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Abstract: The growth of urban areas and the management of energy resources highlight the need
for precise short-term load forecasting (STLF) in energy management systems to improve economic
gains and reduce peak energy usage. Traditional deep learning models for STLF present challenges
in addressing these demands efficiently due to their limitations in modeling complex temporal
dependencies and processing large amounts of data. This study presents a groundbreaking hybrid
deep learning model, BiGTA-net, which integrates a bi-directional gated recurrent unit (Bi-GRU), a
temporal convolutional network (TCN), and an attention mechanism. Designed explicitly for day-
ahead 24-point multistep-ahead building electricity consumption forecasting, BiGTA-net undergoes
rigorous testing against diverse neural networks and activation functions. Its performance is marked
by the lowest mean absolute percentage error (MAPE) of 5.37 and a root mean squared error (RMSE)
of 171.3 on an educational building dataset. Furthermore, it exhibits flexibility and competitive
accuracy on the Appliances Energy Prediction (AEP) dataset. Compared to traditional deep learning
models, BiGTA-net reports a remarkable average improvement of approximately 36.9% in MAPE.
This advancement emphasizes the model’s significant contribution to energy management and load
forecasting, accentuating the efficacy of the proposed hybrid approach in power system optimizations
and smart city energy enhancements.

Keywords: energy management system; short-term load forecasting; building energy forecasting;
hybrid deep learning model; bi-directional gated recurrent unit; temporal convolutional network

1. Introduction

The rapid influx of populations into urban areas presents many challenges, rang-
ing from resource constraints to heightened traffic and escalating greenhouse gas (GHG)
emissions [1]. Many cities globally are transitioning towards ‘smart cities’ to handle these
multifaceted urban issues efficiently [2]. At its core, a smart city aims to enhance its inhab-
itants’ efficiency, safety, and living standards [3]. For example, smart cities tackle GHG
emissions by reducing traffic congestion, optimizing energy usage, and incorporating
alternatives, such as electric vehicles, energy storage systems (ESSs), and sustainable en-
ergy sources [4]. A significant portion of urban GHG emissions is attributed to building
electricity consumption, which powers essential systems and amenities such as heating,
domestic hot water (DHW), ventilation, lighting, and various electronic appliances [5].
Thus, advancing energy efficiency in urban buildings, especially through the integration
of energy storage and renewable energy sources, is paramount. Recognizing this, many
smart city designs have embraced integrated systems such as building energy management
systems (BEMSs) to boost the energy efficiency of existing infrastructure [6].
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A BEMS is a technology-driven tool that harnesses the capabilities of the Internet of
Things (IoT) [7] and big data analytics [8] to specifically regulate and monitor building
electricity consumption. Electricity accounts for a substantial portion of a building’s
energy profile, powering everything from lighting and heating to advanced electronic
appliances. One of the cardinal functions of a BEMS is short-term load forecasting (STLF)
for electricity [9]. Accurate STLF is essential as it enables facilities to trade surplus electricity,
foster economic benefits, and precisely manage power loads, thereby preventing blackouts
by moderating peak electrical demands [10]. However, mastering STLF for electricity
consumption is an intricate task. This is because buildings exhibit diverse and complex
electricity consumption patterns with a non-linear relationship with several external factors
such as weather, occupancy, and time of day [11]. Additionally, the inherent noise in
electricity consumption data further muddles the forecasting process, making accurate
predictions challenging [12]. Given these complexities, many researchers have turned to
artificial intelligence (AI) as a promising approach for building electricity consumption
forecasting. AI techniques excel in deciphering the recent trends in electricity consumption
and processing the intricate, non-linear interactions between various influencing factors
and electricity demand [13].

Recent research underscores the intricate dynamics governing building energy perfor-
mance. Several factors, both internal, such as building orientation, and external, such as
climatic changes, play pivotal roles. These complexities can be unraveled through math-
ematical modeling, leading to the formulation of more accurate regression models [14].
Delving into the digital realm, machine learning (ML) stands out as a potent tool. With
the support of vast datasets and advanced computing, ML offers groundbreaking solu-
tions for predicting energy demands [15]. Its potential is evident throughout a building’s
lifecycle, impacting both its design and operation phases. However, the journey to its
broad acceptance presents numerous challenges. Two notable hurdles include the necessity
for extensive labeled data and concerns regarding model transferability. In response to
these challenges, innovative strategies have emerged. One notable approach is the intro-
duction of easy-to-install forecast control systems designed for heating. These systems
prove especially beneficial for older structures that necessitate detailed documentation [16].
Such systems not only exemplify technical advancements but also adapt to diverse inputs,
considering factors from weather conditions to occupant preferences, ensuring an optimal
balance between energy efficiency and occupant comfort.

Building on the promise of ML, as highlighted in recent research, traditional AI
techniques, including ML [13] and deep learning (DL) [17], have indeed been extensively
employed to develop forecasting models. Several ML approaches have been explored,
showcasing innovative methodologies to predict hourly or peak energy consumption.
Granderson et al. [18] focused on the versatility of regression models in predicting hourly
energy consumption. By emphasizing its applicability in STLF, their model showcased
its potential in the broader realm of energy management. Huang et al. [19] presented a
multivariate empirical mode decomposition-based model that harmoniously integrated
particle swarm optimization (PSO) and support vector regression for day-ahead peak
load forecasting. Li et al. [20] pioneered a data-driven strategy for STLF by integrating
cluster analysis, Cubist regression models, and PSO, presenting an innovative approach
that balanced multiple techniques for improved forecasting. Moon et al. [21] introduced the
ranger-based online learning approach, called RABOLA, a testament to adaptive forecasting
specially tailored for buildings with intricate power consumption patterns. This model
prioritized real-time, multistep-ahead forecasting, demonstrating its potential in dynamic
environments.

While traditional ML methods have significantly advanced energy forecasting, the
advent of DL, especially convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), has opened new horizons. These neural networks have set a precedent
for understanding intricate data patterns, paving the way for more sophisticated forecasting
methodologies [22]. Compared to traditional ML and mathematical methods, these models
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stand out due to their learning capabilities and generalization ability [13]. Understanding
the characteristics of building electricity consumption data, including time-based [23] and
spatial features [24], is essential for efficiently applying these DL models. Despite these
sophisticated techniques, the models often deliver unreliable, low forecasts [25]. They
need help with several challenges, such as issues related to short-term memory, overfitting,
learning from scratch, and understanding complex variable correlations. Some researchers
have investigated hybrid models to overcome these challenges, as single models frequently
have difficulties learning time-based and spatial features simultaneously [13].

Building upon the aforementioned advances in forecasting techniques, a multitude
of studies, including those mentioned above, have delved into the realm of STLF. These
collective efforts spanning several years are comprehensively summarized in Table 1. Tak-
ing a leaf from hybrid model designs, Aksan et al. [26] introduced models that combined
variational mode decomposition (VMD) with DL models, such as CNN and RNNs. Their
models, VMD-CNN-long short-term memory (LSTM) and VMD-CNN-gated recurrent unit
(GRU), showcased versatility, adeptly managing seasonal and daily energy consumption
variations. Wang et al. [27], in their recent endeavors, proposed a wavelet transform neural
network that uniquely integrates time and frequency-domain information for load forecast-
ing. Their model leveraged three cutting-edge wavelet transform techniques, encompassing
VMD, empirical mode decomposition (EMD), and empirical wavelet transform (EWT),
presenting a comprehensive approach to forecasting. Zhang et al. [28] emphasized the
indispensable role of STLF in modern power systems. They introduced a hybrid model that
combined EWT with bidirectional LSTM. Moreover, their model integrated the Bayesian
hyperparameter optimization algorithm, refining the forecasting process. Saoud et al. [29]
ventured into wind speed forecasting and introduced a model that amalgamated the sta-
tionary wavelet transform with quaternion-valued neural networks, marking a significant
stride in renewable energy forecasting.

Table 1. Comparative analysis of previous studies and the current research concerning short-term
load forecasting.

Researchers Model Used Addresses Long-Term
Dependencies

Manages Varying
Input Sequence

Lengths

Weighs Different
Features

Granderson et al. [18] Regression model No Partially No
Huang et al. [19] MEMD-PSO-SVR Partially Partially Partially

Li et al. [20] Cluster analysis, Cubist
regression models, PSO No No Partially

Moon et al. [21] RABOLA Partially Partially Partially

Aksan et al. [26] VMD-CNN-GRU and
LSTM Yes Partially Partially

Wang et al. [27] Wavelet transformer,
LSTM Yes No Yes

Zhang et al. [28] Bi-LSTM, BHO, EWT Yes Partially Yes
Kim et al. [30] RNN, 1D-CNN Partially Yes Partially
Jung et al. [31] Attention-GRU Yes No Partially

Zhu et al. [32] LSTM based
dual-attention model Partially Partially Partially

Liao et al. [33] LSTM, TPA mechanism Yes No Yes

BiGTA-net Bi-GRU, TCN, attention
mechanism Yes Yes Yes

Kim et al. [30] seamlessly merged the strengths of RNN and one-dimensional (1D)-
CNN for STLF, targeting the refinement of prediction accuracy. They adjusted the hidden
state vector values to suit closely better-occurring prediction times, showing a marked
evolution in prediction approaches. Jung et al. [31] delved into attention mechanisms
(Att) with their Att-GRU model for STLF. Their approach was particularly noteworthy for
adeptly managing sudden shifts in power consumption patterns. Zhu et al. [32] showcased
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an advanced LSTM-based dual-attention model, meticulously considering the myriad of in-
fluencing factors and the effects of time nodes on STLF. Liao et al. [33], with their innovative
fusion of LSTM and a time pattern attention mechanism, augmented STLF methodologies,
emphasizing feature extraction and model versatility. By incorporating external factors,
their comprehensive approach improved feature extraction and demonstrated superior
performance compared to existing methods. While effective, their model should have
capitalized on the strengths of hybrid DL models, such as GRU and temporal convolutional
network (TCN), which could be used to handle both long-term dependencies and varying
input sequence lengths [34].

BiGTA-net is introduced as a novel hybrid DL model that seamlessly integrates the
strengths of a bi-directional gated recurrent unit (Bi-GRU), a temporal convolutional net-
work (TCN), and an attention mechanism. These components collectively address the
persistent challenges encountered in STLF. The conventional DL models sometimes require
assistance in dealing with intricate nonlinear dependencies. However, the amalgamation
within the proposed model represents an innovative approach for capturing long-term data
dependencies and effectively handling diverse input sequences. Moreover, the incorpo-
ration of the attention mechanism within BiGTA-net optimizes the weighting of features,
thereby enhancing predictive accuracy. This research establishes its unique contribution
within the energy management and load forecasting domains, which can be attributed to
the following key contributions:

• BiGTA-net emerges as a pioneering hybrid DL model designed to enhance day-ahead
forecasting within power system operation, prioritizing accuracy.

• The experimental framework employed for testing BiGTA-net’s capabilities is strate-
gically devised, showcasing its adaptability and resilience across different models
and configurations.

• Utilizing data sourced from a range of building types, the approach employed in this
study establishes the widespread applicability and adaptability of BiGTA-net across
diverse consumption scenarios.

The structure of this paper is outlined as follows: Section 2 elaborates on the config-
uration of input variables that are crucial to the STLF model and discusses the proposed
hybrid deep learning model, BiGTA-net. In Section 3, the performance of the model is
thoroughly examined through extensive experimentation. Finally, Section 4 encapsulates
the findings and provides an overview of the study.

2. Materials and Methods

This section provides an in-depth exploration of the meticulous processes utilized to
structure the datasets, configure the models, and assess their performance. Serving as an
initial reference, Figure 1 displays a block schema that visually encapsulates the progression
of the approach from raw datasets to performance evaluation. This schematic illustration
is essential in providing readers with a comprehensive perspective of the methodological
steps, emphasizing critical inputs, outputs, and incorporated innovations.

2.1. Data Preprocessing

This section explains the procedure undertaken to identify crucial input variables
necessary for shaping the STLF model. Central to this study is the forecast of the day-ahead
hourly electricity load. This forecasting holds immense significance, primarily due to its
role as a foundational element in the planning and optimization of power system operations
for the upcoming day [35]. These forecasts contribute to the following aspects:

• Demand Response: An approach centered on adjusting electricity consumption pat-
terns rather than altering the power supply. This method ensures the power system
can cater to fluctuating demands without overextending its resources.

• ESS Scheduling: This entails critical decisions on when to conserve energy in storage
systems and when to discharge it. Effective scheduling ensures optimal stored energy
utilization, aligning with predicted demand peaks and troughs.
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• Renewable Electricity Production: Anticipating the forthcoming electricity demand
facilitates strategic planning for harnessing renewable sources. It ensures renewable
sources are optimally utilized, considering their intermittent nature.
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Figure 1. Schematic flow of data preprocessing and BiGTA-net modeling.

The study explores two distinct datasets that represent divergent building types, con-
tributing to a comprehensive understanding of power consumption patterns and enhancing
the formulation of the model. The first dataset originates from Sejong University, exem-
plifying educational institutions [36]. In contrast, the Appliances Energy Prediction (AEP)
dataset represents residential buildings [37]. The objective was to enhance the precision of
the STLF model by incorporating insights from these datasets, ensuring its adaptability to
various electricity consumption scenarios.

Sejong University employed the Power Planner tool, which generates electricity usage
statistics, to optimize electricity consumption. These statistics include predicted bills,
electricity consumption, and load pattern analysis. Five years’ worth of hourly electricity
consumption data, spanning from March 2015 to February 2021, were compiled using
this tool. From the collected dataset, approximately 0.006% of time points (equivalent to
275 instances) contained missing values, which were imputed based on prior research on
handling missing electricity consumption data. Conversely, the publicly available AEP
dataset provides residential electricity consumption data at 5 min intervals. To align with
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the study’s objective of predicting day-ahead hourly electricity consumption, this dataset
was resampled at 1 h intervals.

Details of the building electricity consumption, including statistical analysis, data
collection periods, and building locations, are presented in Table 2, while Figure 2 illustrates
the electricity consumption distribution through a histogram. Figures 3 and 4 illustrate box-
plots representing the hourly electricity consumption. Figure 3 presents the consumption
data segmented by hours for two datasets: the educational building dataset (Figure 3a) and
the AEP dataset (Figure 3b). Similarly, Figure 4 provides boxplots of the same consumption
data, which is segmented by days of the week, again for the educational building dataset
(Figure 4a) and the AEP dataset (Figure 4b). The minimum and maximum values in Table 2
are omitted due to university privacy concerns. Analysis of Figure 3 revealed a clear
distinction in electricity consumption during work hours and non-work hours for both
datasets. While the educational building dataset showed a noticeable variation in electricity
consumption between weekdays and weekends, the AEP dataset needed to show such a
clear distinction.

Table 2. Building electricity consumption dataset information.

Statistics Educational Building (Unit: kWh) [36] Appliances Energy Prediction (Unit: Wh) [37]

Number of samples 43,848 3289
Mean 2183.70 586.18

Standard deviation 756.41 488.98
Median 1950.84 380

Trimmed mean 2104.24 476.53
Median absolute deviation 708.80 163.09

Range 3793.32 3830
Skew 0.79 2.41

Kurtosis −0.39 6.49
Standard error 3.61 8.53

Data collection period 1 March 2015−29 February 2020 11 January 2016−27 May 2016
Building location Seoul, Republic of Korea Stambruges, Belgium

Public access No Yes
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2.1.1. Timestamp Information

The study considered a spectrum of external and internal factors in determining
the input variables. Among the external factors, timestamps and weather details held
significance. These timestamp details encompass the month, hour, day of the week, and
holiday indicators. Such details are crucial as they elucidate diverse electricity consumption
patterns within buildings. For example, hourly electricity consumption can vary based
on customary working hours, mealtime tendencies, and other factors. Similarly, distinct
days of the week and holiday indicators can provide insights into contrasting consumption
patterns, particularly when contrasting workdays with weekends.

A significant challenge emerges when considering time-related data: the disparity
in representing cyclical time data. Specifically, within the hourly context, the difference
between 11 p.m. and midnight, though consecutive hours, is illustrated as a substantial
gap of 23 units. To address such disparities and effectively capture the cyclic essence of
these variables with their inherent sequential structure, a two-dimensional projection was
utilized. Equations (1) through (4) were employed to transition from representing these
categorical variables in one-dimensional space to depicting them as continuous variables
in two-dimensional space [30]:

Hourx = sin(360◦/24 × Hour), (1)

Houry = cos(360◦/24 × Hour). (2)

For the day of the week (DOTW) component, considering the ISO 8601 standard
where Monday is denoted as one and Sunday as seven, a similar challenge emerges, with a
numerical gap of six between Sunday and Monday. This numerical gap can be addressed
with the following equations:

DOTWx = sin(360◦/7 × DOTW), (3)

DOTWy = cos(360◦/7 × DOTW), (4)

here the x and y subscripts in Equations (1) to (4) indicate the two-dimensional coordinates
to represent the cyclical nature of hours and days of the week. The transformation to
a two-dimensional space allows for a more natural representation of cyclical time data,
reducing potential discontinuities.

Beyond these considerations, the analysis also encompassed the integration of holiday
indicators [36]. These indicators, denoting weekends and national holidays, were repre-
sented as binary variables: ‘1’ indicated a date falling on either a holiday or a weekend,
while ‘0’ indicated a typical weekday. By incorporating these indicators, the aim was to
account for the evident influence of holidays and weekends on electricity consumption
patterns. Notably, the month within a year significantly affects these patterns. However,
due to constraints posed by the AEP dataset, which provides data for only a single year,
the incorporation of monthly variations was not feasible. As a result, monthly data were
not included in the analysis for the AEP dataset.

2.1.2. Climate Data

Climate conditions exert a notable influence on STLF, primarily attributed to their
integral role within the operational dynamics of high-energy-consuming devices. This
influence extends to heating and cooling systems, whose operational patterns align closely
with fluctuations in weather conditions [38]. The AEP dataset encompasses six distinct
weather variables: temperature, humidity, wind velocity, atmospheric pressure, visibility,
and dew point. Conversely, the Korea Meteorological Administration (KMA) offers a com-
prehensive collection of weather forecast data for each region in South Korea. These data
include a range of variables, such as climate observations, forecasts for rainfall likelihood
and quantity, peak and trough daily temperatures, wind metrics, and humidity levels [39].
To heighten the real-world applicability of the method, the primary input variables were se-
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lectively chosen as temperature, humidity, and wind velocity. This selection was motivated
by two factors: firstly, these variables are present both in the AEP dataset and in KMA’s
forecasts. Secondly, their well-documented strong correlation with power consumption
patterns supports their significance [30].

The data reservoir was populated through the automated synoptic observing system of
the Korea Meteorological Administration (KMA), maintained by the Seoul Meteorological
Observatory. This observatory is located within a mere 10 km of the Sejong University
campus. The objective was to contextualize the climatic variables with the environmental
conditions of the university’s academic buildings. To bridge the gap between raw climatic
data and its tangible influence on electricity consumption—the human perceptual experi-
ence of temperature fluctuations—two distinct indices were extrapolated. The temperature–
humidity index (THI) [40], colloquially known as the discomfort index, provides insights
into the perceived discomfort caused by the summer heat, thereby influencing the use of
cooling systems. Conversely, the wind chill temperature (WCT) [41] encapsulates the chill-
ing effect of winter weather, often prompting the activation of heating appliances. These
perceptual aspects are formulated mathematically in Equations (5) and (6), respectively,
where Temp, Humi, and WS represent temperature, humidity, and wind speed.

THI = (1.8 × Temp + 32) − [(0.55 − 0.0055 × Humi) × (1.8 × Temp − 26)]. (5)

Drawing from the feedback loop between temperature, humidity, and the human
body’s thermoregulation, Equation (5) for THI has been crafted. Its constants—1.8, 32,
0.55, 0.0055, and 26—are the outcome of rigorous empirical studies that evaluated human
discomfort across a spectrum of temperature and humidity gradients [40].

WCT = 13.12 + 0.6215 × Temp − 11.37 ×WS0.16 + 0.3965 × Temp ×WS0.16. (6)

The derivation of Equation (6) for the wind chill temperature (WCT) is grounded
in a model that seeks to quantify the perceived decrease in ambient temperature due
to wind speed, particularly in colder regions. The constants incorporated within the
equation—13.12, 0.6215, 11.37, and 0.3965—as well as the exponent 0.16 trace their ori-
gins to comprehensive field experiments conducted across various weather conditions.
These experiments were designed to establish a comprehensive model for human tactile
perception of cold induced by wind [41]. Taking these considerations into account, the
analysis encompassed a set of ten external determinants that were carefully selected as
input variables for the model’s training process.

2.1.3. Past Power Consumption

Past power consumption data were treated as internal factors, as they capture recent
patterns in electricity usage [31]. Data from the same time point one day and one week
prior were utilized. Power consumption data from the preceding day could provide insight
into the most recent hourly trends, while power consumption data from the preceding
week could capture the most recent weekly patterns [21]. Given the potential variation in
power usage patterns between regular days and holidays, holiday indicators were also
integrated for both types of power consumption [36].

Furthermore, an innovative inclusion was made of a past electricity usage value as an
internal factor, effectively capturing the trend in electricity consumption leading up to the
prediction time point over a span of one week [36]. To achieve this, two distinct scenarios,
illustrated in Figure 5, were considered. In the first scenario, if the prediction time point fell
on a regular day, the mean electricity consumption of the preceding seven regular days was
computed. In the second scenario, if the prediction time point corresponded to a holiday,
the average electricity consumption of the preceding seven holidays was calculated. As a
result, five internal factors were incorporated for model training, and a comprehensive list
of all input variables and their respective details can be found in Table 3.
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Figure 5. Average electricity use per hour for each day of the week and holidays.

Table 3. Input variables and their information for BiGTA-net modeling.

Variable Name Data Type Data Format Description

Hourx Numeric Timestamp information Sine value of the hour
Houry Numeric Timestamp information Cosine value of the hour

DOTWx Numeric Timestamp information Sine value of the day of the week
DOTWy Numeric Timestamp information Cosine value of the day of the week

Holi binary Timestamp information Holiday indicator for holiday
Temp Numeric Climate Data Ambient temperature
Humi Numeric Climate Data Relative humidity

WS Numeric Climate Data Wind velocity
THI Numeric Climate Data Temperature–humidity index

WCT Numeric Climate Data Wind chill temperature
Cons1 Numeric Past Power Consumption Power consumption one day prior
Holi1 binary Past Power Consumption Holiday indicator one day prior
Cons7 Numeric Past Power Consumption Power consumption one week prior
Holi7 binary Past Power Consumption Holiday indicator one week prior

Consavg numeric Past Power Consumption Average weekly power consumption

2.2. BiGTA-Net Modeling

The BiGTA-net model, illustrated in Figure 6, presents a meticulously crafted hybrid
architecture that adeptly merges the advantages of both Bi-GRU and TCN, effectively
transcending their respective limitations. The primary objective is to formulate a three-
stage prediction model that systematically enhances predictive accuracy by harnessing the
inherent strengths of these constituent components. To achieve this objective, a significant
attention mechanism is seamlessly integrated to facilitate the harmonious fusion of Bi-
GRU and TCN. This orchestrated synergy serves the purpose of constructing a predictive
model for building electricity consumption that boasts high accuracy and encompasses
multiple stages of prediction refinement. For an in-depth comprehension of the theoretical
foundations underpinning Bi-GRU and TCN, readers are referred to Appendix A, which
provides comprehensive details. This supplementary resource offers a thorough exploration
of the conceptual underpinnings, operational principles, and pertinent prior research
pertaining to these two pivotal elements within the model.
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Figure 6. System architecture of BiGTA-net.

2.2.1. Bidirectional Gated Recurrent Unit

The modeling journey commences with the Bi-GRU, an advancement over traditional
RNNs designed to excel in processing sequential time-series data. While conventional
RNNs are recognized for their capability to recall historical sequences, they have encoun-
tered challenges such as gradient vanishing and exploding. To address these challenges, the
GRU was introduced, incorporating specialized gating mechanisms to effectively manage
long-term data dependencies [42]. Within the architecture, two distinct GRUs—forward and
backward GRUs—are integrated to compose the Bi-GRU, enabling a comprehensive anal-
ysis of sequence dynamics [43]. Despite its computationally demanding dual-structured
design, this two-pronged approach empowers the model to discern intricate temporal
patterns. For an in-depth comprehension of the mathematical intricacies underpinning
the Bi-GRU’s design, readers are referred to the extensive elaboration in the Keras official
documentation [44].

2.2.2. Temporal Convolutional Network

The TCN emerges as a groundbreaking solution tailored explicitly for time-series data
processing, offering a countermeasure to challenges encountered by sequential models such
as the Bi-GRU. TCN employs causal convolutions at its core, ensuring predictions rely solely
on current and past data, preserving the temporal sequence’s integrity [45]. A defining
characteristic of TCNs is their adeptness in capturing long-term patterns through dilated
convolutions. These convolutions expand the network’s receptive field by introducing
fixed steps between neighboring filter taps, enhancing computational efficiency while
capturing extended dependencies [46]. The TCN architecture also incorporates residual
blocks, addressing the vanishing gradient problem and ensuring stable learning across
layers. TCN’s adaptability to varying sequence lengths and seamless integration with
Bi-GRU outputs form a hierarchical structure that boosts computational efficiency and
learning potential. However, TCN’s lack of inherent consideration for future data points
can impact tasks with significant forward-looking dependencies.

2.2.3. Attention Mechanism

The innovation becomes prominent through the introduction of the attention mech-
anism, a dynamic concept within the realm of deep learning. This mechanism assigns
significance or ‘attention’ to specific segments of sequences, ensuring the model captures
essential features for precise predictions. Within the context of the BiGTA-net architecture,
this concept has been ingeniously adapted, resulting in a distinctive approach that seam-
lessly integrates Bi-GRU, TCN, and the attention mechanism. The attention mechanism
introduced is referred to as the dual-stage self-attention mechanism (DSSAM), situated at
the junction of TCN’s output and the subsequent stages of the model [47]. By establishing
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correlations across various time steps and dimensions, the DSSAM enhances computational
efficiency while strategically highlighting informative features.

The role of the attention mechanism is pivotal in refining the output generated by
TCN. Instead of treating all features uniformly, it adeptly identifies and amplifies the most
relevant and predictive elements. This dynamic allocation of attention ensures that while
the Bi-GRU captures temporal dynamics and the TCN captures long-term dependencies, the
attention mechanism focuses on crucial features. As a result, the model achieves enhanced
predictive capabilities by synergizing the strengths of Bi-GRU, TCN, and the attention
mechanism. The approach incorporates the utilization of the scaled exponential linear
units (SELU) [48] activation function, a strategic choice made to address challenges linked
to long-term dependencies and gradient vanishing. This integration of SELU enhances
stability in the learning process and ultimately contributes to more accurate predictions [49].

3. Results and Discussion
3.1. Evaluation Criteria

To evaluate the predictive capabilities of the forecasting model, a variety of perfor-
mance metrics were utilized, including mean absolute percentage error (MAPE), root mean
square error (RMSE), and mean absolute error (MAE). These metrics hold widespread
recognition and offer a robust assessment of prediction accuracy [50].

The MAPE serves as a valuable statistical measure of prediction accuracy, particularly
pertinent in the context of trend forecasting. This metric quantifies the error as a percentage,
rendering the outcomes intuitively interpretable. While the MAPE may become inflated
when actual values approach zero, this circumstance does not apply to the dataset under
consideration. The calculation of MAPE is performed using Equation (7).

MAPE = 1/n ×∑|(Yt - Ŷt)/Yt| × 100, (7)

where Yt and Ŷt represent the actual and predicted values, respectively, and n represents
the total number of observations.

The RMSE, or the root mean square deviation, aggregates the residuals to provide
a single metric of predictive capability. The RMSE, calculated using Equation (8), is the
square root of the average squared differences between the forecast values (Ŷt) and the
actual values (Yt). The RMSE equals the standard deviation for an unbiased estimator,
indicating the standard error.

RMSE =
√

(1/n ×∑(Yt - Ŷt)2). (8)

The MAE is a statistical measure used to gauge the proximity of predictions or forecasts
to the eventual outcomes. This metric is calculated by considering the average of the
absolute differences between the predicted and actual values. Equation (9) outlines the
calculation for the MAE.

MAE = 1/n ×∑|Yt - Ŷt|. (9)

3.2. Experimental Design

The experiments were conducted in an environment that utilized Python (v.3.8) [51],
complemented by machine learning libraries such as scikit-learn (v.1.2.1) [52] and Keras
(v.2.9.0) [44,53]. The computational resources included an 11th Gen Intel(R) Core(TM)
i9-11900KF CPU operating at 3.50 GHz, an NVIDIA GeForce RTX 3070 GPU, and 64.0GB
of RAM. The proposed BiGTA-net model was evaluated against various well-regarded
RNN models, such as LSTM, Bi-LSTM, GRU, and GRU-TCN. The hyperparameters were
standardized across all models to ensure a fair and balanced comparison. This approach
minimized potential bias in the evaluation results due to model-specific preferences or
advantageous parameter settings. The common set of hyperparameters for all the models
included 25 training epochs, a batch size of 24, and the Adam optimizer with a learning
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rate of 0.001 [54]. The MAE was chosen as the key metric for evaluating the performance of
the models, providing a standardized measure of comparison.

The training dataset for the BiGTA-net model was constructed by utilizing hourly
electrical consumption data from 1 to 7 March 2015, for the educational building dataset,
and from 11 to 17 January 2016, for the AEP dataset. In the case of the educational building
dataset, the data spanning from 8 March 2015, to 28 February 2019, was allocated for
training, while the subsequent period, 1 March 2019, to 29 February 2020, was designated
as the testing set. For the AEP dataset, data ranging from 18 January to 30 April 2016, was
employed for training purposes, with the timeframe between 1 and 27 May 2016, reserved
for testing. The dataset was partitioned into training (in-sample) and testing (out-of-sample)
subsets, maintaining an 80:20 ratio. Prior to the division, min–max scaling was applied to
the training data, standardizing the raw electricity consumption values within a specific
range. This scaling transformation was subsequently extended to the testing data, ensuring
uniformity in the range of both training and testing datasets. This process ensured that the
original data scale did not influence the model’s performance.

3.3. Experimental Results

In the experimental outcomes, the performances of diverse model configurations
were initially investigated, as presented in Table 4. Specifically, a total of 16 models with
varying network architectures, activation functions, and the incorporation of the attention
mechanism were evaluated. Among the specifics detailed in Table 4, the prominent focus
is on the Bi-GRU-TCN-I model, alternatively known as BiGTA-net, which was proposed
in this study. This particular model embraced the Bi-GRU-TCN architecture, utilized the
SELU activation function, and integrated the attention mechanism, setting it apart from the
remaining models.

Table 4. Comparison of hybrid deep learning model architectures.

Models Neural Network Activation Function Attention Mechanism

LSTM-TCN-I

LSTM-TCN
SELU

O
LSTM-TCN-II X

LSTM-TCN-III
ReLU

O
LSTM-TCN-IV X

Bi-LSTM-TCN-I

Bi-LSTM-TCN
SELU

O
Bi-LSTM-TCN-II X

Bi-LSTM-TCN-III
ReLU

O
Bi-LSTM-TCN-IV X

GRU-TCN-I

GRU-TCN
SELU

O
GRU-TCN-II X

GRU-TCN-III
ReLU

O
GRU-TCN-IV X

Bi-GRU-TCN-I

Bi-GRU-TCN
SELU

O
Bi-GRU-TCN-II X

Bi-GRU-TCN-III
ReLU

O
Bi-GRU-TCN-IV X

The performance of these models was evaluated using three key metrics: MAPE,
RMSE, and MAE, as presented in Tables 5–10. The experimental results were divided
into two main categories, results obtained from the educational building dataset and the
AEP dataset.
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Table 5. MAPE comparison for the educational building dataset.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

1 4.51 5.14 4.09 23.36 5.61 7.38 9.83 22.86 4.64 4.66 4.35 5.04 3.88 3.59 4.64 4.66
2 4.93 5.64 4.74 23.35 5.83 7.04 10.33 23.03 4.98 4.70 5.18 5.00 4.49 4.41 4.98 4.70
3 5.00 5.78 4.80 23.39 6.21 7.37 8.45 23.04 5.37 4.92 5.57 5.36 4.76 4.39 5.37 4.92
4 5.37 6.20 5.14 23.40 6.38 7.30 7.96 15.38 5.61 5.16 5.75 5.50 4.94 4.68 5.61 5.16
5 5.76 6.40 5.34 23.33 6.29 7.33 7.40 12.16 5.76 5.70 5.74 5.92 5.12 5.09 5.76 5.70
6 5.89 6.69 5.45 23.17 6.29 7.71 6.87 11.20 5.92 5.75 5.94 5.87 5.25 5.21 5.92 5.75
7 5.89 6.78 5.68 22.94 6.28 7.92 6.99 11.65 6.01 6.09 5.82 6.09 5.32 5.18 6.01 6.09
8 5.81 7.01 5.61 22.66 6.62 8.62 7.04 13.19 6.11 6.04 5.97 6.15 5.42 5.19 6.11 6.04
9 5.87 7.13 5.61 22.38 6.43 9.08 7.54 13.61 6.23 6.49 6.07 6.38 5.48 5.38 6.23 6.49
10 5.76 7.47 5.50 22.11 6.51 8.63 7.49 14.10 6.02 6.70 6.00 6.43 5.52 5.35 6.02 6.70
11 5.89 7.77 5.61 21.95 6.41 8.44 7.49 14.04 6.09 6.84 6.15 6.53 5.53 5.42 6.09 6.84
12 6.00 7.83 5.61 21.88 6.49 7.74 7.88 14.06 6.20 7.06 6.06 6.72 5.52 5.46 6.20 7.06
13 6.14 8.11 5.74 21.88 6.47 7.53 8.04 12.66 6.42 7.03 6.09 6.60 5.66 5.57 6.42 7.03
14 6.14 8.15 5.81 21.94 6.51 7.73 9.19 13.16 6.42 7.40 6.15 6.79 5.65 5.52 6.42 7.40
15 6.34 8.16 5.92 22.02 6.73 7.83 8.53 12.25 6.54 7.27 6.19 7.08 5.81 5.47 6.54 7.27
16 6.23 8.18 5.97 22.10 7.03 8.67 8.65 12.58 6.61 7.41 6.12 7.15 5.66 5.44 6.61 7.41
17 6.44 8.02 6.01 22.17 7.17 8.53 8.05 13.37 6.55 7.59 6.32 7.23 5.66 5.74 6.55 7.59
18 6.39 7.93 6.24 22.28 7.34 9.18 7.82 13.92 6.48 7.61 6.35 7.33 5.49 5.70 6.48 7.61
19 6.46 7.91 6.00 22.50 7.74 9.76 7.91 15.28 6.46 7.88 6.31 7.24 5.59 5.70 6.46 7.88
20 6.44 7.85 6.03 22.77 7.90 10.08 8.01 17.06 6.72 7.41 6.43 7.43 5.56 5.76 6.72 7.41
21 6.65 7.84 5.93 23.05 8.25 9.56 8.01 18.93 6.61 7.20 6.32 7.38 5.59 6.01 6.61 7.20
22 6.49 7.91 5.99 23.30 8.49 10.23 7.78 21.15 6.63 7.09 6.29 7.11 5.67 6.18 6.63 7.09
23 6.32 7.81 5.76 23.50 8.31 10.20 8.13 23.95 6.68 7.03 6.28 6.86 5.66 6.39 6.68 7.03
24 5.97 7.61 5.60 23.62 8.44 10.88 8.66 25.87 6.57 6.81 6.22 6.86 5.65 6.45 6.57 6.81

Avg. 5.95 7.31 5.59 22.71 6.90 8.53 8.09 16.19 6.15 6.58 5.99 6.50 5.37 5.39 6.15 6.58

Table 6. RMSE comparison for the educational building dataset.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

1 134.8 144.7 128.8 704.6 165.4 233.2 307.3 644.7 140.1 141.8 133.9 156.2 118.8 110.7 140.1 141.8
2 148.8 164.6 152.7 699.9 172.4 218.9 296.3 621.0 150.0 149.9 155.7 162.1 140.4 136.7 150.0 149.9
3 154.2 170.5 156.8 696.8 181.0 223.8 254.9 778.4 159.6 156.9 166.4 167.2 151.1 141.5 159.6 156.9
4 164.5 179.1 163.9 694.2 185.2 216.6 233.0 439.3 165.2 162.1 171.7 173.0 158.6 149.5 165.2 162.1
5 175.6 188.6 169.2 691.4 185.1 224.3 217.7 331.3 170.5 176.1 175.2 181.7 164.5 160.7 170.5 176.1
6 181.4 195.6 177.3 688.4 185.4 230.9 219.1 317.3 176.7 180.4 181.3 183.1 169.1 164.3 176.7 180.4
7 181.5 200.4 182.6 685.2 187.8 234.8 210.7 349.7 180.2 188.5 179.7 188.4 174.4 164.3 180.2 188.5
8 179.1 206.5 182.3 682.3 198.6 245.9 216.4 397.0 184.1 189.8 182.4 192.9 176.6 165.3 184.1 189.8
9 179.2 215.0 184.9 680.0 198.9 251.7 232.1 399.7 184.5 200.1 184.3 200.7 175.8 168.2 184.5 200.1
10 175.9 223.4 179.6 678.2 203.3 240.5 236.1 397.2 180.6 207.7 182.2 201.9 173.7 168.3 180.6 207.7
11 176.9 232.4 183.1 677.3 205.6 235.8 230.3 411.5 180.7 213.1 185.2 204.7 173.1 170.6 180.7 213.1
12 179.5 238.3 182.2 677.1 209.9 222.7 235.8 409.0 182.4 217.5 184.0 208.1 173.7 170.9 182.4 217.5
13 181.6 243.3 184.9 677.5 213.0 221.4 235.6 363.7 186.0 219.3 185.7 204.1 175.7 173.2 186.0 219.3
14 183.1 245.9 183.6 678.6 212.8 232.1 262.7 363.3 186.9 226.1 186.5 207.6 178.3 172.8 186.9 226.1
15 187.0 242.6 187.2 680.9 219.3 239.2 242.0 362.5 188.2 222.6 187.3 214.4 183.1 173.3 188.2 222.6
16 185.0 239.9 191.3 684.1 226.0 262.9 254.7 418.2 191.3 223.3 186.6 217.3 180.6 173.6 191.3 223.3
17 188.2 233.6 182.8 688.0 232.5 258.0 237.7 485.0 188.3 228.8 188.3 217.8 181.3 177.2 188.3 228.8
18 188.6 230.7 190.4 693.0 232.7 278.9 228.0 532.6 188.5 227.4 191.4 219.3 178.6 178.3 188.5 227.4
19 189.9 228.4 184.4 699.2 238.8 287.7 237.1 608.7 190.5 233.0 192.1 218.4 180.5 181.4 190.5 233.0
20 189.9 225.4 183.1 706.2 240.3 288.0 231.4 699.6 195.3 223.2 197.3 223.4 180.3 183.0 195.3 223.2
21 194.8 223.1 182.4 713.6 247.4 270.8 243.1 797.5 194.8 221.1 192.5 219.3 180.2 188.8 194.8 221.1
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Table 6. Cont.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

22 193.6 224.2 184.4 720.0 251.0 290.3 244.4 879.6 195.8 217.7 193.7 211.8 182.6 192.7 195.8 217.7
23 193.6 221.2 181.0 725.3 244.2 285.5 264.6 971.5 197.6 213.7 189.8 206.3 180.6 199.1 197.6 213.7
24 192.9 221.0 177.5 729.6 246.6 316.9 294.4 863.1 198.7 212.5 189.8 208.1 180.4 203.3 198.7 212.5

Avg. 179.1 214.1 177.4 693.8 211.8 250.5 244.4 535.1 181.5 202.2 181.8 199.5 171.3 169.5 181.5 202.2

Table 7. MAE comparison for the educational building dataset.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

1 99.2 113.1 93.7 559.0 128.2 168.2 214.7 527.0 103.5 107.8 97.5 118.2 86.4 80.3 103.5 107.8
2 109.3 126.8 110.5 557.4 132.0 158.2 222.0 501.2 110.9 110.0 115.9 119.3 100.5 99.4 110.9 110.0
3 112.5 130.0 112.0 557.3 138.6 166.2 188.8 578.3 119.5 114.4 124.4 124.1 107.2 99.9 119.5 114.4
4 120.8 137.9 118.1 557.1 142.0 163.3 175.6 343.8 123.8 118.6 128.2 127.5 111.7 105.9 123.8 118.6
5 129.3 144.7 122.2 555.5 140.8 167.5 162.4 259.4 127.0 130.5 129.1 136.0 116.5 115.3 127.0 130.5
6 133.0 150.6 126.5 552.3 139.9 175.2 157.4 245.5 131.4 133.0 134.1 135.1 119.8 118.1 131.4 133.0
7 132.9 153.8 131.9 548.0 141.4 179.3 156.1 263.4 134.0 140.6 131.8 139.7 122.1 117.5 134.0 140.6
8 130.9 159.1 131.1 543.0 150.8 192.4 160.3 300.4 136.6 140.5 134.2 142.4 123.8 117.3 136.6 140.5
9 130.9 164.9 132.1 538.0 149.1 199.5 170.4 305.9 137.7 150.7 136.1 149.3 124.4 120.7 137.7 150.7
10 128.0 172.7 127.6 533.5 152.3 189.9 172.8 313.0 133.4 157.2 133.8 150.3 123.9 120.4 133.4 157.2
11 130.2 180.6 130.5 531.1 152.3 185.6 169.7 320.3 134.2 161.4 137.1 152.5 123.6 122.7 134.2 161.4
12 132.9 183.7 130.1 530.7 155.0 171.7 177.2 318.7 136.3 166.1 135.7 156.6 123.8 123.1 136.3 166.1
13 135.2 190.0 133.2 531.3 155.7 169.0 179.4 282.4 140.9 166.5 137.2 153.2 126.4 125.7 140.9 166.5
14 135.6 191.1 133.1 532.7 155.9 175.6 202.5 286.3 141.0 174.2 137.7 157.3 127.1 124.9 141.0 174.2
15 140.1 189.6 136.1 534.4 161.4 178.8 187.7 270.3 142.9 171.0 138.5 164.0 131.5 124.3 142.9 171.0
16 137.5 187.9 137.9 535.8 168.7 200.4 194.6 288.6 145.3 172.9 136.9 166.4 128.9 123.9 145.3 172.9
17 141.0 183.6 134.6 537.0 174.0 196.8 178.5 318.2 143.2 177.6 140.6 167.8 129.5 129.4 143.2 177.6
18 140.3 181.2 138.7 539.2 176.5 214.8 173.3 337.9 143.1 177.1 142.3 169.6 126.6 129.6 143.1 177.1
19 141.7 179.9 134.5 543.8 184.5 227.3 174.5 382.7 144.0 183.6 141.6 168.3 128.6 131.6 144.0 183.6
20 141.4 177.7 133.5 549.5 187.4 231.5 176.1 442.3 149.3 173.1 145.9 172.8 128.3 133.1 149.3 173.1
21 145.6 176.4 132.8 555.6 195.0 215.2 177.9 507.0 148.1 169.8 141.8 169.9 128.5 139.2 148.1 169.8
22 143.2 177.4 133.9 561.4 199.4 230.0 175.4 574.6 148.5 166.9 142.6 163.4 130.1 143.0 148.5 166.9
23 141.6 174.8 129.6 565.8 193.5 227.1 184.3 652.7 149.8 164.1 139.7 157.3 129.3 148.6 149.8 164.1
24 136.2 172.4 125.8 568.5 194.9 247.7 199.4 659.3 148.8 160.2 137.9 157.7 128.7 150.9 148.8 160.2

Avg. 132.0 166.7 127.9 546.6 161.2 193.0 180.5 386.6 136.4 153.7 134.2 150.8 122.0 122.7 136.4 153.7

Table 8. MAPE comparison for the AEP dataset.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

1 29.34 28.39 28.18 33.29 33.05 35.48 36.61 55.79 26.86 29.18 30.12 27.24 23.78 24.64 26.86 29.18
2 28.85 26.18 27.53 32.84 31.20 32.03 34.83 37.99 26.06 28.21 29.93 28.85 25.62 26.84 26.06 28.21
3 27.83 25.92 27.82 29.84 32.38 30.19 36.26 77.86 26.32 30.59 29.68 28.22 26.45 27.15 26.32 30.59
4 26.99 27.04 28.15 28.23 30.96 30.28 36.39 50.02 27.62 29.40 29.35 29.01 27.23 30.36 27.62 29.40
5 26.47 31.27 29.39 28.02 28.14 31.88 34.96 32.90 29.41 28.42 29.08 29.12 26.52 28.81 29.41 28.42
6 26.22 30.77 29.10 27.67 28.04 27.54 35.89 77.49 30.12 29.38 28.68 30.40 26.22 29.80 30.12 29.38
7 26.16 30.52 29.62 27.34 26.05 35.42 32.58 44.10 30.29 29.83 28.36 30.58 26.79 30.09 30.29 29.83
8 26.29 35.94 28.40 26.71 25.73 30.26 35.78 32.66 30.61 29.99 27.99 30.58 28.87 30.24 30.61 29.99
9 26.53 32.77 29.12 27.27 25.60 27.77 34.22 76.03 29.29 28.63 27.86 29.53 27.06 29.96 29.29 28.63
10 27.32 29.69 27.48 27.54 26.61 27.36 35.70 36.91 29.02 27.72 27.90 28.69 27.18 29.22 29.02 27.72
11 27.51 29.95 28.11 27.44 26.82 29.70 32.24 38.45 29.10 26.61 28.08 27.97 27.14 29.48 29.10 26.61
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Table 8. Cont.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

12 27.79 28.37 27.81 26.30 27.85 32.31 31.44 72.68 28.10 26.23 28.28 27.72 26.95 30.28 28.10 26.23
13 28.13 27.94 27.97 27.06 35.03 33.45 33.63 44.07 27.29 25.37 28.63 26.34 26.04 29.86 27.29 25.37
14 28.40 28.50 28.67 26.54 27.46 32.83 31.19 33.48 27.05 25.30 29.03 26.88 26.40 28.80 27.05 25.30
15 29.26 27.95 29.31 28.29 30.34 32.13 31.96 68.84 28.02 24.65 29.47 26.73 27.23 30.16 28.02 24.65
16 29.73 28.34 29.15 31.27 27.45 31.19 32.80 34.33 28.07 24.99 29.74 26.69 27.10 29.97 28.07 24.99
17 29.78 28.81 29.09 28.16 27.11 30.01 34.39 30.08 28.88 24.59 30.15 25.71 26.48 28.68 28.88 24.59
18 30.03 28.72 28.18 26.33 28.20 30.05 31.65 59.95 28.63 24.89 30.44 25.67 26.35 27.93 28.63 24.89
19 29.51 29.10 28.17 25.18 28.26 30.33 33.12 30.48 28.58 25.47 30.62 26.51 26.37 28.31 28.58 25.47
20 28.37 28.61 27.54 25.31 28.64 29.65 32.98 27.73 28.40 25.75 30.64 26.40 26.71 26.29 28.40 25.75
21 28.14 29.26 27.30 26.92 31.00 28.73 34.29 27.75 28.46 26.94 30.73 27.51 27.26 27.53 28.46 26.94
22 29.03 29.48 27.38 27.93 30.83 28.07 33.48 30.32 28.58 27.27 30.53 27.96 27.64 27.03 28.58 27.27
23 30.83 29.50 27.48 31.79 31.38 28.27 31.75 35.26 28.84 28.32 30.37 29.33 27.81 28.06 28.84 28.32
24 33.64 30.42 27.94 36.82 30.64 29.78 39.80 53.76 27.54 27.39 30.28 29.80 27.35 28.45 27.54 27.39

Avg. 28.42 29.31 28.29 28.50 29.12 30.61 34.08 46.21 28.38 27.30 29.41 28.06 26.77 28.66 28.38 27.30

Table 9. RMSE comparison for the AEP dataset.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

1 473.6 417.6 392.5 401.8 431.1 427.9 430.3 419.2 368.3 386.1 448.4 380.8 372.2 375.9 368.3 386.1
2 451.5 420.0 395.2 406.0 424.1 436.4 429.9 430.5 381.8 392.7 450.0 378.8 378.5 369.6 381.8 392.7
3 449.4 431.3 425.5 407.3 426.1 440.9 435.3 622.2 381.9 391.8 450.9 379.0 381.8 372.8 381.9 391.8
4 447.3 422.0 420.2 409.6 411.1 440.0 423.6 431.3 379.6 387.9 450.3 377.6 380.0 370.8 379.6 387.9
5 446.3 421.8 420.2 407.0 412.4 430.8 432.2 464.4 378.8 384.8 450.1 388.1 384.6 373.2 378.8 384.8
6 446.3 429.0 414.4 414.9 417.1 452.0 434.1 622.0 383.3 383.3 449.6 384.0 391.1 373.7 383.3 383.3
7 447.2 428.3 411.0 416.9 422.8 417.4 436.7 439.0 382.7 384.5 449.3 380.5 378.4 369.1 382.7 384.5
8 446.8 430.3 417.9 412.0 422.8 428.3 438.4 469.2 381.1 381.4 447.5 384.1 379.7 368.9 381.1 381.4
9 447.1 427.3 417.2 414.3 429.4 437.5 448.7 614.7 377.1 384.0 447.7 387.0 382.6 371.7 377.1 384.0
10 445.2 436.9 413.3 413.2 441.3 435.7 440.2 442.0 376.3 384.0 447.9 387.8 385.0 369.3 376.3 384.0
11 446.4 435.4 404.8 416.7 425.8 425.1 452.0 432.7 374.2 384.5 448.6 387.3 387.5 373.6 374.2 384.5
12 447.8 439.8 412.1 418.3 455.5 425.8 450.1 601.6 380.1 390.3 449.5 387.3 387.5 374.2 380.1 390.3
13 444.5 438.7 406.4 423.2 421.2 428.8 453.1 416.0 389.9 395.5 450.6 387.8 390.8 373.6 389.9 395.5
14 443.1 435.4 398.1 428.6 445.5 431.8 447.2 428.6 391.0 394.6 451.8 387.8 390.0 375.1 391.0 394.6
15 434.3 442.7 393.7 433.0 411.6 433.9 457.0 587.4 390.5 398.0 453.4 389.5 383.8 375.5 390.5 398.0
16 428.3 441.2 391.2 432.4 408.7 433.9 445.9 417.9 393.8 396.2 454.6 392.7 384.5 377.9 393.8 396.2
17 423.2 441.5 410.0 437.1 408.0 437.1 447.6 430.1 398.7 392.7 457.7 387.5 383.7 374.9 398.7 392.7
18 412.3 446.1 416.4 433.6 407.5 436.7 455.3 560.6 397.0 397.3 459.8 391.9 387.7 380.4 397.0 397.3
19 406.7 448.1 423.0 437.1 415.8 436.5 453.5 427.7 396.6 399.0 463.2 396.6 391.0 382.9 396.6 399.0
20 405.0 456.2 423.5 433.7 419.6 435.8 453.2 441.7 393.4 404.9 464.3 398.8 390.2 385.2 393.4 404.9
21 409.8 456.4 410.1 430.8 429.3 436.6 444.7 441.2 392.5 402.3 465.2 397.5 394.4 382.9 392.5 402.3
22 416.0 457.4 414.7 437.1 440.7 434.8 452.2 427.2 394.0 401.3 464.7 396.4 395.3 386.1 394.0 401.3
23 423.7 459.3 412.6 441.1 450.1 434.3 444.5 417.8 397.8 401.2 463.4 396.1 396.2 390.0 397.8 401.2
24 434.2 459.1 418.9 443.2 452.6 440.9 451.3 418.8 401.8 403.5 462.8 403.8 398.5 400.3 401.8 403.5

Avg. 436.5 438.4 410.9 422.9 426.3 434.1 444.0 475.2 386.8 392.6 454.2 388.7 386.5 377.0 386.8 392.6

In the context of the educational building dataset, the proposed model (Bi-GRU-
TCN-I) consistently showcased superior performance in comparison to alternative model
configurations. As illustrated in Table 5, the proposed model achieved the lowest MAPE,
underscoring its heightened predictive accuracy. Strong corroboration for its superior
performance is also substantiated by the findings presented in Tables 6 and 7, where the
proposed model demonstrates the least RMSE and MAE values, respectively, signifying a
close alignment between the model’s predictions and actual values.
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Table 10. MAE comparison for the AEP dataset.

Step
LSTM-TCN Bi-LSTM-TCN GRU-TCN Bi-GRU-TCN

I II III IV I II III IV I II III IV I II III IV

1 250.5 215.7 218.1 212.1 239.3 241.7 244.3 285.3 193.0 203.5 239.3 196.6 188.2 190.6 193.0 203.5
2 236.5 211.4 217.0 210.0 229.8 237.1 239.7 247.9 195.4 203.8 239.2 199.8 195.7 195.7 195.4 203.8
3 232.5 218.0 225.6 211.1 234.2 234.4 245.8 466.1 195.3 210.6 238.7 199.3 199.7 196.4 195.3 210.6
4 229.0 215.3 218.4 213.5 220.0 234.2 240.0 278.5 198.8 206.7 237.4 200.9 201.1 205.2 198.8 206.7
5 227.0 226.3 217.0 215.7 212.1 233.2 240.1 254.7 203.6 202.3 236.2 206.0 198.5 198.5 203.6 202.3
6 226.2 229.6 212.5 218.6 213.3 233.2 243.9 465.0 207.6 206.0 234.5 207.5 200.3 201.7 207.6 206.0
7 226.3 227.8 209.8 221.0 211.9 235.8 238.5 270.2 207.3 208.7 233.1 206.2 196.2 201.0 207.3 208.7
8 226.2 242.5 211.6 213.5 210.3 227.5 245.3 257.3 207.1 206.4 230.6 206.9 202.0 200.0 207.1 206.4
9 226.4 233.5 212.9 217.0 214.1 225.4 246.7 456.9 201.5 203.7 230.0 205.8 197.3 201.0 201.5 203.7
10 227.3 230.5 211.7 210.0 223.7 223.2 246.1 253.8 199.6 199.9 230.1 202.4 198.3 196.7 199.6 199.9
11 228.5 229.7 206.4 213.4 217.2 223.9 244.2 252.6 199.0 196.0 230.9 199.8 199.3 199.2 199.0 196.0
12 230.0 227.9 207.5 212.7 234.7 231.7 241.1 441.0 198.6 196.8 231.8 198.4 198.4 202.0 198.6 196.8
13 229.2 226.2 207.6 215.9 236.3 236.4 249.3 258.5 200.1 196.9 233.4 194.7 196.4 201.0 200.1 196.9
14 229.4 225.8 200.6 221.0 231.4 235.9 238.8 237.4 198.5 196.1 235.1 196.8 196.4 197.5 198.5 196.1
15 227.6 228.4 204.3 225.6 218.8 235.1 247.0 423.9 201.1 196.3 237.5 197.0 197.2 202.9 201.1 196.3
16 226.1 228.6 211.9 224.6 210.0 232.2 243.2 234.7 202.4 196.3 238.9 198.4 197.1 203.5 202.4 196.3
17 224.1 230.0 211.9 226.7 207.3 230.7 248.9 229.2 206.9 194.1 241.9 193.8 194.9 198.5 206.9 194.1
18 220.0 232.4 209.8 221.9 211.4 231.1 245.3 386.7 205.8 196.8 244.1 196.0 196.7 198.7 205.8 196.8
19 214.7 234.1 210.3 223.3 215.7 231.5 249.1 228.4 206.7 198.5 246.4 200.7 198.1 200.8 206.7 198.5
20 209.3 237.7 209.9 220.9 217.7 229.4 247.9 228.2 204.9 201.9 247.3 200.5 198.7 195.8 204.9 201.9
21 210.3 239.8 208.9 219.3 228.8 226.9 248.7 227.8 205.3 205.4 248.4 202.7 201.8 199.4 205.3 205.4
22 215.3 240.8 213.1 221.9 233.3 222.7 249.4 226.7 205.2 205.5 247.5 204.0 203.3 198.0 205.2 205.5
23 223.4 241.8 223.7 224.5 240.3 221.6 240.5 234.4 207.9 207.5 246.2 208.5 203.3 202.9 207.9 207.5
24 236.3 244.1 240.4 226.2 240.5 228.4 262.3 283.9 205.6 205.8 245.9 211.5 202.7 205.8 205.6 205.8

Avg. 226.3 229.9 213.4 218.4 223.0 231.0 245.3 297.1 202.4 201.9 238.5 201.4 198.4 199.7 202.4 201.9

• Table 5 demonstrates that among all models, the proposed Bi-GRU-TCN-I model
boasts the best MAPE performance with an average of 5.37. The Bi-GRU-TCN-II
model follows closely with a MAPE of 5.39. When exploring the performance of
LSTM-based models, LSTM-TCN-III emerges as a top contender with a MAPE of
5.59, which, although commendable, is still higher than the leading Bi-GRU-TCN-I
model. The Bi-LSTM-TCN results, on the other hand, range from 6.90 to 8.53, further
emphasizing the efficacy of the BiGTA-net. Traditional GRU-TCN models displayed a
wider variation in MAPE values, from 5.68 to 6.50.

• In Table 6, when assessing RMSE values, the proposed BiGTA-net model (Bi-GRU-
TCN-I) again leads the pack with a score of 171.3. This result is significantly better
than all other models, with the closest competitor being Bi-GRU-TCN-II at 169.5 RMSE.
Among the LSTM variants, LSTM-TCN-I holds the most promise, with an RMSE of
134.8. However, the Bi-GRU models are generally superior in predicting values closer
to the actual values, underscoring their robustness.

• Table 7, although not provided in its entirety, indicates the reliability of BiGTA-net
with the lowest MAE of 122.0. Bi-GRU-TCN-II closely follows with an MAE of 122.7.
As observed from previous results, other models, potentially including the LSTM and
Bi-LSTM series, reported higher MAE scores, ranging between 131.6 and 153.7.

In the context of the AEP dataset, as demonstrated in Tables 8–10, the proposed model
(Bi-GRU-TCN-I) showcased competitive performance. While marginal differences were
observed among the various model configurations, the Bi-GRU-TCN-I model consistently
outperformed the alternative models in terms of MAPE, RMSE, and MAE metrics.

• In Table 8, which presents the MAPE comparison for the AEP dataset, the proposed
model, Bi-GRU-TCN-I, still manifests the lowest average MAPE of 26.77. This result
emphasizes its unparalleled predictive accuracy among all tested models. Delv-
ing into the LSTM family, the LSTM-TCN-I achieved an average MAPE of 28.42,
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while the Bi-LSTM-TCN-I recorded an average MAPE of 29.12. It is notable that
while these models exhibit competitive performance, neither managed to outperform
the BiGTA-net.

• Table 9, focused on the RMSE comparison, depicts the Bi-GRU-TCN-I model reg-
istering an RMSE of 375.9 on step 1. This performance, when averaged, proves to
be competitive with the other models, especially when considering the range for all
the models, which goes as low as 369.1 for Bi-GRU-TCN-III and as high as 622.2 for
Bi-LSTM-TCN-III. Looking into the LSTM family, LSTM-TCN-I kicked off with an
RMSE of 473.6, whereas Bi-LSTM-TCN-I began with 431.1. This further accentuates
the superiority of the BiGTA-net in terms of prediction accuracy.

• Finally, in Table 10, where MAE values are compared, the Bi-GRU-TCN-I model still
shines with an MAE of 198.4. This consistently low error rate across different evalua-
tion metrics underscores the robustness of the BiGTA-net across various datasets.

In summary, the proposed model, Bi-GRU-TCN-I, designated as BiGTA-net, exhibited
exceptional performance across both datasets, affirming its efficacy and dependability
in precise electricity consumption forecasting. These outcomes serve to substantiate the
benefits derived from the incorporation of the Bi-GRU-TCN architecture, utilization of the
SELU activation function, and integration of the attention mechanism, thereby validating
the chosen design approaches.

To evaluate the performance of the BiGTA-net model, a comprehensive comparative
analysis was conducted. This analysis included models such as Att-LSTM, Att-Bi-LSTM,
Att-GRU, and Att-Bi-GRU, all of which integrate the attention mechanism, a characteristic
known for enhancing prediction capabilities. Furthermore, this evaluation also incorpo-
rated several state-of-the-art methodologies introduced over the past three years, offering a
robust understanding of BiGTA-net’s performance relative to contemporary models:

• Park and Hwang [55] introduced the LGBM-S2S-Att-Bi-LSTM, a two-stage methodol-
ogy that merges the functionalities of the light gradient boosting machine (LGBM) and
sequence-to-sequence Bi-LSTM. By employing LGBM for single-output predictions
from recent electricity data, the system transitions to a Bi-LSTM reinforced with an
attention mechanism, adeptly addressing multistep-ahead forecasting challenges.

• Moon et al. [21] presented RABOLA, previously touched upon in the Introduction
section. This model is an innovative ranger-based online learning strategy for elec-
tricity consumption forecasts in intricate building structures. At its core, RABOLA
utilizes ensemble learning strategies, specifically bagging, boosting, and stacking. It
employs tools, namely, the random forest, gradient boosting machine, and extreme
gradient boosting, for STLF while integrating external variables such as temperature
and timestamps for improved accuracy.

• Khan et al. [56] unveiled the ResCNN-LSTM, a segmented framework targeting STLF.
The primary phase is data driven, ensuring data quality and cleanliness. The next
phase combines a deep residual CNN with stacked LSTM. This model has shown com-
mendable performance on the Individual Household Electricity Power Consumption
(IHEPC) and Pennsylvania, Jersey, and Maryland (PJM) datasets.

• Khan et al. [57] also introduced the Att-CNN-GRU, blending CNN and GRU and
enriching with a self-attention mechanism. This model specializes in analyzing refined
electricity consumption data, extracting pivotal features via CNN, and subsequently
transitioning the output through GRU layers to grasp the temporal dynamics of
the data.

Table 11 elucidates the comparative performance of several attention-incorporated
models on the educational building dataset, with the BiGTA-net model’s performance
distinctly superior. Specifically, BiGTA-net records a MAPE of 5.37 (±0.44%), RMSE of
171.3 (±15.0 kWh), and MAE of 122.0 (±10.5 kWh). The Att-LSTM model, a unidirectional
approach, records a MAPE of 8.38 (±1.57%), RMSE of 242.1 (±48.2 kWh), and MAE of
188.8 (±39.5 kWh). Its bidirectional sibling, the Att-Bi-LSTM, delivers a slightly better
MAPE at 7.85 (±0.70%) but comparable RMSE and MAE values. Interestingly, GRU-
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based models, such as Att-GRU and Att-Bi-GRU, lag with higher error metrics, the former
recording a MAPE of 13.42 (±3.39%). The 2023 Att-CNN-GRU model reports a MAPE of
6.35 (±0.23%), an RMSE of 189.6 (±5.3 kWh), still falling short compared to the BiGTA-
net. The RAVOLA model from 2022 registers an impressive MAPE of 7.17 (±0.63%), but
again, BiGTA-net outperforms it. In essence, these results demonstrate the BiGTA-net’s
unparalleled efficiency when measured against traditional unidirectional models and newer
advanced techniques.

Table 11. Performance comparison of attention-inclusive models on the educational building dataset.
Left values denote the mean values across all steps, while the values in parentheses on the right
represent the corresponding standard deviations.

Model (Year) MAPE (Unit: %) RMSE (Unit: kWh) MAE (Unit: kWh)

Att-LSTM 8.38 (1.57) 242.1 (48.2) 188.8 (39.5)
Att-Bi-LSTM 7.85 (0.70) 241.8 (25.1) 176.9 (17.5)
Att-GRU [31] 13.42 (3.39) 436.5 (177.0) 313.3 (110.8)
Att-Bi-GRU 14.43 (3.07) 433.7 (91.8) 328.1 (72.6)

LGBM-S2S-Att-Bi-LSTM (2021) [55] 7.57 (0.77) 220.4 (19.2) 174.4 (19.1)
RABOLA (2022) [21] 7.17 (0.63) 214.2 (13.8) 166.5 (15.6)

ResCNN-LSTM (2022) [56] 6.56 (0.28) 201.5 (4.1) 152.8 (6.1)
Att-CNN-GRU (2023) [57] 6.35 (0.23) 189.6 (5.3) 142.3 (4.5)

BiGTA-net 5.37 (0.44) 171.3 (15.0) 122.0 (10.5)

Table 12 unveils the comparative performance metrics of various attention-incorporated
models using the AEP dataset. Distinctly, the BiGTA-net model consistently outperforms
its peers, equipped with a sophisticated blend of the attention mechanism and SELU ac-
tivation within its bidirectional framework. This model impressively returns a MAPE of
26.77 (±0.90%), RMSE of 386.5 (±6.3 Wh), and MAE of 198.4 (±3.2 Wh). The Att-LSTM
model offers a MAPE of 30.91 (±1.03%), RMSE of 447.4 (±5.3 Wh), and MAE of 239.8
(±5.3 Wh). Its bidirectional counterpart, the Att-Bi-LSTM, shows a modest enhance-
ment, delivering a MAPE of 30.54 (±2.58%), RMSE of 402.7 (±8.9 Wh), and MAE of 214.0
(±7.3 Wh). The GRU-based models present a close-knit performance. For instance, the
Att-GRU model achieves a MAPE of 30.03 (±0.25%), RMSE of 443.5 (±3.9 Wh), and MAE
of 234.5 (±2.4 Wh), while the Att-Bi-GRU mirrors this with slightly varied figures. The 2023
model, Att-CNN-GRU, logs a MAPE of 29.94 (±1.73%), RMSE of 405.1 (±9.7 Wh), yet its
precision remains overshadowed by BiGTA-net. RAVOLA, a 2022 entrant, exhibits metrics
such as a MAPE of 35.89 (±5.78%), emphasizing the continual advancements in the domain.
The disparities in performance underscore BiGTA-net’s superiority. Models that lack the
refined structure of BiGTA-net falter in their forecast accuracy, thereby underscoring the
merits of the introduced architecture.

Table 12. Performance comparison of attention-inclusive models on the AEP dataset. Left values
denote the mean values across all steps, while the values in parentheses on the right represent the
corresponding standard deviations.

Model MAPE (Unit: %) RMSE (Unit: Wh) MAE (Unit: Wh)

Att-LSTM 30.91 (1.03) 447.4 (5.3) 239.8 (5.3)
Att-Bi-LSTM 30.54 (2.58) 402.7 (8.9) 214.0 (7.3)
Att-GRU [31] 30.03 (0.25) 443.5 (3.9) 234.5 (2.4)
Att-Bi-GRU 30.06 (0.26) 442.5 (4.2) 234.4 (8.1)

LGBM-S2S-Att-Bi-LSTM (2021) [55] 32.29 (3.78) 415.7 (12.1) 222.6 (14.2)
RABOLA (2022) [21] 35.89 (5.78) 432.1 (20.9) 238.5 (18.9)

ResCNN-LSTM (2022) [56] 29.99 (2.12) 376.2 (7.0) 206.2 (5.7)
Att-CNN-GRU (2023) [57] 29.94 (1.73) 405.1 (9.7) 215.8 (4.7)

BiGTA-net 26.77 (0.90) 386.5 (6.3) 198.4 (3.2)
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The combination of Bi-GRU and TCN, along with the integration of attention mecha-
nisms and the adoption of the SELU activation function, synergistically reinforced BiGTA-
net as a robust model. The experimental results consistently demonstrated BiGTA-net’s
exceptional performance across diverse datasets and metrics, highlighting the model’s
efficacy and flexibility in different forecasting contexts. These results decisively endorsed
the effectiveness of the hybrid approach utilized in this study.

3.4. Discussion

To highlight the effectiveness of the BiGTA-net model, rigorous statistical analysis was
employed, utilizing both the Wilcoxon signed-rank [58] and the Friedman [59] tests.

• Wilcoxon Signed-Rank Test: The Wilcoxon signed-rank test [58], a non-parametric
counterpart for the paired t-test, is formulated to gauge differences between two
paired samples. Mathematically, given two paired sets of observations, x and y, the
differences di = yi – xi are computed. Ranks are then assigned to the absolute values
of these differences, and subsequently, these ranks are attributed either positive or
negative signs depending on the sign of the original difference. The test statistic W is
essentially the sum of these signed ranks. Under the null hypothesis, it is assumed
that W follows a specific symmetric distribution. Suppose the computed p-value from
the test is less than the chosen significance level (often 0.05). We have grounds to reject
the null hypothesis in that case, implying a statistically significant difference between
the paired samples.

• Friedman Test: The Friedman test [59] is a non-parametric alternative to the repeated
measures ANOVA. At its core, this test ranks each row (block) of data separately.
The differences among the columns (treatments) are evaluated using the ranks. This
expression is mathematically captured in the following expression, referred to as
Equation (10).

x2 =
12N

k(k + 1)

[
∑j R2

j −
k(k + 1)2

4

]
, (10)

where N is the number of blocks, k is the number of treatments, and Rj is the sum of
the ranks for the jth treatment. The observed value of x2 is then compared with the
critical value from the x2 distribution with k− 1 degrees of freedom.

The meticulous validation, as demonstrated in Tables 13 and 14, underscores the
proficiency of BiGTA-net in the context of energy management. To fortify the conclusions
drawn from the analyses, the approach was anchored on three crucial metrics: MAPE,
RMSE, and MAE. The data were aggregated across all deep learning models, focusing on
24 h forecasts at hourly intervals. Comprehensive results stemming from the Wilcoxon and
Friedman tests, each grounded in the metrics, are presented in Tables 13 and 14. A perusal
of the table illustrates the distinct advantage of BiGTA-net, with p-values consistently
falling below the 0.05 significance threshold across varied scenarios and metrics.

Table 13. Results of the Wilcoxon signed-rank and Friedman tests with BiGTA-net on the educational
building dataset.

Compared Models MAPE RMSE MAE

Att-LSTM 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-Bi-LSTM 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-GRU [31] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-Bi-GRU 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

LGBM-S2S-Att-Bi-LSTM [55] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

RABOLA [21] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

ResCNN-LSTM [56] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-CNN-GRU [57] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Friedman Test Friedman chi-squared: 167.2
p-value: 2.2 × 10−16

Friedman chi-squared: 166.86
p-value: 2.2 × 10−16

Friedman chi-squared: 163.98
p-value: 2.2 × 10−16
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Table 14. Results of the Wilcoxon signed-rank and Friedman tests with BiGTA-net on the AEP dataset.

Compared Models MAPE RMSE MAE

Att-LSTM 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-Bi-LSTM 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-GRU [31] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Att-Bi-GRU 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

LGBM-S2S-Att-Bi-LSTM [55] 2.980 × 10−6 1.192 × 10−7 1.192 × 10−7

RABOLA [21] 2.384 × 10−7 1.192 × 10−7 1.192 × 10−7

ResCNN-LSTM [56] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−6

Att-CNN-GRU [57] 1.192 × 10−7 1.192 × 10−7 1.192 × 10−7

Friedman Test Friedman chi-squared: 75.5
p-value: 3.917 × 10−13

Friedman chi-squared: 170.26
p-value: 2.2 × 10−16

Friedman chi-squared: 140.54
p-value: 2.2 × 10−16

Delving deeper into the tables, the BiGTA-net consistently outperforms other models
in both datasets. The exceptionally low p-values from the Wilcoxon and Friedman tests
indicate significant differences between the BiGTA-net and its competitors. In almost
every instance, other models were lacking when juxtaposed against the BiGTA-net’s re-
sults. This empirical evidence is vital in understanding the superior capabilities of the
BiGTA-net in energy forecasting. Furthermore, the fact that the p-values consistently fell
below the conventional significance threshold of 0.05 only emphasizes the robustness and
reliability of BiGTA-net. The variations in metrics, namely, MAPE, RMSE, and MAE, across
Tables 13 and 14 vividly portray the margin by which BiGTA-net leads in accuracy and
precision. The unique architecture and methodology behind BiGTA-net have positioned it
as a front-runner in this domain.

In the intricate realm of BEMS, the gravity of data-driven decisions cannot be over-
stated; they bear a twofold onus of economic viability and environmental stewardship. The
need for precise and decipherable modeling is, therefore, undeniably paramount. BiGTA-
net envisaged as an advanced hybrid model, sought to meet these exacting standards. Its
unique amalgamation of Bi-GRU and TCN accentuates its proficiency in parsing intricate
temporal patterns, which remain at the heart of energy forecasting.

In the complex BEMS landscape, BiGTA-net’s hybrid design brings a distinctive
strength in capturing intricate temporal dynamics. However, this prowess has its challenges.
Particularly in industrial environments or regions heavily dependent on unpredictable
renewable energy sources, the model may find it challenging to adapt to abrupt shifts
in energy consumption patterns swiftly. This adaptability issue is further accentuated
when considering the sheer volume of data that the energy sector typically handles. Given
the influx of granular data from many sensors and IoT devices, BiGTA-net’s intricate
architecture could face scalability issues, especially when implemented across vast energy
distribution networks or grids. Furthermore, the predictive nature of energy management
demands an acute sense of foresight, especially with the increasing reliance on renewable
energy sources. In this context, the TCN’s inherent limitations in accounting for prospective
data pose challenges, especially when energy matrices constantly change, demanding agile
and forward-looking predictions.

Within the multifaceted environment of the BEMS domain, the continuous evolution
and refinement of models, i.e., BiGTA-net are essential. One avenue of amplification lies
in broadening its scope to account for external determinants. By incorporating influential
factors such as climatic fluctuations and scheduled maintenance events directly into the
model’s input parameters, BiGTA-net could enhance responsiveness to unpredictable
energy consumption variances. Further bolstering its real-time applicability, introducing an
adaptive learning mechanism designed to self-tune based on the influx of recent data could
ensure that the model remains abreast of the ever-changing energy dynamics. Additionally,
enhancing the model’s interpretability is vital in a sector where transparency and clarity
are paramount. Integrating principles from the “explainable AI” domain into BiGTA-net



Systems 2023, 11, 456 22 of 26

can provide a deeper understanding of its decision-making process, enabling stakeholders
to discern the rationale behind specific energy consumption predictions and insights.

As the forward trajectory of BiGTA-net within the energy sector is contemplated,
several avenues of research come into focus. Foremost is the potential enhancement of the
model’s attention mechanism, tailored explicitly to the intricacies of energy consumption
dynamics. The model’s ability to discern and emphasize critical energy patterns could be
substantially elevated by tailoring attention strategies to highlight domain-specific energy
patterns. Furthermore, while BiGTA-net showcases an intricate architecture, the ongoing
challenge resides in seamlessly integrating its inherent complexity with optimal predictive
accuracy. By addressing this balance, models could be engineered to be more streamlined
and suitable for decentralized or modular BEMS frameworks, all while retaining their
predictive capabilities. Lastly, a compelling proposition emerges for integrating BiGTA-
net’s forecasting prowess with existing BEMS decision-making platforms. Such integration
holds the promise of a future where real-time predictive insights seamlessly inform energy
management strategies, thereby advancing both energy utilization efficiency and a tangible
reduction in waste.

While BiGTA-net has demonstrated commendable forecasting capabilities in its initial
stages, a thorough exploration of its limitations in conjunction with potential improvements
and future directions can contribute to the enhancement of its role within the BEMS
domain. By incorporating these insights, the relevance and adaptability of BiGTA-net can
be advanced, thus positioning it as a frontrunner in the continuously evolving energy
sector landscape.

4. Conclusions

Our study presents the BiGTA-net, a transformative deep-learning model tailored
for urban energy management in smart cities, enhancing the accuracy and efficiency
of STLF. This model harmoniously integrates the capabilities of Bi-GRU, TCN, and an
attention mechanism, capturing both recurrent and convolutional data patterns effectively.
A thorough examination of the BiGTA-net against other models on the educational building
dataset showcased its distinct superiority. Specifically, BiGTA-net excelled with a MAPE of
5.37, RMSE of 171.3, and MAE of 122.0. Notably, the closest competitor, Bi-GRU-TCN-II,
lagged slightly with metrics such as MAPE of 5.39 and MAE of 122.7. This superiority was
mirrored in the AEP dataset, where BiGTA-net again led with a MAPE of 26.77, RMSE
of 386.5, and MAE of 198.4. Such consistent outperformance underscores the model’s
capability, especially when juxtaposed with other configurations.

Furthermore, the integration of the attention mechanism serves to enhance the per-
formance of BiGTA-net, reinforcing its effectiveness in forecasting tasks. The distinct
bidirectional architecture of BiGTA-net demonstrated superior performance, further es-
tablishing its supremacy. This performance advantage becomes notably apparent when
contrasted with models, i.e., Att-LSTM, which exhibited higher errors across pivotal met-
rics, highlighting the resilience and dependability of the proposed model. The evident
strength of BiGTA-net lies in its innovative amalgamation of Bi-GRU and TCN, harmonized
with the attention mechanism and bolstered by the SELU activation function. Its consis-
tent dominance across diverse datasets and metrics robustly validates the efficacy of this
hybrid approach.

Despite its promising results, it is important to explore the BiGTA-net’s capabilities
further and identify areas for improvement. Its generalizability has yet to be extensively
tested beyond the datasets used in this study, which presents a limitation. Future research
should apply the model across various consumption domains, such as residential or in-
dustrial sectors, and compare its effectiveness with a wider range of advanced machine
learning models. By doing so, researchers can further refine the model for specific scenarios
and delve deeper into hyperparameter optimizations.
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Appendix A

Bi-directional Gated Recurrent Unit (Background): RNNs, renowned for their capability
in managing sequential time-series data, inherently retain and process historical sequences.
Nevertheless, the intrinsic challenges of gradient vanishing and exploding have been obstacles
in RNNs, particularly when handling long sequences. The GRU, an advanced variant of
the RNN, was engineered to address these hindrances. It integrates sophisticated gating
mechanisms to manage long-term data dependencies more effectively. Traditional GRUs, by
nature, are unidirectional and process sequences in a forward trajectory. The Bi-GRU emerged
to overcome this constraint. It functions as a fusion of two distinct GRUs: one focused on
past sequences (forward GRU) and another interpreting upcoming data sequences (backward
GRU). This bidirectional perspective is not exclusive to the GRU but is also witnessed in
Bidirectional RNNs. Prior studies have spotlighted the efficacy of such bidirectional constructs,
especially in settings marked by significant variability and intricate causative dynamics. It
is crucial to acknowledge that while the Bi-GRU delivers a profound insight into temporal
sequences, it necessitates more computational resources, given its dual-structured design,
which effectively amplifies the parameters for both GRU components, each tailored for either
forward or backward sequences.

Temporal Convolutional Network (Background): The TCN emerges as an innovative
strategy tailored for time-series data processing. At its core, the TCN utilizes causal
convolutions, ensuring that forecasts at a given time instant depend exclusively on present
and past data, safeguarding the integrity of the temporal sequence. A pivotal attribute of
TCNs is their aptitude for discerning prolonged data patterns, predominantly facilitated
by dilated convolutions. These dilations expand the network’s receptive field sans the
addition of new parameters by introducing predetermined intervals between adjacent filter
taps. Such a configuration empowers TCNs to recognize more extended dependencies
with elevated computational efficiency, enabled by parallel computations across the time
domain. To further bolster its architecture, the TCN integrates residual blocks, addressing
the challenges accompanying the training of deep networks, for instance, the vanishing
gradient dilemma, ensuring consistent learning throughout the layers. The standout merit
of the TCN is its adaptability in managing sequences of diverse lengths, yielding outputs
that mirror the input lengths. Nonetheless, the TCN, in its inherent design, omits upcoming
data points, which could potentially influence its efficacy in scenarios demanding a forward-

https://doi.org/10.1016/j.seta.2022.102888
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
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looking perspective. As an extension of its capabilities, TCN’s stackable nature combines
layers, amplifying its capacity to perceive intricate temporal nuances.
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