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Abstract: This paper considers a pickup and delivery problem in automobile logistics. In the daily
operations of a third-party logistics company (3PL), decisions must be made for two kinds of demands:
delivering finished automobiles from an outbound warehouse to distribution centers (DCs) and
transferring automobiles among the DCs according to specific customer orders. The problem is
to assign a set of automobiles to a set of heterogeneous auto-carriers and deliver them to their
destinations considering the outbound and transfer demands. Each automobile is assigned a value
indicating its urgency level to be handled and a car type: small, medium, or large. Each of the auto-
carriers has a specific number of slots with different types indicating the largest size of an automobile
that can be loaded into the slot. An integer programming (IP) model is formulated for the problem to
maximize the total loaded value and minimize the total transportation cost depending on the routing
of the carriers. An improved adaptive large neighborhood search algorithm is developed to solve the
problem efficiently, where a heuristic generates an initial solution, and a series of operators update
the solution iteratively. Experimental results based on multi-scale instances show that the proposed
algorithm can generate near-optimal solutions in an acceptable amount of time, and outperforms
solving the IP model directly by CPLEX to a large extent. The algorithm can help 3PL companies
make efficient and economical decisions in daily operations.

Keywords: automobile outbound logistics; pickup and delivery; trans-shipment among distribution
centers; adaptive large neighborhood search

1. Introduction

The automotive industry plays an essential role in global economic development.
In 2022, the global sales of passenger cars exceeded 57 million [1]. To meet the increas-
ing and diversified customer demands, automotive manufacturers have always had a
massive outbound network of multi-distribution centers. Usually, finished automobiles
are transported from an outbound warehouse near the manufacturing plant to different
distribution centers through the network using special transporters known as auto-carriers.
Each auto-carrier has a specific number of slots, each of which is capable of carrying
one automobile.

In daily operations, a third-party logistics company (3PL) makes decisions for au-
tomobile distributions considering two kinds of demands as follows. The first ones are
basic outbound distribution demands, in which a set of automobiles in the manufacturer’s
outbound warehouse needs to be assigned to a set of heterogeneous auto-carriers and
delivered to the corresponding distribution centers (DCs). The second kind of demand
arises from actual situations in which a group of automobiles has to be transferred from one
distribution center to another such that some specific customer orders could be satisfied
as soon as possible. The amount of transferring demands among DCs is usually smaller
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than that of the outbound demands from the warehouse but with higher priority. The 3PLs
always handle the two kinds of demands separately in practice, resulting in a high empty
rate of auto-carriers during transportation and high logistics costs. The outbound demands
and transfer demands should be considered simultaneously since the origins of the transfer
demands may also be the destinations of the outbound demands. Therefore, this paper
studies a pickup and delivery problem of automobile logistics considering both basic
outbound demands and the transfer demands among distribution centers. Based on our
investigation of 3PL companies in China, the problem involves the following three aspects.

First, the 3PL company must determine which automobiles should be loaded onto
auto-carriers preferentially. In realistic conditions, the number of auto-carriers available
each day is limited, meaning that not all finished automobiles can be loaded simultaneously.
Therefore, each automobile, from an outbound warehouse or a distribution center, has a
given value indicating its level of urgency to be loaded. The higher the value is, the more
urgently the automobile should be delivered. In daily operations, the 3PL company should
prioritize loading automobiles with higher values onto the available auto-carriers as much
as possible.

Second, the total transportation cost of auto-carriers must be taken into account.
The transportation cost of an auto-carrier consists of a fixed cost if it is used, and a traveling
cost depending on the routing distance of the auto-carrier. The routing distance of each
auto-carrier is defined by the visiting sequence among the origins and destinations of
the automobiles that are loaded onto it. Based on the demand type, the origin of each
automobile could be either the outbound warehouse or a distribution center. Different
loading combinations of automobiles assigned to each auto-carrier will thus lead to various
routes resulting in different transportation costs.

Third, a downward compatible loading structure (DCLS) constraint should be met for
each auto-carrier. As the examples shown in Table 1, without loss of generality, automobiles
are classified into three types, small, medium, and large, according to their appearance
and size. Accordingly, each slot on the auto-carriers is also indexed as one of the three
types, indicating the largest car type that can be loaded into the slot. Namely, a large
slot can accommodate all three types of automobiles, a medium slot can load medium
or small automobiles, and a small slot can only load small automobiles. Figure 1 shows
two different loading patterns for a simple auto-carrier as an example based on DCLS
constraints. Obviously, there could be many feasible loading patterns even for an auto-
carrier with a given slot configuration.

Table 1. Examples of three types of automobiles.

Type
Standards Examples

Length
(mm)

Width
(mm)

Height
(mm) Manufacturer Brand Length

(mm)
Width
(mm)

Height
(mm)

Small ≤4650 ≤2000 ≤1550

SAIC MG3 3999 1728 1517

GM Aveo 4039 1735 1517

Volkswagen Polo 4176 1650 1465

Medium 4650–4850 ≥2000 1550–1650

Volkswagen Santana2000 4680 1700 1423

Volkswagen Santana2000 4687 1700 1450

GM Epica 4808 1807 1450

Large ≥4850 ≥2000 ≥1650

Volkswagen Touran 4411 1794 1670

SAIC R950 4996 1857 1502

GM Buick GL8 5213 1847 1750

To sum up, our problem is to pick up a set of automobiles at their origins and deliver
them to the corresponding destinations such that the total value of the assigned automobiles
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is maximized and the total transportation cost of the occupied auto-carriers is minimized,
subject to a special DCLS constraint of a limited number of heterogeneous auto-carriers with
different slot configurations. The problem becomes very complex because the outbound
demands and transfer demands are considered simultaneously. In order to make the
decisions efficiently, we design an improved adaptive large neighborhood search algorithm
to solve the problem. The remainder of this paper is organized as follows: Section 2 is
the literature review, and Section 3 presents a precise problem description and an integer
programming model. Section 4 describes the improved adaptive large neighborhood search
(IALNS) algorithm. Section 5 shows the experimental results based on different scales of
instances, and Section 6 concludes the paper.

Figure 1. Examples of loading patterns with DCLS constraints.

2. Literature Review

Researchers have proposed numerous models and methods for solving pickup and de-
livery problems but rarely considered the characteristics of automobile distribution, and none
has considered the outbound and transfer demands simultaneously. We review relevant
work on classic pickup and delivery problems and automobile transportation, respectively.

2.1. Pickup and Delivery Problems

The pickup and delivery problem (PDP) is a variant of the classic vehicle routing
problem (VRP), which was proposed in 1959 by Danzig and Ramser [2]. The first study
on the PDP dates back to Min (1989) [3], and the PDPs have attracted attention from
numerous perspectives.

Some scholars consider the PDP with different time constraints, and many heuristics
have been proposed for specific scenarios. Stefan and David [4] studied a pickup and
delivery problem with a time window, and an adaptive large neighborhood search heuristic
is proposed. Yuan and Jonathan [5] studied a similar problem, where the trans-shipments
between nodes are considered. Can et al. [6] and Olcay et al. [7] used variable neighborhood
search algorithms based on the ant colony algorithm and disturbance to solve PDP with a
time limit. Chao et al. [8] studied a PDP with time windows and designed a local hybrid
search that effectively combined a simulated annealing algorithm to solve this problem.
Zheyu Wang et al. [9] considered a PDP with a hard time window and time-dependent
travel times, and an exact branch-cut-and-price algorithm was proposed in their study.

Some scholars emphasized different loading constraints for PDPs. Emmanouil et al. [10]
considered a two-dimensional loading constraint for a PDP and explained how the re-
location would influence the optimal routing. Moura et al. [11] extended the problem
proposed by Emmanouil et al. to three-dimensional loading constraints, and a matheuristic
approach was designed. The PDPs are also considered in many specific scenarios. Christian
and Ralf [12] studied a vehicle routing problem with trans-shipment facilities, where time
windows and heterogeneous fleets are taken into consideration, and an adaptive large
neighborhood search was proposed. Lais et al. [13] investigated a novel problem from the
urban delivery system integrating the routing of vans and porters. An iterated heuristic
combing local search was designed. More PDP variants have been studied considering
different objectives, methods, and application scenarios [14–19].
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Although many mathematical models and methods have been studied to solve dif-
ferent pickup and delivery problems, none of them has considered the unique loading
structure of auto-carriers and could not be directly used in our problem.

2.2. Automobile Transportation

There are a handful of studies in existing literature focusing on automobile trans-
portation. Agbegha et al. (1998) [20] is the earliest study focusing on the loading problem
of auto-carriers for automobile distribution. They considered the particular structure of
the auto-carriers in the early days and focused more on the reduction in reloads when
some automobiles must be temporarily unloaded before reaching their destination for a
given route of the auto-carrier. Tadei et al. (2002) [21] studied an automobile delivery
problem without involving constraints such as loading precedence and compatibility be-
tween specific vehicles and slots, and a local search heuristic was proposed by dividing the
destinations into small clusters. Dell’Amico et al. (2014) [22] considered a complex capacity
constraint but applied a last-in-first-out loading strategy for the automobile distribution
problem. They considered that the auto-carriers are suitable enough for delivering all the
automobiles and proposed an iterated local search algorithm to minimize the total traveling
distance of all auto-carriers. The problem was extended into a dynamic version on a rolling
horizon with more constraints [23].

With the development of auto-carriers and third-party logistics (3PL) companies,
several studies have focused on specific scenarios. Juárez Pérez et al. (2019) [24] investigated
a real-world distribution problem for delivering cars and vans in Mexico. Capacity and time
window constraints were considered and a two-phase heuristic algorithm was implemented
to solve the problem. Bonassa et al. (2019) [25] proposed a mixed-integer programming
formulation to solve a variation of the dynamic multi-period auto-carrier transportation
problem. The objective was to find the best combination of vehicles to be loaded on auto-
carriers over a multiple-day planning horizon, such that the total transportation cost is
minimized and the delivery deadlines are fulfilled to the greatest possible extent. The model
is later revised and implemented into real situations in Brazil, and a multi-start local search
heuristic is proposed to solve large-scale instances [26].

Currently, automobiles of different sizes and shapes are produced, and the auto-
carriers have become standardized. Several studies have also been performed that consider
loading patterns and special loading structures. Hu et al. (2015) [27] introduced loading
patterns to specify possible ways of loading various types of vehicles onto the auto-carriers,
and studied a problem to select from a given set of loading patterns and generate traveling
routes based on the selected pattern. Yu Wang et al. (2018) [28] proposed the downward
compatible loading structure of auto-carriers according to the actual operation of current
automobile outbound logistics. They studied a pickup and delivery problem from multiple
warehouses to multiple dealers with known orders and assumed that all pickups have to
be complete before any delivery in each shipment. A column generation-based algorithm
was designed to solve the problem. A similar loading structure was used in the study
proposed by Feng Chen and Yu Wang (2020) [29], where inter-set costs among dealers were
considered instead of the routing of auto-carriers.

Although many efforts have been made on solving the loading and routing problems
for automobile transportation and on other PDPs, our study differs from the previous
studies in the following ways.

(a) A pickup and delivery problem of automobiles is considered with the urgency
level of the automobiles and the special downward compatible loading structure (DCLS)
of modern auto-carriers. The objective and loading constraints in our problem add more
complexity, since different combinations of assigned automobiles would result in varying
loading values and delivery routes.

(b) From the perspective of 3PL companies, the outbound demands from the assembly
plant and the transfer demands among distribution centers are considered simultaneously.
This allows for simultaneous pickup and delivery at some of the DCs during each shipment



Systems 2023, 11, 457 5 of 16

of the auto-carriers, which makes the decisions more complex but will improve the utility
of auto-carriers.

(c) The proposed problem is formulated as an integer programming model, and an im-
proved adaptive large neighborhood search algorithm is proposed with carefully designed
operators to efficiently solve large-scale instances in practice.

3. Problem Description and Formulation

In this section, the pickup and delivery of automobiles considering both outbound
demands and transfer demands among DCs are described precisely, as well as the DCLS
constraints, and the problem is formulated as an integer programming model.

3.1. Problem Description

The pickup and delivery problem of automobiles considering trans-shipment among
distribution centers can be described precisely as follows. A 3PL company has J available
auto-carriers, denoted by set J = {1, 2, . . . , J}. There are two sets of automobiles that need
to be assigned to the auto-carriers. Let set Io = {1, 2, . . . , Io} be the set of automobiles
stored in an outbound warehouse and to be delivered to certain distribution centers. Let set
I = {1, 2, . . . , I} be the set of automobiles where each of which is required to be transferred
from its origin DC to another. Let D = {1, 2, . . . , D} be the set of distribution centers
involved in the problem, namely the destinations of automobiles in Io and the origins
and destinations of those in I all belong to D. Let I∗ = {1, 2, . . . , I∗} = Io ⋃ I be the set of
all automobiles.

The automobiles are classified into T types, let T = {1, 2, . . . , T} indicate the set of
different types. For any t1, t2 ∈ T, t1 < t2 means that type t1 is smaller than t2. Similarly,
each of the slots on the auto-carriers is also indexed with one of the T types. According
to the downward compatible loading structure (DCLS), for any slot of type t∗ ∈ T on an
auto-carrier, all automobiles with a type t ≤ t∗ can be loaded onto the slot. Each automobile
i ∈ I∗ has a given value vi ∈ V indicating its urgency level to be handled, a type ti ∈ T,
an origin to be picked up, and a destination di ∈ D to be delivered to. For auto-carrier j ∈ J,
let pjt be the number of slots of type t ∈ T. For any two nodes a, b ∈ {D⋃{O}}, where the
O is the outbound warehouse, the traveling cost between a and b is denoted as Cab.

Our problem aims to select a set of automobiles from I∗ with maximized total value
such that they can be loaded onto the set of auto-carriers subject to the DCLS constraints,
and can be picked up and delivered with a minimized total transportation cost, which in-
cludes a traveling cost based on routing decisions and a fixed cost for each auto-carrier used.

3.2. Integer Programming Model

First, we introduce the following sets, parameters, and decision variables.
Sets and Indexes:

Io set of automobiles in the outbound warehouse, Io = {1, 2, . . . , IO}.
I set of automobiles to be transferred, I = {1, 2, . . . , I}.
I∗ set of all automobiles, I∗ = {1, 2, . . . , I∗} = Io ∪ I.
J available auto-carriers, J = {1, 2, . . . , J}.
D all distribution centers, D = {1, 2, . . . , D}.
D distribution centers with transfer demands, D = {1, 2, . . . , D}.
D∗ the set of all nodes, D∗ = D∪ {O}.
T types of automobiles and slots, T = {1, 2, . . . , T}.
V values of automobiles, V = {1, 2, . . . , V}.
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Parameters:

di the destination of automobile i ∈ I∗, di ∈ D∗.
vi the value of automobile i ∈ I∗, vi ∈ V.

ti the type of automobile i ∈ I∗, ti ∈ T.

wit wit = 1 if ti ≥ t, ∀i ∈ I∗, t ∈ T, otherwise wit = 0

pjt the number of slots of type t ∈ T in auto-carrier j ∈ J.

Cab the traveling cost between nodes a, b ∈ D∗.
fid fid = 1 if the destination of i is d, ∀i ∈ I∗, d ∈ D∗, otherwise fid = 0.

f ′id f ′id = 1 if the origin of i is d, ∀i ∈ I∗, d ∈ D∗, otherwise f ′id = 0.

α weight parameter of the total traveling cost.

β weight parameter of the total value of selected automobiles.

γ weight parameter of the fixed cost of used auto-carriers.

M sufficiently large constant.

Decision variables:

xio j xio j = 1 if automobile io ∈ Io stored at the outbound warehouse is assigned to

auto-carrier j ∈ J, otherwise xio j = 0.

yij yij = 1 if automobile i ∈ I stored at one of the distribution centers is assigned to

auto-carrier j ∈ J, otherwise yij = 0.

udj udj = 1 if auto-carrier j ∈ J visits node d ∈ D∗, otherwise udj = 0.

labj labj = 1 if auto-carrier j ∈ J directly visits node b ∈ D∗ from node a ∈ D∗, a 6= b,

otherwise labj = 0.

zj zj = 1 if auto-carrier j ∈ J is used, otherwise zj = 0.

Qt
id the number of automobiles from the outbound warehouse of type t ∈ T in .

auto-carrier j ∈ J after visiting node d ∈ D∗.
qt

jd the number of automobiles of transfer demands with type t ∈ T in .

auto-carrier j ∈ J after visiting node d ∈ D∗.

Based on the above sets, parameters, and variables, the problem can be formulated as
the following integer programming (IP) model ([4,5,10]).

(IP) max β(∑
j∈J

∑
io∈Io

vio · xio j + ∑
j∈J

∑
i∈I

vi · yij)− α ∑
j∈J

∑
a,b∈D∗

Cab · labj − γ ∑
j∈J

zj (1)

s.t. ∑
j∈J

xio j ≤ 1, ∀io ∈ Io (2)

∑
io∈Io

wiotxio j ≤
T

∑
t′=t

pjt′ , ∀j ∈ J, t ∈ T (3)

∑
io∈Io

xio j ≤ Mzj, ∀j ∈ J (4)

yij ≤ zj, ∀i ∈ I, j ∈ J (5)

∑
j∈J

yij ≤ 1, ∀i ∈ I (6)

∑
i∈I

wityij f ′ib ≤
T

∑
t′=t

pjt′ −
T

∑
t′=t

Qt′
jb −

T

∑
t′=t

qt′
ja

+ ∑
i∈I

wityij fib + M(1− ∑
a∈D

labj), ∀b ∈ D, j ∈ J, t ∈ T (7)
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∑
t∈T

Qt
jb + ∑

t∈T
qt

jb ≤ ∑
t∈T

pjt, ∀d ∈ D∗, j ∈ J (8)

∑
a∈D

loaj = ∑
a∈D

laoj ≤ 1, ∀j ∈ J (9)

∑
a∈D

labj ≤ 1, ∀b ∈ D, j ∈ J (10)

∑
a∈D∗

labj = ∑
c∈D∗

lbcj, ∀b ∈ D, j ∈ J (11)

xio j · fiob = uio j, ∀io ∈ Io, b ∈ D, j ∈ J (12)

yij · fib = uij, ∀i ∈ I, b ∈ D, j ∈ J (13)

yij · f ′ib = uij, ∀i ∈ I, b ∈ D, j ∈ J (14)

∑
t∈T

Qt
ja − ∑

t∈T
Qt

jb ≥ ∑
io∈Io

xio j fiob + M(1− labj), ∀a ∈ D∗, b ∈ D, j ∈ J (15)

∑
d∈D

∑
t∈T

Qt
jd f ′id − ∑

b∈D
∑
t∈T

Qt
jd fib ≥ M(1− yij), ∀i ∈ I, j ∈ J (16)

∑
d∈D

udj f ′id − ∑
b∈D

ubj fib ≤ M(1− yij), ∀i ∈ I, j ∈ J (17)

uaj − ubj ≤ D− 1− D · labj, ∀a, b ∈ D, j ∈ J (18)

xio j, yij, udj, labj, zj are binary, Qt
jd and qt

jd are non-negative integers, ∀io ∈ Io,

i ∈ I, j ∈ J, a, b, d ∈ D∗, t ∈ T

In the mathematics IP model, the objective value function (1) maximizes the weighted
total value minus the weighted total transportation cost, including the traveling costs and
the fixed costs. Constraint (2) ensures that each automobile from the outbound warehouse
can be assigned to at most one auto-carrier. Constraint (3) means that the loading com-
bination of each auto-carrier should satisfy the DCLS constraints. Constraint (4) ensures
zj = 1 if any automobile is assigned to auto-carrier j ∈ J. Constraint (5) means that
auto-carrier j ∈ J can be assigned with transfer demands if and only if the auto-carrier is
used. Constraint (6) ensures each to-be-transferred automobile can be assigned to at most
one auto-carrier. Constraints (7) and (8) indicate that each auto-carrier should satisfy the
constraint of DCLS constraints at any point during each shipment. Constraints (9) to (11)
are the flow balance constraints for routing decisions. Constraints (12) to (14) mean that
auto-carrier j ∈ J must visit the origin and the destination of the automobile i ∈ I∗ if i is
assigned to j. Constraint (15) is the change in loading combination of each auto-carrier after
visiting each node. Constraints (16) to (18) ensure that each automobile has to be picked up
before it can be delivered.

4. Improved Adaptive Large Neighborhood Search (IALNS) Algorithm

The proposed pickup and delivery problem considering both outbound demands
and transfer demands is obviously NP-hard since routing decisions are involved. To meet
the needs of 3PL companies in practice, inspired by the references [4,5,30,31], this section
proposes an improved adaptive large neighborhood search (IALNS) algorithm to solve the
problem efficiently.

We first propose a heuristic to generate an initial solution in Section 4.1, which is an
essential step for ALNS-based algorithms. Starting with the initial solution, an improved
ALNS algorithm is presented, searching for better solutions iteratively by applying remove
operators and repair operators adaptively in each iteration. Based on the characteristics
of the proposed problem, we design three remove operators and four repair operators in
Section 4.2. To improve the ability to jump out of local optimal, inspired by the idea of
the simulated annealing (SA) algorithm, we introduce a solution-acceptance criterion in
Section 4.3. Section 4.4 discusses the adaptively adjusted rule to update the weights of
different operators. The flow of the proposed IALNS is shown in Figure 2.
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Figure 2. The flow of proposed IALNS algorithm.

4.1. Initial Solution Generation

The heuristic contains two steps described in the following.
Step1. Generating initial routes for the automobiles of outbound demands from

manufacturers. Algorithm 1 is the pseudocode of Step 1, where sets Lj and Rj are the set
of automobiles loaded by auto-carrier j ∈ J and the corresponding route. Let Ad denote
the subset of automobiles that need to be handled in the outbound warehouse with a
destination equal to d ∈ D.

Algorithm 1 Initial routing for automobiles of outbound demands

Input: Sets Io, D, J
Output: Rj and Lj

1: for j = 1 to J do

2: Sort the DCs in D by descending order of the total value
|Ad |
∑

a=1
va of corresponding

automobiles, let W be the new sorted set
3: for w = 1 to |W| do
4: Try loading automobiles onto auto-carrier j subject to DCLS
5: Rj ← Rj

⋃{w}, update Lj, Ad
6: if |Lj| < ∑

t∈T
pjt then

7: continue
8: else
9: break

Step2. Insert the to-be-transferred automobiles into the initial routes generated by
Step 1. Sort all the automobiles of transfer demands by the decreasing order of their values.
Then, based on the initial routes, try to insert the sorted automobiles and update the routes
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accordingly following the rules and loading constraints below, as the examples shown in
Figure 3.

Figure 3. Examples of three insertion rules.

(a) If the origin and the destination of the incumbent automobile are both on one of
the current routes, and the origin of the automobile is visited before the destination in the
corresponding route, then the automobile can be assigned to the corresponding auto-carrier
if the DCLS constraint can be satisfied. The routes will not be changed if this rule is applied,
as the example shown in Figure 3(1).

(b) If only the origin or the destination of the incumbent automobile is on one of
the current routes, then try to load the automobile by modifying the corresponding route
with the smallest cost. As the example shown in Figure 3(2), the origin of the automobile,
point B, is on one of the current routes while the destination, point G, is not on the route.
Find the point on the route that is nearest to destination G. If the DCLS constraint can be
satisfied, then the automobile can be assigned to the corresponding auto-carrier, and the
route can be changed by inserting destination point G into the route. After insertion, let
the left route represent the case in which point G is visited before D, and let the right route
represent the other case in which point G is visited after D. Compare the new routes in the
two cases and choose the one with a smaller total length to update the route.

(c) For the incumbent automobile, if neither the origin nor the destination is on one
of the current routes, then select a route in which one of the visited distribution centers is
the nearest point to the origin of the automobile, and the DCLS constraints can be satisfied.
The route, if it exists, can be updated following rule (b) above. Figure 3(3) shows an example
of updating the route in this case.

4.2. Remove and Repair Operators

In this section, we design three remove operators and four repair operators to update
the initial solution. As described below, rm1–rm3 are the remove operators, and rp1–rp4
are the repair operators.

(rm1) Randomly remove from outbound demands: Randomly select p assigned auto-
mobiles of the outbound demands, and remove them from the current solution.

(rm2) Remove by smallest cost: In each iteration, for each DC involved in each route,
calculate the reduction in objective value if the automobiles related to the DC are removed
from the current route. Compare the reductions, choose the smallest one, and remove the
DC and corresponding automobiles from the route.

(rm3) Randomly remove from transfer demands: Randomly select p automobiles of
the transfer demands, and remove them from the current solution if the corresponding
route will not be changed.

(rp1) Randomly repair for the outbound demands: For any automobile of the outbound
demand that is removed by the above rules, randomly insert it into a place into the
current route.

(rp2) Greedy repair for the outbound demands: For each removed automobile of the
outbound demand, reload the automobile to the current route if it contains the destination
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of the automobile directly. Otherwise, try to insert the destination DC into the current route
by rule (b) of Step 2 in Section 4.1.

(rp3) Repair for the transfer demands without changing route: If the origin and destina-
tion are on the current route, then try to reload the removed automobile to the auto-carrier.

(rp4) Greedy repair for the transfer demands: For each removed automobile of the
transfer demands, try to insert them into the current route using the three rules described
in Section 4.1 to update the route.

4.3. Solution-Acceptance Criterion

In each iteration, after a new solution is generated by the remove and repair operators,
we use a solution-acceptance criterion based on the idea of the simulated annealing (SA)
algorithm. There are three rules to determine whether the new solution can be accepted
or not:

(sc1) If the objective value of the new solution S′ is better than that of the current
solution S, then update the current solution by S = S′.

(sc2) If the objective value of the new solution S′ is equal to that of the current solution
S, then reject the new solution.

(sc3) If the objective value of the new solution S′ is worse than that of the current
solution S, then accept the new solution with a possibility e(−[ f (S′)− f (S)]/G). G is the
temperature of the current iteration, and the temperature is discounted by λ in each
iteration, where λ ∈ (0, 1) is the cooling factor.

4.4. Adaptive Updates of Operator Group Weights

In each iteration, the proposed IALNS algorithm will select one operator to generate
a new feasible solution, and the selection of operators determines the efficiency of the
entire procedure. To make the algorithm implementable for large-scale practical problems,
the operators are clustered as four different operator groups: rm1, rm3, rp1, rp3; rm1, rm3,
rp2, rp3; rm2, rp1, rp4; and rm2, rp2, rp4. As described below, the roulette mechanism is
applied to select one operator from the groups, and the weight parameters assigned to the
groups will be updated adaptively.

Let set G denote the groups of the operators. For each group g ∈ G, let wg be the
weight parameter related to the possibility that the group is chosen in each iteration. Define
a given K number of iterations as a phase. Let πg and θg be the score and the number of
use of group g during each phase. Let σ1, σ2 and σ3 be three parameters corresponding
to the three rules of solution-acceptance criterion described in Section 4.3, respectively,
and σ1 + σ2 + σ3 = 1. The weight parameter wg will be updated at the end of each phase as
described in Algorithm 2.

Algorithm 2 The adaptive searching process

Input: Solution S in current iteration, σ1, σ2, σ3, G
Output: wg, ∀g ∈ G

1: w1 = w2 = . . . w|G|, ∑
g∈G

wg = 1

2: for p = 1 to P do
3: initialize πg = 0 and θg = 0
4: if the operator group g∗ is used in each iteration of this phase then
5: θg∗ ← θg∗ + 1, and πg∗ ← πg∗ + σu
6: πg ← πg/θg

7: let πg =
πg

∑
g∈G

πg

8: wg ← (1− ε) · wg + ε · πg



Systems 2023, 11, 457 11 of 16

5. Numerical Experiments

To show the effectiveness and efficiency of the proposed IALNS algorithm in solv-
ing the pickup and delivery problem of automobiles with simultaneous outbound and
transfer demands, this section shows the randomly generated real-scale instances and the
experimental results. All instances are tested by directly solving the IP model with the
commercial solver CPLEX 12.8 and the proposed IALNS algorithm, respectively. The model
and algorithm are implemented on a computer with 16 GB memory and an AMD Ryzen
546ooH processor.

5.1. Instances Generation and Parameter Setting

Based on the practical operations of a 3PL company in China, we generate three
groups of random instances of a small, medium, and large scale, respectively, each of
which consists of 10 instances. For the small-scale group, Io = 20, D = 10, I = 5, J = 3.
For the medium-scale group, Io = 40, D = 20, I = 10, J = 6. For the large-scale group,
Io = 60, D = 30, I = 15, J = 10. The slot configuration of each auto-carrier, the location of
each distribution center, and the outbound warehouse are randomly generated in a given
range. Accordingly, the value, type, origin, and destination of each automobile are also
randomly generated in a given range. The hyperparameters of the algorithm include the
maximum number of iterations, number of to-be-removed automobiles p, cooling factor
λ, three acceptance criteria weights σ1, σ2, σ3, and adaptive weight updates ε. We first
determine the two most likely values for each hyperparameter [31]. These values were
randomly combined, resulting in 27 combinations. Each hyperparameter combination is
pretested on different-scale instances, and the best combinations of hyperparameter values
are determined by the average of the test results. Table 2 shows related parameters in the
IP model and the hyperparameters of IALNS.

Table 2. The setting of parameters and hyperparameters.

Parameters Values

α, β, γ 0.7, 0.2, 0.1
Maximum iteration 200

Number of to-be-removed automobiles p A random integer in [ 1
4 |I
∗|, 1

2 |I∗|]
Initial temperature G 100

Cooling factor λ 0.99
σ1, σ2, σ3 0.7, 0.1, 0.2

ε 0.5

5.2. Experimental Results of Different-Scale Instances

First, for each group of instances, we use the commercial solver CPLEX and our
proposed IALNS algorithm to solve them. Since obtaining the optimal solution using
CPLEX would take a very long time for large-scale instances, we set up a limit of 1800 s
to the calculation time. Let ZCPLEX be the best objective value generated by solving the IP
model directly by CPLEX within the time limit. Let ZIALNS and tI ALNS be the objective
value and computational time solved by IALNS. Table 3 shows the performance of the
proposed IALNS algorithm compared to CPLEX. The first column shows the different
scales of instances. The second column shows the average relative gap between ZIALNS
and ZCPLEX , which is defined as (ZCPLEX − ZIALNS)/ZCPLEX · 100%. The third and fourth
columns are the average calculation time of the IALNS algorithm and solving the IP model
by CPLEX, respectively.

Based on the results in Table 3, our proposed IALNS algorithm can generate near-
optimal solutions with a much shorter calculation time. For small-scale instances, where
CPLEX can generate the optimal solution within the time limit, the average computation
time of IALNS is 20 s on average, while the average computation time of CPLEX is 622 s,
and the average relative gap is 9.18%. For medium- and large-scale instances, CPLEX
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cannot generate the optimal solutions within 1800 s, while the average computation time of
IALNS is 197 s, and the average relative gap is 9.23%.

Table 3. Experimental results of IALNS and CPLEX.

Instances Average Average Computation Average Computation
Scale IALNS-CPLEX (%) Time—IALNS (s) Time—CPLEX (s)

Small 9.18 20 622
Medium 10.71 110 >1800

Large 7.73 284 >1800

Average 7.84 138 -

We use instance 1 of small scale to demonstrate the optimization process and compu-
tation results of the proposed IALNS algorithm. Figure 4 shows the converging curve of
solving instance 1 by IALNS, where the abscissa axis represents the number of iterations,
and the vertical axis represents the fitness value, which is defined as the negative of the
objective function in the IP model. It can be observed that the objective function value
starts to converge when the IALNS algorithm iterates around 38 times. Figure 5 shows the
pickup and delivery routes for three auto-carriers in instance 1.

Figure 4. The optimization process of small−scale instance 1.

Figure 5. The pickup and delivery routing of different auto-carriers of small−scale instance 1.

Second, we compare the results of the proposed IALNS algorithm over all the instances
to three heuristics, the initial heuristic (IH) proposed in Section 4.1, large-scale neighbor-
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hood search (LNS) and a local search (LS) algorithm. The LNS algorithm uses the same
operators as those in IALNS, while the LS algorithm keeps only one pair of the operators.
Let ZIH be the objective value obtained by initial heuristic, and the average computational
time of the IH is not shown in the results since solving each instance takes less than 1 s. Let
ZLNS and tLNS be the average objective value and the average computational time of solv-
ing the instances by LNS, and let ZLS and tLS be the average objective value and the average
computational time by LS, respectively. Table 4 shows the experimental results comparing
different algorithms. The first column shows the scale of the instances, and the second
column shows the average relative gap between the objective values of IH and IALNS,
which equals ZIH−ZIALNS

ZIH
· 100%. The third column is the average relative gap between the

results of IALNS and LNS, where Gapobj =
ZIALNS−ZLNS

ZLNS
· 100%, and Gaptime =

tIALNS−tLNS
tLNS

.
The fourth column is the average relative gap between the results of IALNS and LS, where
Gapobj =

ZIALNS−ZLS
ZLS

· 100%, and Gaptime =
tIALNS−tLS

tLS
.

Table 4. Experimental results of different algorithms.

Instances Scale IALNS-IH (%)
IALNS-LNS (%) IALNS-LS (%)

Gapobj Gaptime Gapobj Gaptime

Small 25.02 −0.73 −9.02 4.22 −49.82
Medium 30.99 −0.14 −7.84 8.02 −50.43

Large 40.05 −0.12 −9.70 6.77 −46.28

Average 32.02 −0.33 −8.85 6.34 −48.84

As shown in Table 4, the proposed IALNS algorithm has a significant improvement of
the objective value compared to IH, reaching an average relative gap of 32.02%. Compared
to the LNS algorithm, the proposed IALNS algorithm achieves an average gap of −0.33%
in terms of the objective value, but it exhibits a notable improvement of 8.85% in average
computational time. With the increase in the instance scale, the relative gap between
objective values decreases from −0.73% for small-scale instances to −0.12% for large-scale
instances. When comparing IALNS to LS, the proposed IALNS algorithm shows more
advantages. Across three groups of instances with varying scales, IALNS improves the
objective value by an average of 6.34% compared to LS. Moreover, IALNS significantly
reduces the average computation time by 48.84%.

5.3. Sensitivity Analysis on Weight Parameters

This section tests the proposed IALNS algorithm with different values for the weight
parameters α, β, and γ. We select five instances from the large-scale group, and each
instance is solved by initial heuristic, IALNS, and CPLEX, respectively. Table 5 shows the
results, in which the first column shows different combinations of the weight parameters,
the second column shows the instance index, and the remaining columns are the same as
those in Tables 3 and 4.

According to the results in Table 5, CPLEX cannot find the optimal solution within
the time limit under the different weighted parameters, and the proposed IALNS always
generates satisfactory solutions much more efficiently. When α decreased from 0.8 to 0.5,
the average relative gap between IALNS and IH increased from 36.47% to 39.87%. Similarly,
there was a notable increase in the average relative gap between IALNS and CPLEX, going
from 2.6% to 7.04%. On the other hand, the computation time of IALNS did not exhibit
a discernible trend, fluctuating within the range of 250–300 s. These experimental results
demonstrate that as the value of α increases, the proposed IALNS has advantages over IH
and solving the IP model using CPLEX. The proposed algorithm shows strong robustness
and can generate near-optimal solutions to the problem within a reasonable time under
different weight parameters.
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Table 5. Experimental results of different weighted values of α, β, and γ.

Weights Instance IALNS- Computation Computation IALNS-
IH (%) Time—IALNS (s) Time—CPLEX (s) CPLEX (%)

α = 0.8
β = 0.1
γ = 0.1

1 30.83 285 >1800 5.69
2 45.32 214 >1800 3.45
3 14.19 284 >1800 0.95
4 26.33 297 >1800 2.35
5 65.65 226 >1800 0.54

Average 36.47 261 - 2.60

α = 0.7
β = 0.2
γ = 0.1

1 30.44 281 >1800 5.45
2 45.76 243 >1800 3.6
3 14.21 300 >1800 2.37
4 26.57 359 >1800 2.39
5 63.98 265 >1800 0.91

Average 36.19 290 - 2.96

α = 0.6
β = 0.3
γ = 0.1

1 −30.96 284 >1800 7.69
2 46.80 230 >1800 5.38
3 14.53 274 >1800 3.75
4 26.91 292 >1800 4.73
5 67.12 240 >1800 4.18

Average 37.26 264 - 5.15

α = 0.5
β = 0.4
γ = 0.1

1 −32.12 298 >1800 9.75
2 50.42 281 >1800 8.68
3 15.28 358 >1800 5.6
4 29.01 335 >1800 6.61
5 67.53 265 >1800 4.56

Average 39.87 308 - 7.04

6. Conculsions

This paper studies a pickup and delivery problem for automobile logistics considering
the outbound demands from the assembly plant warehouse and the transfer demands
among distribution centers simultaneously. Based on the investigation of 3PL companies’
practices, the urgent level of handling the automobiles, the special downward compatible
loading structure of auto-carriers, and the transportation cost based on the vehicle routing
are considered in the problem. An integer programming model is formulated for the prob-
lem, and an improved adaptive large neighborhood search (IALNS) algorithm is proposed
to solve the problem efficiently. The IALNS starts from an initial solution generated by a
heuristic algorithm and can find near-optimal solutions after iterations with elaborately
designed operator groups and adaptive weights. The experimental results show that the
proposed IALNS algorithm can significantly improve the solutions compared to the initial
heuristic, and outperform directly solving the IP model by CPLEX to a large extent.

The mathematical model and algorithm proposed in this paper can be implemented
easily in the daily decision-making of 3PLs, which will improve the efficiency of auto-
mobile logistics operations, increase the responsiveness of handling transfer demands,
raise the utility of the relatively scarce auto-carrier resources, and reduce transportation
costs. In future research, one can extend the problem to multiple outbound warehouses or
multi-period dynamic environments. One can also consider multi-modal transportation of
automobile logistics based on our problem.
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