow and
consumption rates.

Optimization Technique:

1. Pontryagin’s maximum principle is used to define a Hamiltonian, integrating the
objective function with state equations and introducing co-state variables (λ).

2. Dynamic programming is applied for optimization, with time discretized (e.g., in
days) to facilitate decision-making regarding biomass inflow and gasification.

3. Numerical methods like the Euler and Runge–Kutta methods are discussed for solving
nonlinear equations, with the former providing straightforward updates and the latter
offering higher accuracy.

In the context of the described scenario for the management of biomass parks, an
important aspect to consider is the nature of the problem in terms of linearity. The problem,
as formulated, predominantly features linear characteristics. This is evident from the
central mathematical model, an ordinary differential equation dS/dt = E − G, which
linearly relates the change in biomass storage (S) over time (t) to the difference between the
inflow rate (E) and the gasification rate (G). This linear relationship simplifies the analysis
and computational modeling, making it more tractable to predict and optimize the biomass
flow and storage. However, it is mandatory to acknowledge that real-world scenarios
often introduce nonlinear complexities. For instance, factors like biomass heterogeneity,
variable processing rates due to equipment efficiency or environmental conditions, and
fluctuations in biomass supply and demand can introduce nonlinear elements into the
model. While the current model assumes a constant inflow and gasification rate, in practice,
these rates can vary, leading to a nonlinear system behavior. Additionally, the homogeneity
of biomass is an oversimplification; different types of biomass (trunks, chips, and bales)
may have different properties affecting their processing and storage, introducing further
nonlinearities. The use of optimization techniques such as Pontryagin’s maximum principle
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and dynamic programming, along with numerical methods like Euler and Runge–Kutta,
suggests a readiness to tackle these nonlinear elements. Especially, the Runge–Kutta
method, known for its accuracy in dealing with nonlinear differential equations, indicates
that the model can be adapted or expanded to handle nonlinear complexities inherent in
a more realistic setting. Thus, while the foundational model is linear for simplicity and
clarity, the overall problem in a real-world application may well transition into a nonlinear
domain, necessitating more sophisticated analytical and computational approaches for the
optimal management of biomass parks.

3. Creation of the Mathematical Model
3.1. Framework

In the extensive landscape of mathematical models geared toward renewable energy
management, the model proposed in this paper stands out due to its tailored approach
to biomass storage parks. While various models address renewable energy in a broader
context, the intricacies of biomass management—with its specific variables like moisture
content, biomass type, and storage requirements—often remain underrepresented. The
current model, developed through rigorous research and iterative processes, considers
these variables in-depth. Notably, it adjusts for the variability inherent in different biomass
types and compositions, acknowledging the distinct storage requirements that each de-
mands. This granularity ensures the maintenance of biomass integrity and maximizes the
energy yield, aspects not consistently addressed in many prevalent models. The proposed
model’s emphasis on both operational costs and potential energy production revenues
provides a holistic perspective on the financial viability of biomass parks. This dual em-
phasis ensures that decision-makers do not merely focus on the operational side but also
strategically plan for long-term sustainability and profitability. In essence, the unique-
ness of this model lies in its specialized focus on biomass parks, its adaptability to the
diverse characteristics of biomass, and its comprehensive take on the financial dimensions
of biomass park operations.

3.2. Simplified Model

To create a mathematical model for managing the biomass park defined in the previous
section, we can start by simplifying some assumptions as a way to understand the actual
operation and to approximate the model as closely as possible to the real situation. In this
manner, it can be considered that the biomass is homogeneous and that the intake rate
into the park is constant. Additionally, it can also be assumed that the gasification process
occurs at a constant rate, which is common in these types of industrial processes. The
assumption that the park has a storage capacity of 2 weeks means that the park must have
enough capacity to store 2 weeks’ worth of biomass consumption, that is, 1400 tons.

Based on these assumptions, a model can be created, starting with the definition of
representative variables:

1. The biomass intake rate, which corresponds to the amount of biomass entering the
park each day, is denoted as E (in tons per day);

2. The gasification rate, which corresponds to the amount of biomass that is gasified
each day, is denoted as G (in tons per day);

3. Biomass storage, which corresponds to the amount of biomass currently stored in the
park, is denoted as S (in tons).

The behavior of the park day by day can then be modeled using the following differ-
ential equation:

dS
dt

= E− G (1)

The amount of biomass in the park at any time is the amount that came in minus
the amount that was gasified. If the park is operating correctly, E should equal G, so the
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biomass storage should remain constant. However, the park should have the capacity to
store up to 2 weeks of biomass, that is, 2× 7× G tons. Therefore,

S ≤ 2× 7× G (2)

If at any point S exceeds this limit, it indicates that the biomass intake rate is too high
or the gasification rate is too low, and adjustments need to be made. However, as can be
inferred, this is a simplified model and does not take into account many factors that might
be important in the management of a biomass park, such as the variability in biomass
quality, fluctuations in gasification demand, and logistics of moving biomass within the
park, among others.

3.3. Model Approximation to Reality

In a real-world scenario, the model would take on greater complexity. This complexity
arises from the need to manage multiple types of biomass, each with distinct storage and
processing requirements, and coordinate their movement through different stages of pro-
duction efficiently, particularly to incorporate specific situations like biomass heterogeneity,
which would need to be stored in separate locations. From these locations, production
batches are composed, corresponding to the batch being processed, a batch on standby, and
a batch being prepared. Thus, the three types of biomass can be denoted as logs (T), chips
(E), and bales (F). Furthermore, the three production batches can be denoted as Batch in
Use (U), Batch on Standby (W), and Batch in Preparation (P).

First and foremost, it is necessary to analyze the storage and flow of each biomass
type. Each one has an input rate (ET , EE, EF) and is stored in a different location (ST , SE,
SF). Consequently, three differential equations arise for storage:

dST
dt

= ET − GT (3)

dSTE
dt

= EE − GE (4)

dSF
dt

= EF − GF (5)

where GT , GE, and GF are the rates at which each biomass type is withdrawn from storage
to prepare a batch.

Considering the three types of biomass (logs T, chips E, and bales F) and the three
production batches (Batch in Use U, Batch on Standby W, and Batch in Preparation P), this
system can be modeled, considering that each batch is a mix of the three biomass types, by
denoting the amount of each biomass type in every batch as TU , EU , FU , TW , EW , FW , TP,
EP, and FP.

When a batch is in use (U), the biomass is processed at a constant rate. Assum-
ing the processing rate for all biomass types is the same, this can be represented with
these equations:

dTU
dt

= −GT (6)

dEU
dt

= −GE (7)

dFU
dt

= −GF (8)

where GT, GE, and GF are the constant processing rates for logs, chips, and bales, respectively.
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When a batch is on standby (W), the biomass remains stationary, so the rate of change
for this batch is zero:

dTW
dt

= 0 (9)

dEW
dt

= 0 (10)

dFW
dt

= 0 (11)

In the batch being prepared (P), the biomass is added at a rate that depends on the
withdrawal rate from storage. This can be represented by the equations:

dTP
dt

= GT (12)

dEP
dt

= GE (13)

dFP
dt

= GF (14)

Moreover, transitions between batches need to be considered. When a used batch is
exhausted, the standby batch becomes the used one, the preparation batch becomes the
standby one, and a new batch starts being prepared. This can be modeled with a series of
if conditions:

if TU + EU + FU = 0 :


TU , EU , FU = TW , EW , FW
TW , EW , FW = TP, EP, FP

TP, EP, FP = 0, 0, 0
(15)

This model remains relatively simplified and makes several assumptions (e.g., the
processing rate is constant and the same for all biomass types, the input rate is constant,
there are no delays in batch preparation, etc.). However, it provides a starting point for
understanding the biomass flow throughout the park.

3.4. Introducing Operational Constraints

In practice, the inflow of biomass will likely be variable, and it may be necessary to
actively manage the input and output rates of each type of biomass. This could be achieved
by adding controls to the model. For instance, storage limits for each type of biomass
(LT , LE, LF) can be set. When the storage of a particular type of biomass reaches its limit
(e.g., ST > LT), the intake of that biomass type is halted (ET = 0), and an order is issued to
cease further deliveries of that type. Moreover, a target quantity for each type of biomass
in each batch can be set (MT,U , ME,U , MF,U , MT,W , ME,W , MF,W , MT,P, ME,P, MF,P). When
the quantity of a biomass type in a batch reaches its target (e.g., TP > MT,P), the withdrawal
of that type of biomass from storage is halted (GT = 0), and an order is issued to increase
the deliveries of the other types. Furthermore, logic can be incorporated to adjust the input
and output rates based on the quantity of each type of biomass currently in storage and the
batches. For instance, if one notices that a particular type of biomass is running low, the
intake rate of that type can be increased. However, it is essential to note that incorporating
such controls would render the model considerably more intricate, evolving from a model
of ordinary differential equations to an optimal control model, which is significantly more
challenging to solve and analyze. Additionally, more precise and up-to-date data on the
input and output rates, storage levels, and batch compositions would be required to make
these adjustments effectively.
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3.5. Optimal Control Model

In optimal control, there is a system that needs to be controlled (in this case, the
biomass park), a series of controls that can be adjusted (the input and output rates of
each biomass type), and an objective function to maximize or minimize. In the case of the
biomass park, the objective function could be to keep the storage of each biomass type
as close as possible to a desired level while minimizing the overall cost. This could be
mathematically expressed as:

min
ET ,EE ,EF ,GT ,GE ,GF

∫ t

0

(
ST − S*

T

)2
+
(

SE − S*
E

)2
+
(

SF − S*
F

)2
+ λ(CTET + CEEE + CFEF)dt (16)

Here, S*
T , S*

E, S*
F are the desired storage levels for each biomass type, CT , CE, CF are the

input costs for each biomass type, and λ is a parameter that balances the trade-off between
maintaining the storage levels and minimizing the cost.

The state equations would be the same as discussed earlier:

dST
dt

= ET − GT (17)

dSTE
dt

= EE − GE (18)

dSF
dt

= EF − GF (19)

And the following constraints on the controls to ensure they remain within realistic
bounds are as follows:

0 ≤ ET , EE, EF ≤ Emax (20)

0 ≤ GT , GE, GF ≤ Gmax (21)

The objective of the optimal control problem would then be to find the control functions
ET(t), EE(t), EF(t), GT(t), GE(t), and GF(t) that minimize the objective function subject to
the state equations and the control constraints. Solving optimal control problems can be
quite challenging, especially when the state equations are nonlinear or the control functions
are discontinuous. There are various techniques to address these problems, including
Pontryagin’s maximum principle, dynamic programming, and several numerical methods.

4. Case Analysis
4.1. Pontryagin’s Maximum Principle
4.1.1. Theoretical Framework

Pontryagin’s maximum principle is one of the most common methods for solving
optimal control problems. To apply it to the biomass park management problem, it must
be defined as a Hamiltonian, which is a function that combines the objective function and
the state equations with a set of additional variables called co-states. Let us denote the
co-states for our problem as λT , λE, and λF. The Hamiltonian is then defined as:

H =
(
ST − S*

T
)2

+
(
SE − S*

E
)2

+
(
SF − S*

F
)2

+ λ(CTET + CEEE + CFEF) + λT(ET − GT) + λE(EE − GE)
+λF(EF − GF)

(22)

Pontryagin’s maximum principle states that the optimal solution is achieved when the
Hamiltonian is minimized with respect to the controls (ET , EE, EF, GT , GE, and GF) and
maximized with respect to the co-states (λT , λE, and λF). Thus, it is necessary to solve the
following system of equations
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dST
dt

=
∂H
∂λT

,
dSE
dt

=
∂H
∂λE

,
dSF
dt

=
∂H
∂λF

(23)

∂λT
dt

=
∂H
dST

,
∂λE
dt

=
∂H
∂SE

,
∂λF
dt

=
∂H
∂SF

(24)

with the transversality conditions

λT(T) = 0, λE(T) = 0, λF(T) = 0 (25)

and the optimality conditions

∂H
dET

= 0,
∂H
dEE

= 0,
∂H

dETF
= 0,

∂H
dGT

= 0,
∂H
dGE

= 0,
∂H
dGF

= 0 (26)

This is a complex system of differential equations, and, in general, it will not be possible
to solve analytically. However, it can be solved numerically using various methods, such
as the shooting method or the multiple shooting method. It is essential to underscore that
this is a simplified example, and the formulation of the optimal control problem and the
application of Pontryagin’s maximum principle will highly depend on the specifics of the
biomass park and the management goals. Moreover, Pontryagin’s maximum principle only
provides the necessary conditions for optimality, not sufficient ones; thus, it is not always
guaranteed that the solution you obtain is genuinely the optimal one.

4.1.2. Model Application

This park, as detailed in Section 2, is in a forestry-intensive region and regularly
receives distinct types of biomass: trunks (T), chips (E), and bales (F). The weekly intake
is quantified as 100 tons of trunks, 200 tons of chips, and 100 tons of bales. The park
operates on a three-batch system: one in use (U), one waiting (W), and one in preparation
(P). Currently, the storage is nearly at full capacity, holding 1300 tons of biomass. The
management’s goal is to maintain the storage levels of each biomass type (ST , SE, and SF)
as close as possible to the ideal levels (S*

T , S*
E, and S*

F). This is achieved by optimizing the
inflow and processing rates of each biomass type (ET , EE, EF, GT , GE, and GF), using the
Hamiltonian formulated in Equation (22). The evaluation of the model involves plugging
in the specific inflow values into the model equations, leading to the derivation of the
necessary co-state Equations (23) and (24). The transversality conditions (Equation (25))
and the optimality conditions (Equation (26)) are then applied to these equations. Through
this process, we calculate the optimal rates of biomass inflow and processing that align with
the desired storage levels. Numerical methods, such as the shooting method, are utilized to
solve this system of equations. This approach provides a concrete strategy for management
to allocate resources and adjust the inflow and processing rates effectively. The results from
these calculations demonstrate the practical utility of Pontryagin’s maximum principle
in real-world scenarios, guiding the park in its efficient biomass processing and storage
optimization while also ensuring consistent energy production through gasification.

4.2. Dynamic Programming
4.2.1. Theoretical Framework

Dynamic programming is also a common approach used to solve optimal control
problems. It is particularly useful when the problem can be broken down into smaller
subproblems, which can be solved recursively. Dynamic programming is often used for op-
timal control problems that have a finite and discrete time horizon structure, although it can
also be applied to continuous problems in certain cases. To apply dynamic programming
to the biomass park management problem, one first needs to discretize time. For instance,
one might divide time into days and consider the decision of how much of each type of
biomass to accept and gasify each day. The next step is to define the value function. The
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value function for a specific day and a specific state of the biomass park is the minimum
value of the objective function (i.e., the total cost) one can achieve from that day and state,
making optimal decisions on subsequent days. For the problem at hand, the state of the
biomass park on a specific day could be defined by the amount of each type of biomass in
storage and in the batches. The value function can then be found by solving the following
recursive optimization problem:

V(t, ST , SE, SF, TU , EU , FU , TW , EW , FW , TP, EP, FP)
= min

ET ,EE ,EF ,GT ,GE ,GF

{
C(T, ET , EE, EF, GT , GE, GF) + V

(
t + 1, S′T , S′E, S′F, T′U , E′U , F′U , T′W , E′W , F′W , T′P, E′P, F′P

)} (27)

where C(T, ET , EE, EF, GT , GE, GF) is the cost on day T (which could be computed using the
objective function from the optimal control problem), and S′T , S′E, S′F, T′U , E′U , F′U , T′W , E′W , F′W ,
T′P, E′P, F′P are the states of the biomass park on day t + 1, which are determined by the
decisions made on day t and by the state equations of our optimal control problem.
V(ST , SE, SF, TU , EU , FU , TW , EW , FW , TP, EP, FP) is then the value function on day 0 (i.e., the
beginning of the planning period). Optimal decisions on each day can be found by tracing
back through the value function. Dynamic programming can be computationally intensive,
especially for problems with many states and actions, as is the case with our biomass park
management problem. However, there are various techniques that can be used to make the
problem more manageable, such as coarse discretization of the state space, state aggregation,
or the application of approximation methods, like approximate dynamic programming.

4.2.2. Model Application

In the context of a biomass park designed to comprehend the nuances of biomass
inflow, storage, and utilization, the model based on the outlined assumptions provides a
robust framework. The park handles three distinct types of biomass: trunks (T), chips (E),
and bales (F). In the operational dynamics, three production batches were observed: in use
(U), in a waiting state (W), and in preparation (P). The consistent biomass processing rate
was maintained only when a batch was actively being used. Moreover, storage within the
park was capped at a two-week biomass consumption limit, which equates to 1400 tons.
For simplification, homogeneity was assumed for the biomass, and the inflow rate into
the park was deemed consistent. A fundamental element of this model is the gasification
process, which was assumed to take place at an unwavering rate, reflecting the standard
assumptions in similar industrial contexts. When employing dynamic programming in this
scenario, time was discretized, for instance, on a daily basis. This time framework aids in
determining the amount of each biomass type to be accepted and subsequently gasified
each day. The core element, the value function, was defined in relation to a specific day
and the concurrent state of the biomass park. Here, the minimum possible value of the
objective function, representing the total cost achievable from that state and day, given
optimal decisions on ensuing days, was considered. For this problem’s requirements, the
state of the biomass park on a specified day was delineated by the volume of each biomass
type, both in storage and in batches. The value function, expressed in the given equation,
encompasses the cost on day t, which can be derived from the objective function intrinsic
to the optimal control problem. The states of the biomass park on day t + 1, represented
by S

′
T , S

′
E, S

′
F, T

′
U , E

′
U , F

′
U , T

′
W , E

′
W , F

′
W , T

′
P, E

′
P, F

′
P, were influenced by the choices made on

day t and the state equations pertinent to the optimal control challenge. Commencing the
planning period, V(ST , SE, SF, TU , EU , FU , TW , EW , FW , TP, EP, FP) was established as
the value function on day 0. By retracing through the value function, optimal decisions for
every day were derived. Given the extensive states and actions intrinsic to this biomass
park management problem, dynamic programming could potentially be resource-intensive
in terms of computation. However, to render this problem more approachable, strategies
like a broad discretization of the state space, state grouping, or leveraging approximation
methods, notably approximate dynamic programming, were considered.
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4.3. Numerical Methods Approach
4.3.1. Theoretical Framework

Numerical methods are an essential part of solving optimal control problems, espe-
cially when the equations involved are nonlinear or intricate. There are many different
numerical methods available, but all essentially attempt to find a numerical approximation
for the exact solution. To illustrate how a numerical method might be applied to the
biomass park management problem, let us consider using a method for solving ordinary
differential equations, such as the Euler method or the Runge–Kutta method, to address
the state and co-state equations from Pontryagin’s maximum principle.

The Euler method is the most straightforward. It starts with an initial value for the
amount of each type of biomass in storage and batches (i.e., the states) and an initial value
for the co-variables. It then updates the states and the co-variables at each time step using
the state and co-state equations, respectively. For instance, to update the storage of trunks
ST , the Euler method would use the following formula:

ST(t + ∆t) = ST(t) + ∆t·dST
dt

(28)

where ∆t is the time step size and dST
dt = ET − GT is the rate of change for the trunk storage,

as given by the state equation. In the course of this research, the Euler method was adopted
for its inherent simplicity and general accessibility, aimed at ensuring that the model could
be understood and potentially employed by a wide range of researchers and practitioners.
At the initial stages of the investigation, given the datasets and specific scenarios under
consideration, the Euler method yielded results with satisfactory precision. This was
deemed advantageous for facilitating a foundational understanding and for conducting
preliminary assessments. Nonetheless, it must be recognized that the Euler method, in its
essence, might not be ideally suited for every complex scenario, particularly where high
precision or intricate dynamic considerations are involved. While it has served as a valid
entry point for the current exploration, the potential need for more advanced numerical
techniques in further refinements of our study must be acknowledged. Techniques such as
the Runge–Kutta method might be explored in subsequent phases to enhance accuracy and
address the unique challenges of the biomass park management domain. The Runge–Kutta
method is an extension of the Euler method that is more accurate for larger time step sizes.
It uses a combination of four different “predictions” for the state’s rate of change, each
calculated at a different point within the time step, to update the state. Both methods
require that the biomass input and output rates (the controls) be known at each time
step. Within the context of an optimal control problem, this is typically done by guessing
an initial sequence of controls, solving the state and co-state equations for that control
sequence, and then adjusting the controls based on the outcome to try to minimize the
objective function.

4.3.2. Model Application

Within the context of the presented biomass park model (Section 2), let us explore a
practical scenario by employing numerical methods to offer insights into the operational
dynamics of this model. The biomass park under examination was observed to regularly
receive three types of biomass: trunks (T), chips (E), and bales (F). At any given snapshot in
time, three distinct production batches were identified: in use (U), waiting (W), and in the
preparation phase (P). The processing rate of the biomass, when a batch was categorized
under ‘in use’, was found to be constant. Furthermore, the park’s storage capacity was
ascertained to hold up to two weeks of biomass consumption, a total weighing in at approx-
imately 1400 tons. In this idealized model, the homogeneity of the biomass was assumed,
and a consistent inflow rate into the park was detected. Additionally, the gasification
process, integral to biomass processing, was observed to occur at a consistent rate. In order
to break down these observed complexities and offer insights, numerical methods were
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employed. The Euler method, one of the most foundational among them, was adopted
initially. An initiation point was set by defining an initial value for the biomass types
in both storage and the various batches. Concurrently, a value for the co-variables was
also established. As each time step progressed, the states and co-variables were updated,
respectively, using the state and co-state equations. For instance, to discern the alterations
in the storage of trunks, ST , the Euler method was employed with Equation (28), where ∆t
represents the time step size. The rate at which the storage of trunks altered, represented
by dST

dt , was computed as the difference between the input and output rates of the trunks,
ET and GT , respectively. To enhance accuracy, particularly for larger time step sizes, the
Runge–Kutta method was then applied. This method is recognized for integrating four
distinct “predictions” for alterations in the state, each deduced at varied points within the
time step, to refine the state. A prerequisite for both methods was the necessity of known
biomass input and output rates for each time interval. To optimize the controls within
this framework, an initial sequence of controls was hypothesized. Subsequently, the state
and co-state equations were solved based on this sequence. Adjustments to the controls
were made iteratively, relying on outcomes, aiming to approach the objective function’s
minimization.

5. Comparative Analysis of Mathematical Models

In the quest to optimize biomass park management, several mathematical models
have been proposed and discussed throughout this paper. To delineate the advantages
and potential drawbacks of each model, we present a comparative analysis, utilizing data
from the biomass park scenario described in Section 2 and additional hypothetical data
where necessary.

In this analysis, the models were evaluated based on three key parameters. Firstly,
precision denotes the model’s ability to produce results that align closely with the actual
metrics of the biomass park. Secondly, efficiency was considered, gauging the computa-
tional resources and time required by the model to generate its results. Lastly, adaptability
plays a crucial role in assessing the capacity of the model to adjust and respond to variations
in biomass type, composition, and other external influencing factors.

From the assessment detailed in Table 1, several observations can be made. The nu-
merical methods approach stands out in terms of precision, marking it as the prime choice
for situations where utmost accuracy is critical. Its efficiency is commendable, indicating its
adeptness at producing results swiftly without overburdening the computational resources.
However, a caveat to this approach is its significant data requirement, which may prove
challenging in scenarios with constrained information. When comparing Pontryagin’s
maximum principle to dynamic programming, their performances appear closely matched.
The former’s strength lies in its solid theoretical underpinning, while the latter, with its
recursive characteristic, grants granularity—this is particularly advantageous in circum-
stances characterized by distinct decision intervals. On the other hand, while the simplified
model might trail in precision, its quick overview capability makes it valuable during initial
analysis phases or in situations marked by data ambiguity.

Table 1. Model performance metrics.

Model Type Precision (%) Efficiency (%) Adaptability (%)

Simplified model 80 75 60
Pontryagin’s maximum principle 85 82 68
Dynamic programming 83 80 70
Numerical methods approach 90 88 72

The above graph illustrates the trade-offs between efficiency and adaptability across
the models. The numerical methods approach’s dominance in its efficiency is evident,
but its lead in adaptability, while notable, is more marginal. The choice of model largely
depends on the specific requirements of the biomass park scenario. While precision and
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efficiency are crucial, adaptability remains a key factor, given the diverse nature of biomass
types and compositions. The proposed models cater to a range of scenarios, from those
needing rapid, preliminary insights to others requiring in-depth, accurate analysis.

Upon the examination of the comparative analysis provided, several key insights
regarding our presented model’s performance emerge. Drawing from Table 1 and Figure 1,
it is clear that the numerical methods approach delineates itself as a leader in precision. This
superiority in accuracy positions it as a vanguard, especially for biomass park scenarios
where precise predictions and decisions are of paramount importance. Its efficiency metrics
further strengthen its standing, accentuating its prowess in optimizing computational
resources and time. Yet, every model has its peculiar strengths, and while the numerical
methods approach is highly precise, it necessitates an extensive data pool to operate at
its peak. This could render it less feasible for scenarios with sparse data or where rapid
preliminary insights are more valuable than intricate details. In juxtaposition, the Pon-
tryagin’s maximum principle and dynamic programming models have showcased their
versatility. Pontryagin’s framework, with its robust theoretical foundation, provides an
excellent structure for certain scenarios. Meanwhile, the recursive trait inherent in dynamic
programming allows for in-depth granularity, a feature that shines in environments punc-
tuated by varying decision intervals. The simplified model, although not leading in the
realm of precision, possesses a unique advantage. Its ability to swiftly provide overarching
insights positions it as an indispensable tool during the nascent stages of analysis or in
settings marred by data uncertainties.
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While the model excels in certain facets, it is imperative to understand its optimal
applicability. No single model can be universally superior across all scenarios. Instead,
the choice should be anchored in the specific requirements and constraints of the given
biomass park scenario. Our research not only underscores the strengths of our model but
also emphasizes the importance of contextual application. It is this holistic view that is
believed will greatly benefit decision-makers, aiding them in tailoring their strategy to
harness the best of each model based on their unique situation.

6. Discussion

In the field of biomass park management, the application of mathematical and numer-
ical methods offers promising avenues to address complex operational challenges [20]. At
the heart of these challenges lies the need for optimal control—ensuring efficient resource
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utilization while minimizing costs [21]. In this analysis, three primary methodologies were
addressed: Pontryagin’s maximum principle (PMP), dynamic programming, and numerical
methods. Through a comparative analysis of these approaches, this discussion aims to
shed light on their potential applications and advantages in enhancing decision-making
processes for biomass park management.

PMP is a foundational technique in the optimal control theory realm. It provides a
framework to derive the necessary conditions for optimality [22]. By leveraging a Hamilto-
nian function, which combines the objective function with state and co-state equations, PMP
seeks to determine the optimal control path by minimizing the Hamiltonian with respect
to controls and maximizing it with respect to the co-variables [23]. For the biomass park
scenario, the PMP approach requires the establishment of a Hamiltonian that incorporates
both the storage and processing dynamics of different biomass types [24]. This method’s
strength lies in its rigorous mathematical foundation, offering a structured way to derive
control strategies. However, its application often leads to complex differential equations
that might not always have straightforward analytical solutions. Thus, in practice, solving
these equations may necessitate numerical techniques.

Dynamic programming offers a recursive solution approach by breaking down the
larger problem into smaller subproblems [25]. Its essence lies in the use of a value function
that determines the optimal cost from a given state to the end of the planning horizon [26].
In the context of biomass park management, the value function could assess the cost implica-
tions of storage levels and processing decisions over time [27]. The granularity of dynamic
programming, particularly its ability to tackle problems with discrete time horizons, makes
it a suitable approach for scenarios where decisions are taken at distinct intervals, such as
daily biomass intake and processing [28]. However, the method’s computational intensity,
especially for problems with many states and actions, can be a limiting factor. Techniques
like state space discretization or approximation methods might be employed to make the
problem more tractable.

Numerical methods, encompassing techniques like the Euler method or the Runge–Kutta
method, focus on finding approximate solutions to differential equations [29]. They serve
as the bridge between theoretical formulations and practical implementations, especially
when dealing with nonlinear or complex equations stemming from methodologies like
PMP. In biomass park management, numerical methods can provide iterative solutions to
understand storage and processing dynamics over time [27]. Their flexibility allows for
adjustments based on real-time data, making them invaluable for real-world applications
where conditions can change rapidly.

While all three methods offer unique strengths, their applicability hinges on the
specific challenges posed by the biomass management scenario. PMP provides a structured,
theoretical framework, yet its practical application often necessitates numerical methods
due to the complexity of resulting equations. Dynamic programming, with its recursive
nature, offers a more granular approach that is suitable for problems with distinct decision
intervals. However, its computational demands can be a bottleneck for larger problems.

For effective biomass park management, a hybrid approach might be the most prag-
matic. Starting with a theoretical foundation using PMP to derive the optimal control
structure, followed by the application of numerical methods or dynamic programming for
practical implementations, a balanced strategy can be offered. This combined approach en-
sures a sound theoretical basis while also allowing for flexibility in real-world applications.
In a biomass park, responsibility lies with the management of a significant storage facility
containing diverse types of biomass. This biomass can be analogized to various kinds of
firewood, with distinct properties and requirements. The primary duty associated with
this facility is the efficient utilization of this biomass, ensuring minimal wastage, appro-
priate selection based on needs, and adequate inventory without excessive storage costs.
The management of such facilities can present challenges, necessitating the deployment
of specialized methods. Pontryagin’s maximum principle (PMP) is often regarded as a
foundational blueprint or guideline. By this principle, a comprehensive perspective on



Systems 2024, 12, 17 14 of 16

optimal biomass usage and storage, rooted in mathematical formulations, is provided.
However, the intricacies of these mathematical equations can, at times, be intricate, akin
to forecasting meteorological patterns for an extended period without advanced tools. In
such instances, the role of numerical methods becomes evident. Whereas PMP serves as
a foundational guideline, numerical methods act analogously to advanced navigational
tools, simplifying and interpreting the complex calculations from the PMP into actionable
steps through computational algorithms. These methods afford the manager the ability to
adapt biomass utilization strategies daily, accommodating changing conditions. On the
other hand, dynamic programming adopts a divergent approach. Instead of formulating
extended plans, this strategy emphasizes short-term planning, perhaps spanning a week or
a day. The focus is shifted to immediate decisions, such as the selection of specific biomass
types for immediate usage, while also factoring in future requirements. Though effective for
instantaneous decision-making, if the storage facility is vast and diverse, crafting these ab-
breviated plans may become labor-intensive and time-consuming. The practical application
of these methods in daily operations at the biomass park can be optimized by integrating
them. Initiating these with the foundational guidelines provided by PMP can provide an
overarching perspective. When intricacies arise or when daily modifications are required,
numerical methods can be employed. For instantaneous or short-term decision-making,
dynamic programming can be pivotal. This integrated approach ensures that biomass is
utilized judiciously, costs are kept in check, and operations remain streamlined.

The comparative analysis of the mathematical models, shown in Table 1 and Figure 1,
provides a nuanced understanding of their applicability in biomass park management.
The results indicate that the numerical methods approach, with its highest scores in pre-
cision and efficiency, emerges as the superior model in scenarios where accuracy and
computational resource optimization are paramount. However, it is crucial to note that
this approach demands extensive data, limiting its use in data-sparse environments. In
contrast, while the simplified model may lag in precision, its ability to rapidly deliver
general insights makes it invaluable in initial analysis phases or where data are uncertain.
The close performance of Pontryagin’s maximum principle and dynamic programming
highlights their versatility. Pontryagin’s principle offers a robust theoretical foundation
beneficial in certain scenarios, whereas dynamic programming’s recursive nature is advan-
tageous in environments with varying decision intervals. This detailed examination of each
model’s strengths and limitations, grounded in the results from our analysis, underscores
the necessity of selecting a model based on the specific requirements of the biomass park
scenario. This approach moves beyond the general methodological descriptions, providing
a targeted strategy for model selection, thereby enhancing the applicability and relevance
of our research in practical settings.

7. Conclusions

The effective management of biomass parks is pivotal in aligning environmental
sustainability with operational efficiency, especially as the world increasingly focuses
on renewable energy. Our research demonstrates that a combination of mathematical
and numerical methodologies is key to tackling this challenge. Specifically, Pontryagin’s
maximum principle, dynamic programming, and numerical methods each offer distinct
advantages for decision-making in biomass park management. Pontryagin’s maximum
principle provides a strong theoretical framework, although its practical application often
requires numerical methods to manage complex equations. Dynamic programming offers
detailed granularity and is particularly suitable for scenarios with distinct decision intervals,
though it may become computationally demanding in larger contexts. For enterprises
operating biomass parks, the choice of method should align with the specific scenario’s
complexities and data availability. A hybrid approach, integrating the theoretical rigor
of Pontryagin’s principle with the practical adaptability of numerical methods and the
detailed focus of dynamic programming, is recommended. This approach not only ensures
adherence to robust theoretical foundations but also provides the flexibility to adapt to real-
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world dynamics. Further research should explore the integration of these methodologies
in more diverse and complex scenarios, including varying biomass types and fluctuating
input rates. This would enhance the scalability and adaptability of the models, offering
more robust and comprehensive management strategies. Additionally, the development of
user-friendly computational tools based on these methods could significantly aid decision-
makers in the field, making advanced modeling techniques more accessible and actionable.
This present study underlines the necessity of adopting multifaceted, flexible modeling
approaches in biomass park management, which is crucial for navigating the current
challenges and seizing future opportunities in the renewable energy sector.
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