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Abstract: Highways are one of the most suitable scenarios for automated driving technology. For
conditionally automated driving, drivers are required to take over the vehicle when the system
reaches its boundary. Therefore, it is necessary to evaluate the driver’s takeover performance and
take-over safety differences under typical segments of highways. The experiment was conducted
in a driving simulator. Three typical highway segments were constructed: a long straight segment,
a merging segment and a diverging segment. Under each segment, a 2 × 2 factorial design was
adopted, including two traffic densities (high density and low density) and two kinds of time budget
(5 s and 7 s). The results showed that time budget and traffic density affected drivers’ take-over
performance and safety. As the time budget decreased, the driver’s reaction time decreased and
the braking amplitude increased. As traffic density increased, the lateral deviation rate increased.
The maximum steering angle and steering wheel reversal rate in general tended to increase with
scenario urgency. Meanwhile, drivers paid more attention to the longitudinal control on the long
straight segment, which was reflected in the maximum braking amplitude and directional reversal
rate. However, drivers paid more attention to the lateral control on the diverging segment, which was
reflected in the maximum lateral deviation rate and the minimum steering wheel reversal rate. The
study will contribute to the safety assessment of take-over behavior in highway avoidance scenarios
and provide a theoretical basis for the design of a human–machine interaction system.

Keywords: human–machine interaction system; automated driving; take-over behavior; urgent
avoidance scenario

1. Introduction
1.1. Current Development of Automated Driving Technology

Automated driving technology is regarded as an effective approach to reducing traffic
accident rates. It has garnered significant attention from governments and automotive com-
panies. Traditional automakers, as well as technology giants like Google, have introduced
automated driving vehicles equipped with Level 3 capabilities, and have set up various
road zones for field testing. Fully automated vehicles offer notable benefits in terms of rule
adherence, efficiency, safety and energy consumption.

SAE J3016, proposed by the American Society of Automotive Engineers, is one of
the international standards for the classification of automated driving vehicles [1]. The
standard classifies automated driving vehicles into six levels from L0 to L5. Most of the
automated driving vehicles on the market are currently at L2 and L3 levels, and have yet to
achieve fully automated driving.

The California Department of Motor Vehicles counted the field tests of automated
driving vehicles conducted by different vehicle manufacturers in 2019 and found that
105 accidents occurred and 8883 take-overs occurred [2]. These emergencies primarily
occurred due to three reasons. Firstly, the automated driving system itself made errors,
such as failing to recognize lane lines or obstacles. Second, the automated driving system
prompted the driver to take over, but the driver was not able to take over correctly, resulting
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in an accident. Lastly, accidents resulted from drivers forcefully taking over without
comprehending the intentions of the automated driving system.

For the second reason, if the driver takes improper take-over behavior during the
take-over process, it is highly likely to cause the traffic accidents. Therefore, the study of
the take-over behavior is important to ensure the driving safety and improve the stability
of the automatic driving system.

1.2. Influencing Factors of Take-Over Performance

The factors affecting take-over performance mainly include three aspects: human
factors, human–machine interaction system and traffic environment. This study mainly
explores the effects of human–machine interaction system and traffic environment on
take-over performance based on objective factors.

1.2.1. Human–machine Interaction System

For the human–machine interaction system, there are two main influencing factors.
First is the setting of the take-over time budget (TB), and second is the choice of the
take-over prompting method.

Time budget is an important parameter in a human–machine interaction system. A
reasonable time budget facilitates the driver to take over the vehicle safely. The time budget
is the time from the take-over request to the system limit, which directly reflects the urgency
of the take-over scenario [3]. In general, the shorter the time budget, the faster the driver
can make decisions and react faster, but the poorer the quality of the take-over [4]. Ito
found that for L2 and L3 automated vehicles, a time budget of 5 s was required even when
the driver was more alert [5]. Samuel investigated the ability of drivers to anticipate latent
threats with a time budget of 4 s, 6 s, 8 s and 12 s. It was found that at least 8 s of time
budget was needed to detect most of the hazards [6]. Eriksson conducted a review of
recent studies related to take-over request times for automated driving, showing that the
mean take-over request time set in the current study was 6.37 s (with a standard deviation
of 5.36 s), and that a take-over request time of about 7 s was appropriate for automated
driving [7].

Take-over prompting methods are generally a session box prompt, voice prompt,
vibration prompt, or a combination of prompting modes [8–11]. Different prompting
methods also have an impact on take-over performance. Petermeijer found that vibrotactile
stimuli can be effective as warning signals [12]. Forster found that visual prompt had some
advantages when facing complex scenarios [13]. However, in emergency scenarios, an
auditory prompt can help drivers react more quickly than a visual prompt. Meanwhile,
a faster speech rate created a greater sense of urgency and command for the driver than
a slower speech rate [14]. Short phrases such as “Danger, take over” can create a higher
subjective sense of urgency than “Please take over”. A high-urgency voice style produced
a higher subjective sense of urgency than a monotonous voice style [15]. Therefore, this
study adopted a faster speech rate to broadcast the take-over prompt for the driver.

1.2.2. Traffic Environment

The driver’s take-over process includes the process of situational awareness recovery.
In this process, the complexity of the traffic environment is the main factor that affects
take-over performance. Previous studies have focused on the complexity of the traffic
environment in terms of both traffic density and road attribute [16,17].

For the traffic environment, Gold found that in complex traffic density led to longer
take-over time and poorer take-over quality for drivers [18]. In high-density traffic scenarios,
the dynamics of surrounding vehicles forced drivers to take more conservative maneuvers,
such as using steering or acceleration carefully, resulting in more frequent braking [19].
Radlmayr showed that the danger of take-over during conditional automated driving
became greater with increasing traffic density [20].
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For the road attribute, the special segment is the main factor affecting take-over
performance. For the special segment, such as highways, mountain roads and tunnels,
researchers have conducted various safety evaluation methods [20,21]. For example, Chen
developed an accident prediction model for a single-lane expressway exit ramp and used
it to evaluate the factors that influence the occurrence of different types of accidents in
this area [22]. Zahabi quantified the effects of driver age, ramp signage configuration on
the driving performance and attention allocation when exiting a highway ramp through
simulated driving experiment [23]. However, due to the immaturity of automated driving
technology, automated driving vehicles are currently driven in closed scenarios. Therefore,
this study selected three typical segments of the highway in the simulation environment as
test scenarios to evaluate the driver’s take-over safety.

1.3. Evaluation Indicators

Automated driving take-over performance refers to the ability of the driver to take over
the vehicle correctly and timely to ensure the safe operation of the vehicle if the automated
vehicle is abnormal or unable to drive automatically. Previous studies have evaluated
take-over performance in terms of both take-over time and take-over quality. In terms of
take-over time, scholars have investigated the effects of different factors on take-over time,
including non-driving related tasks, driver age and gender, and traffic density. In terms
of take-over quality, there are many indicators to evaluate take-over performance, such as
speed, collision time, and reaction time [7,24,25]. Generally, these evaluation indicators can
be divided into three categories: driver-related indicators, operation-related indicators and
vehicle-related indicators.

For the driver-related indicators, researchers have used physiologic changes (heart rate
and pupil diameter) to assess take-over performance [26,27]. Reaction time is one of the key
evaluation indicators. Wu statistically found a total of 45 papers using this indicator in 90
relevant papers in recent five years [28]. For the vehicle-related indicators, Happee found
that minimum time to collision (minTTC) and spacing from obstacles were considered to
be better alternative safety evaluation indicators for emergency avoidance maneuvers [29].
For the operating-related indicators, Kountouriotis found that the steering wheel reversal
rate showed better reaction to the driver’s lateral control behavior [30]. Additionally,
Kountouriotis used standard deviation of lateral position and steering reversal rates as
the primary evaluation indicators for lateral operation [31]. Wrle proposed the Take-Over
Controllability rating (TOC-rating) to evaluate the take-over performance. TOC-rating
mainly included braking reaction, lane change, vehicle operation and other indicators [32].

In summary, previous studies have examined some influencing factors that determine
take-over performance. Nevertheless, driving performance for drivers with different
urgency under a typical segment of highway during conditional automated driving has
not been well investigated. The purpose of this study was to analyze the impact of time
budget and traffic density on the drivers’ take-over safety. This study created different
urgency by varying the traffic density (high density and low density) and time budget (5 s
and 7 s) in each scenario. A long straight segment, a merging segment and a diverging
segment were selected as three typical segments on the highway. Five evaluation indicators
were used to evaluate take-over safety. The entropy method was used to determine the
weights of different take-over behavior indicators to visualize the take-over safety in each
scenario. The results of the study provide guidance for the analysis of take-over behavior
and provide a theoretical basis for the optimization of human–machine interaction systems.
The research framework is shown in Figure 1.
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Figure 1. The research framework.

The rest part of this paper is organized as follows. Section 2 presents information
about the participants, the simulation platform, the experiment design and the experiment
procedure. Section 3 describes the indicators extracted from the experiment. Finally,
Section 4 analyzes the influencing factors of take-over performance and take-over safety.

2. Methods

Since the take-over type accidents in the open dataset do not provide supporting
videos, it is impossible to understand the take-over behavior during the take-over process.
Meanwhile, the risk of real experiments for take-over behavior is high. Therefore, this
study used simulated driving to collect driver behavioral data and vehicle data to analyze
take-over performance.

2.1. Participants

Thirty drivers (15 male and 15 female) participated in this experiment. Considering
that young people were more receptive to emerging technologies, the participants were
mainly university students and young teachers. Participants’ ages ranged from 22 to
37 years old (AVG. = 26.25, S.D. = 3.01). Before the experiment, each driver was checked for
good health, energy, and normal vision. Drivers had at least 3 years of driving experience
and were not novice drivers. Drivers were required to understand the entire experiment
procedure before the experiment and then fill out an informed consent form.

2.2. Simulation Platform

The take-over simulation experiment platform consisted of a driving simulator and
simulated scenarios (built in Carla 0.9.13). The driving simulator mainly included a Log-
itech G29 steering wheel, a brake pedal, an accelerator pedal, a high-performance computer
and a screen. The scenario was supported by Carla 0.9.13, which included automated driv-
ing simulation, traffic scenario construction, traffic flow generation, and other functions.
Designers can freely configure the traffic rules and vehicle behavior in the simulation envi-
ronment to simulate more risky driving scenarios. The take-over simulation experiment
platform is shown in Figure 2.
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2.3. Experiment Design
2.3.1. Independent Variables

This study used traffic density and time budget as experimental variables.
The vehicles that are too far away from the driver in the simulation environment

cannot influence the driver’s driving behavior, so this study defines the traffic density as
the number of free vehicles within one kilometer before and after the obstacle vehicle.

Gold classified the traffic density into three levels: zero, 10, and 20 vehicles per km
while studying the take-over behavior in complex traffic situations [18]. Doubek classified
the traffic density into two levels: low (5 vehicles/km) and medium (10 vehicles/km). In
this study, lower than 10 vehicles/km was recorded as low-density traffic [21]. Otherwise,
it was recorded as high-density traffic.

In terms of time budget, a long time budget can lead to a decrease in driver alertness
when taking over, as well as a decrease in driver trust of the automated driving system.
Short time budget can lead to excessive cognitive load and take-over errors. Wu conducted
a literature review and found that the take-over time budget between 5–8 s is an appropriate
range [28]. Therefore, in this study, the time budget was set to 5 and 7 s.

2.3.2. Scenarios

Currently, the automated driving is mainly used in highway scenarios. Therefore, this
study created a three-lane highway simulation scenario. Each lane was 3.75 m wide.

The experiment scenarios consisted of three typical segments: a long straight segment,
a merging segment and a diverging segment. An accident vehicle was set in each segment.
The driver needed to take over the vehicle to avoid the accident vehicle under different
sub-scenarios that combine various influence factors. The three typical scenarios are shown
in Figure 3.

We defined that the ego-vehicle cruised on the second lane. For the long straight
segment, it cruised at 90 km/h. For the merging segment and diverging segment, its
cruising speed was 60 km/h. The speed of the other cruising vehicle was set at 60 km/h.
When the vehicle was in the automatic driving mode, the driver’s hands can leave the
steering wheel. Their feet can leave the brake pedal or accelerator pedal. When an obstacle
avoidance scenario occurred, the system would ask the driver to take the appropriate
avoidance action as soon as possible. Through the 2 × 2 combination of time budget and
traffic density, a total of 12 obstacle avoidance scenarios were designed for this experiment.
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It was assumed that when the two conditions of high-traffic density and short time
budget were satisfied, the scenario was regarded as an “Urgency” scenario. When one
of the conditions was satisfied, the scenario was regarded as a “Semi-urgency” scenario.
When none of the conditions were satisfied, the scenario was recorded as a “Non-urgency”
scenario.

The scenario parameters of the twelve obstacle avoidance scenarios are shown in
Table 1.

Table 1. Parameters of twelve obstacle avoidance sub-scenarios.

Number Typical Segment Traffic Density Time Budget Urgency or Not

Scenario 1 (S1) Long straight segment Low 7 s Non-urgency
Scenario 2 (S2) Long straight segment Low 5 s Semi-urgency(T)
Scenario 3 (S3) Long straight segment High 7 s Semi-urgency(D)
Scenario 4 (S4) Long straight segment High 5 s Urgency
Scenario 5 (S5) Merging segment Low 7 s Non-urgency
Scenario 6 (S6) Merging segment Low 5 s Semi-urgency(T)
Scenario 7 (S7) Merging segment High 7 s Semi-urgency(D)
Scenario 8 (S8) Merging segment High 5 s Urgency
Scenario 9 (S9) Diverging segment Low 7 s Non-urgency

Scenario 10 (S10) Diverging segment Low 5 s Semi-urgency(T)
Scenario 11 (S11) Diverging segment High 7 s Semi-urgency(D)
Scenario 12 (S12) Diverging segment High 5 s Urgency

In the subsequent content, the long straight segment is represented by Segment 1; the
merging segment is represented by Segment 2; and the diverging segment is represented by
Segment 3. The scenario urgency for Scenarios 2, 6, 10 was represented by Semi-urgency(T),
which indicated that the urgency was caused by the time budget. The scenario urgency for
Scenarios 3, 7, 11 was represented by Semi-urgency(D), which indicated that the urgency
was caused by the traffic density.
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2.4. Procedure

Each driver was required to participate in four experiments, completing three sce-
narios of take-over in each experiment. Drivers were given a 3–5 min to break between
two experiments to avoid fatigue or practice effects. The specific experiment steps were
as follows:

(1) Before starting the experiment, each driver needed to clarify the purpose of this
experiment and precautions. The driver was asked to drive safely as the first priority.
If the driver has any discomfort, such as dizziness or nausea, the experiment can be
stopped immediately.

(2) Each driver was asked to conduct a simulated driving training for 5 to 10 min to be
familiar with the experiment equipment and simulation scenarios. The simulation
scenario used for driver practice was not the same as the take-over scenario in the
formal experiment.

(3) In the formal experiment, the driver’s vehicle was generated on a fixed position.
The driver needed to set the vehicle to an automated driving state after starting it.
Then, the driver did not need to perform any driving task. When the automated
driving vehicle reached the designated location, the vehicle would prompt the driver
to take over the vehicle by voice announcement (repeatedly announcing “please take
over”). When receiving the take-over command from the system, the driver needed
to press the switch button and immediately steer the steering wheel or brake pedal
to control the vehicle to avoid the obstacle vehicle in front. Repeat this process until
three take-over process have been completed.

(4) Repeat the above process until the four take-over experiments was completed for one
driver. The scenario layout diagram for one experiment is shown in Figure 4.
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3. Results
3.1. Take-Over Reaction Time

The take-over reaction time is the time from the moment of the take-over prompt to
the moment the driver presses the toggle button. Figure 4 shows the driver’s take-over
reaction time for different road segments and different emergency levels.

In Figure 5a, in general, there is no significant difference in the take-over reaction
time for the three typical segments. There is almost no difference in the mean value of the
driver’s reaction time (Segment 1 = 2.280 s, Segment 2 = 2.296 s, Segment 3 = 2.289 s).

Figure 5b shows the variation of reaction time for scenarios with different urgency
levels. The “Non-urgency” scenario has the slowest reaction time (M = 2.531) and the
“Urgency” scenario has the shortest reaction time (M = 2.013). This indicates that the
driver’s reaction time decreased when the urgency of the scenario increased. The reaction
time under the “Semi-urgency(D)” scenario is significantly slower than the reaction time
under the “Semi-urgency(T)” scenario. This indicates that the reaction time is influenced
by the time budget: faster reaction time with a shorter time budget.
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Figure 5c shows the reaction time under three typical segments at different time
budgets. The results of the Kruskal–Wallis test reveals that the reaction times under
different time budgets are significantly different for the long straight segment (p < 0.001),
merging segment (p = 0.001), and diverging segment (p < 0.001) of the highway. Among
the scenarios with time budget of 7 s and 5 s, there is a significant difference in take-over
reaction time under different typical segments (p < 0.001).

3.2. Lateral Deviation Rate

Traditional lateral deviation rate is the vehicle lateral deviation from the center of
the lane per unit time. In this study, the lateral deviation rate is defined as the rate of the
vehicle maximum lateral deviation from the center of the lane during the take-over process,
as shown in Equation (1).

Rlat =
MaxD(t)

t − t0
(1)

where Rlat is the lateral deviation rate, MaxD(t) is the maximum lateral deviation at the
time t, and t0 is the moment when the vehicle starts to deviate from the center of the lane.

Figure 6 shows the lateral deviation rate under different typical segments and different
emergency levels. As shown in Figure 5a, there was almost no difference between the
mean value of lateral deviation rate under the long straight segment and merging segment
(Segment 1 = 0.64 m/s, Segment 2 = 0.62 m/s); while the mean value of lateral deviation
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rate in diverging segment were higher than the other two segments (Segment 3 = 0.67 m/s).
Meanwhile, there is almost no difference in the standard deviation between the long straight
segment and the merging segment (Segment 1 = 0.18 m/s, Segment 2 = 0.19 m/s). However,
the standard deviation of the lateral deviation rate on the diverging segment is lower than
the other two segments (Segment 3 = 0.12 m/s).
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Figure 6b shows the variation of lateral deviation rate under different urgency sce-
narios. The mean value of lateral deviation rate is smaller for the “Non-urgency” scenario
and “Semi-urgency(T)” scenario (Non-urgency = 0.61, Semi-urgency(T) = 0.58). The mean
value of lateral deviation rate in the “Semi-urgency(D)” scenario and “Urgency” scenario
(Semi-urgency(D) = 0.68, Urgency = 0.68) is larger than the above two values. This indicates
that the lateral deviation rate is higher in the higher traffic density scenarios and lower in
the lower traffic density scenarios. This implies that traffic density is an important factor
affecting the lateral position fluctuation of vehicles.

Figure 6c shows the lateral deviation rate under three typical segments with different
traffic densities. From the results of the Kruskal–Wallis test, the lateral deviation rate
under different traffic densities is significantly different for both the long straight segment
(p < 0.001) and merging segment (p = 0.001) of the highway. However, the lateral deviation
rate does not differ significantly for the diverging segment (p = 0.160). Significant differ-
ences in the lateral deviation rate exists between scenarios with lower traffic density under
different typical segments (p < 0.001). However, there is no difference in the lateral devi-
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ation rate under different typical segments between scenarios with higher traffic density
(p = 0.458).

3.3. Braking Amplitude

The braking amplitude is the brake pedal depth during the take-over process. It ranges
from 0 to 1. Furthermore, 0 indicates that the brake pedal is not depressed and 1 indicates
the maximum pedal depth. The braking amplitude during the take-over process in different
highway typical segments, as shown in Figure 7.
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Figure 7a shows the braking amplitude in different typical segments. The mean brak-
ing amplitude on the long straight segment (Segment 1 = 0.724) is significantly higher than
the mean braking amplitude on the merging and diverging segments (Segment 2 = 0.594,
Segment 3 = 0.560).

Figure 7b shows the braking amplitude under different levels of urgency. The average
braking amplitude under the “Non-urgency” scenario and “Semi-urgency(D)” scenario
are relatively close (Non-urgency = 0.608, Semi-urgency(D) = 0.615). The mean braking
amplitude in the “Semi-urgency(T)” scenario and the “Urgency” scenario are similar (Semi-
urgency(T) = 0.637, Urgency = 0.642). The Kruskal–Wallis test shows that there was a
significant difference in the braking amplitude between the two time budget: 7 s and 5 s
(p < 0.001). This implies that time budget is an important factor affecting the braking
amplitude of drivers.
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Figure 7c shows the braking amplitude of different time budget for three typical road
segments. The effect of the time budget on the braking amplitude is not significant on the
long straight segment (p = 0.710), but it is significant on the merging segment (p = 0.023) and
the diverging segment (p < 0.001). For the time budget of 7 s, the effect of merging segment
and diverging segment on braking amplitude is significant (p < 0.001). For the take-over
time budget of 5 s, the effect of merging and diverging segment on braking amplitude is
not significant (p = 0.103).

3.4. Steering Indicators

In this study, the maximum steering angle and steering wheel reversal rate were
adopted as steering indicators.

The steering wheel reversal rate refers to the steering wheel rotation times per minute,
which reflects the lateral steering behavior of the driver [31]. The maximum steering angle
refers to the maximum angle that the driver turns the steering wheel during the obstacle
avoidance process, which reflects the driving performance when steering.

The mean value of steering behavior parameters under different segments are shown
in Table 2.

Table 2. Steering indicators under different segments.

Indicators Long Straight Segment Merging
Segment Diverging Segment

Mean value of steering wheel reversal rate (count/min) 12.39 10.45 9.34
Mean value of maximum steering angle (0–1) 0.268 0.262 0.296

Table 2 shows that the mean value of steering wheel reversal rate is long straight
segment > merging segment > diverging segment. Meanwhile, the mean value of maximum
steering angle for the long straight segment and merging segment are close to each other,
and the mean value of the maximum steering angle under diverging segment are larger.
This indicates that under the long straight segment, drivers tended to take more steering
wheel turns with small turning angles. While under diverging segment, they tended to
take fewer steering wheel turns with large turning angles.

In addition, the steering behavior parameters for each type of urgency scenario under
three typical road segment are further displayed in Figure 8.
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As shown in Figure 8a, the overall steering wheel reversal rate tended to increase with
the climb of the scenario tightness. This phenomenon is particularly significant on the long
straight segments. The steering wheel reversal rate is the highest under the scenarios with
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“Semi-urgency(D)” under the merging segment and diverging segment. Meanwhile, the
steering wheel reversal rate under S5 and S6 are significantly lower than those under S7 and
S8 (S5 = 8.76, S6 = 9.46, S7 = 10.3, S8 = 10.16). The value under S9 and S10 re significantly
lower than those under S11 and S12 (S9 = 7.43, S10 = 7.83, S11 = 10.30, S12 = 10.00). This
indicates that the steering wheel reversal rate under “Semi-urgency(D)” and “Urgency”
scenarios are significantly higher than those under “Semi-urgency(T)” and “Non-urgency”
scenarios.

In Figure 8b, similar to Figure 1a, the maximum steering angle tended to increase
overall. On the merging and diverging segments, this trend is more significant. For example,
in the “Non-urgency” scenario, the maximum steering angle is the smallest. Under the
“Urgency” scenario, the maximum steering angle reaches the highest value. Under the
“Semi-urgency scenario”, there is no uniform trend of change for the “Semi-urgency(T)”
scenario and the “Semi-urgency(D)” scenario. Under long straight segments, the mean
value of the maximum steering angle reaches the maximum in S3 (S3 = 0.19). There is a
slight decrease in the maximum steering angle in S4 (S4 = 0.18).

3.5. Take-Over Safety Evaluation

For the take-over process, previous studies have analyzed take-over performance
separately from multiple indicators [18,28]. However, the quantitative assessment of the
safety of automated driving takeover has not been studied thoroughly. Therefore, this study
adopted the idea of entropy. The information entropy of each indicator was quantified, and
the importance of each indicator to the target was decided based on the relative degree of
indicator’s change. In this study, the five indicators, as discussed above, were considered
as negative indicators.

It is assumed that there are m samples and n evaluation indicators. After standardizing
the data, the entropy value of each indicator is calculated by Equation (2):

Ej = −ln(m)−1
m

∑
i=1

Xij

∑m
i=1 Xij

ln
Xij

∑m
i=1 Xij

(2)

where Xij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the value of the jth indicator of the ith sample.
The weights of each indicator are calculated by Equation (3):

Wj =
1 − ej

n − ∑n
j=1 ej

(3)

where ej is the information entropy of the jth indicator.
The weights of the reaction time, lateral deviation rate, braking amplitude, steering

wheel reversal rate and the maximum steering angle were 0.188, 0.086, 0.505, 0.116, 0.105,
respectively. Figure 9 shows the performance scores for all take-over processes.

Figure 9 indicates that drivers had lower ratings on long straight segments compared
to the diverging and merging segments. This result does not match expectations. This may
be due to the following reasons:

(1) Faster speed on the long straight segment led to unsafe behavior. When faced with
an emergency take-over scenario on such road, drivers were more likely to engage in
aggressive braking behavior with fast initial speed and untimely control.

(2) The more complex traffic environment of the diverging and merging segments gave
drivers a degree of risk anticipation, resulting in a lower risk of take-over on such
segments.

Additionally, the take-over performance scores decreased as the urgency of the sce-
nario increased on the merging segment and diverging segment. Figure 8 shows that
braking amplitude, as the evaluation index with the greatest weight, is likely to be the
important factor that caused the difference in take-over performance scores under the
diverging and merging area.
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4. Discussion
4.1. The Influence of Different Segments and Urgency on Reaction Time

The reaction time is an important measure of a driver’s response speed and take-over
capability [33]. The results in Section 3.1 indicate that there is no significant difference in
takeover reaction time across different highway segments. However, there is a significant
difference in take-over reaction time in different emergency situations.

Generally, in high-urgency take-over scenarios, where drivers need to take immediate
action to avoid accidents or hazardous situations, drivers need to react promptly. However,
in situations with lower urgency, drivers may have more time to consider various factors
before responding. Previous research has often simplified the urgency of a scenario by
equating it to collision time [34]. However, the urgency of the same scenario is influenced
by multiple factors such as collision time, road conditions, and traffic environment [35].
This study introduced time budget to impose time pressure on drivers and traffic density
to provide environmental pressure, constructing different levels of urgency scenarios. Ulti-
mately, we found that compared to traffic flow density, time budget played a determining
role in drivers’ reaction time. In situations with shorter time budget, drivers exhibited
shorter reaction times, which aligns with previous research findings [4].

However, a shorter time budget can also lead to inappropriate evasive behaviors and
poorer take-over quality [36]. For example, we found an inverse relationship between
reaction time and braking amplitude in different emergency situations. Faster reaction
times resulted in larger braking amplitudes. Therefore, when designing human–machine
interaction systems, reliable alert mechanisms should be equipped to enhance drivers’
comprehension efficiency in emergency situations, aiming to shorten reaction times.

4.2. The Influence of Different Segments and Urgency on Braking Amplitude

This study found that the variation in braking amplitude was more significant in the
long straight segment compared to the other two segments. We believe this is related to the
speed set by the autonomous driving system. Previous research shows that the faster the
speed during braking, the higher the risk of collision [37]. In the experiment, the driver’s
take-over speed was 90 km/h in the long straight segment, and the driver had a higher
longitudinal risk. However, in the merging and diverging segments, the driver’s take-over
speed was 60 km/h, and the driver felt relatively safe in longitudinal control. In obstacle
avoidance scenarios, drivers typically employ two driving strategies, either decelerating
before changing lanes or simultaneous deceleration and lane change. When drivers are
unexpectedly required to take control of the vehicle, they often do not have enough time to



Systems 2023, 11, 475 14 of 17

observe the surrounding traffic environment. Therefore, in high-speed driving situations,
drivers tend to apply a larger degree of braking to quickly reduce the vehicle’s speed.

In merging and diverging segments where the take-over speeds are the same, there is
not much difference in braking amplitude among drivers. However, in different urgency
scenarios (TB = 7 s vs. TB = 5 s), there is a significant variation in braking amplitude among
drivers. In higher urgency scenarios, drivers apply greater braking amplitude. This may
be due to the tendency of drivers to decrease vehicle speed for stable vehicle control in
emergency situations. Yang also found that turning maneuvers and braking actions are
easier to execute at lower speeds [38].

4.3. The Influence of Different Segments and Urgency on Lateral Deviation Rate

The lateral deviation rate can effectively evaluate the drastic degree of lane change in
the obstacle avoidance scenarios. It is an important index to reflect the stability of vehicle
lateral control. This study found that in the case of high traffic density, the lateral deflection
rate of vehicles was significantly higher than in the case of low traffic density. This indicates
that in high traffic density situations, the vehicles moved faster in the lateral direction. This
is because higher traffic density forces drivers to take more active lane changing behavior.

In addition, the standard deviation of the lateral deviation rate under the diverging
segment was significantly smaller with the long straight segment and the merging segment.
This indicated that drivers’ lateral control behavior of the vehicle tended to be consistent on
the diverging segment. We believe that this is because in the obstacle avoidance situations
on diverging segment, drivers may perceive greater risks when taking over. This leads
to their tendency towards cautious takeover behavior, which makes the heterogeneity
between drivers less apparent.

4.4. The Influence of Different Segments and Urgency on Steering Indicators

For the steering indicators, it was clear that the steering wheel reversal rate showed
an overall increasing trend as the scenario urgency increased. This is an overcompensation
behavior, that is drivers increase the frequency of steering wheel corrections to compensate
for the effect of the emergency scenario on controlling the vehicle, which maintains lane
keeping performance. This was consistent with Engstroem’s study [39].

The overcompensation effect enables the driver to maintain better lateral stability,
but it will increase the cognitive load on the driver. On long straight segment, the initial
cognitive load of the driver was low due to the simple driving environment, and the
steering wheel reversal rate increased continuously with the increase of urgency. On the
merging and diverging segments, the initial cognitive load of the driver was high due to
the relatively complex driving environment, and the steering wheel reversal rate tended to
rise and fall. This meant that when the urgency reached a certain level, drivers took fewer
lateral operations and the effect of overcompensation effect would not increase again.

For the maximum steering angle, this study considered it as a parameter related to
the risk level of the scenario. For low-risk scenarios, drivers usually adapt avoidance
behaviors that suit them. As the degree of scenario risk increased, drivers tended to adopt
more aggressive driving behaviors, such as increasing the steering wheel angle in order
to complete the avoidance behavior as soon as possible [40,41]. When the risk level of the
scenario increased to a certain degree, drivers favored cautious driving strategies to ensure
the safety of the avoidance process again.

In this study, the risk level of the scenario was considered to be related not only to
the traffic density and time budget, but also to the speed set by the automated system [42].
In the merging and diverging segments, the driver took over slower and perceived less
risk. Therefore, the maximum steering angle showed an overall upward trend. In the long
straight segment, the driver took over faster and perceived higher risks. Therefore, the
maximum steering angle showed a trend of increasing and then decreasing as the urgency
increased.
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5. Conclusions

The main contribution of this study is to discuss the influence of different traffic
densities and time budgets on driver’s take-over performance, and the differences in take-
over safety under long straight segments, merging segments and diverging segments of
highways. It can be concluded that:

(1) The time budget had a significant influence on reaction time and braking amplitude.
The short time budget is beneficial to improve reaction time, and hasa disadvantage
on the braking amplitude and take-over performance.

(2) Traffic density had a significant influence on lateral deviation rate. The high-traffic
density has a disadvantage on the lateral deviation rate and take-over safety.

(3) The maximum steering angle and steering wheel reversal rate tended to rise or first rise
and then fall with scenario urgency. This depends on the effect of overcompensation
on the driver and the ability to perceive risk.

(4) For the emergency avoidance scenario, the driver’s braking amplitude was the largest
and the steering wheel reversal rate was the largest under the long straight segment;
the driver’s lateral deviation rate was the largest, the steering wheel reversal rate was
the smallest and the maximum steering angle was the largest under the diverging
segment. Therefore, we should pay more attention to the longitudinal safety of the
vehicle under the long straight segments and the lateral safety of the vehicle under
the diverging segments.

This study still has several limitations. Firstly, due to the risk of field tests, the
experiment can only be conducted by simulated driving. However, the risk perceived by
drivers in the simulator may be less than the risk in the real world. Therefore, drivers
may have more aggressive behaviors in the simulated experiment. Secondly, the age range
of the participants was between 22 and 37 years old. In future studies, driver-related
indicators should be paid more attention, such as different age groups, working load, etc.
In addition, more micro-indicators can be considered as influencing factors of the traffic
environment, such as the number of vehicles around the self-vehicle and the distance
between the self-vehicle and the adjacent vehicles.
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