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Abstract: Data sharing and service reuse in the health sector pose significant privacy and security
challenges. The European Commission recognizes health data as a unique and cost-effective resource
for research, while the OECD emphasizes the need for privacy-protecting data governance systems.
In this paper, we propose a novel approach to health data access in a hospital environment, leveraging
homomorphic encryption to ensure privacy and secure sharing of medical data among healthcare
entities. Our framework establishes a secure environment that enforces GDPR adoption. We present
an Information Sharing Infrastructure (ISI) framework that seamlessly integrates artificial intelligence
(AI) capabilities for data analysis. Through our implementation, we demonstrate the ease of applying
AI algorithms to treated health data within the ISI environment. Evaluating machine learning
models, we achieve high accuracies of 96.88% with logistic regression and 97.62% with random
forest. To address privacy concerns, our framework incorporates Data Sharing Agreements (DSAs).
Data producers and consumers (prosumers) have the flexibility to express their prefearences for
sharing and analytics operations. Data-centric policy enforcement mechanisms ensure compliance
and privacy preservation. In summary, our comprehensive framework combines homomorphic
encryption, secure data sharing, and AI-driven analytics. By fostering collaboration and knowledge
creation in a secure environment, our approach contributes to the advancement of medical research
and improves healthcare outcomes. A real case application was implemented between Portuguese
hospitals and universities for this data sharing.

Keywords: information sharing; artificial intelligence; data sharing agreement; electronic health
records; security; homomorphic encryption

1. Introduction

Healthcare data integration is a crucial research topic for optimizing the healthcare
sector [1], as accurate diagnoses and prognoses are vital for proper decision making and,
consequently, fundamental for ensuring an appropriate clinical approach. Nevertheless, the
integration process addresses complex and multifaceted challenges, such as safeguarding
patient privacy and managing health data from multiple information systems. In this
context, information sharing can present significant challenges with respect to data security
and privacy, as concerns regarding trust and interoperability among institutions may
arise [2].

Within this paradigm, prior to the integration of data from prosumers (i.e., producers
of data who are also consumers), an effective methodology should be adopted to mitigate
these trust-related issues among institutions.

While blockchain technology has the potential to represent a viable approach to
mitigate these concerns, it is important to acknowledge that if not implemented and
managed properly, blockchain-based technology can compromise data safeguards [3].
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Alternatively, we suggest the adoption of Data Sharing Agreements (DSAs) as a
potential solution to address these trust-related issues [4]. DSAs are mutual agreements
between two or more parties that establish regulations for sharing and managing data,
including privacy preferences and contractual requirements such as notification in case of
data leakage. By clarifying each party’s duties, DSAs help ensure data sharing reliability.

Given this context, a Federation of prosumers is created to collectively manage and
share data in a controlled and regulated manner. Subsequently, the DSAs are established to
govern the usage of information among prosumers, securing a controlled and restricted
environment. The term ‘Federation’ in this context refers to a collaborative group of
data prosumers, including healthcare providers, researchers, and relevant stakeholders,
who come together to collectively manage and share data. This group is established to
address trust-related issues and ensure responsible data sharing practices through mutual
agreements (DSAs).

Because it is vital to ensure that the data is shared and processed in a secure and
confidential manner, a virtual layer—Information Sharing Infrastructure (ISI)—assumes
the responsibility of managing and collecting data from the Federation. It consists of an
Artificial Intelligence Module (AIM) that operates on top of the shared and integrated data.

Once the DSAs have been established, data obtained from various sources are inte-
grated into a centralized database. While centralizing data provides unified structured data
and the optimization of operational healthcare processes, sharing data with a trusted analyt-
ics server may not always hold, and can result in potential breaches of privacy-preserving
collaborative data.

To address this paradigm, an Advanced Encryption Standard (AES) algorithm has
been employed in the literature [5], which involves transforming data into an unintelligible
format and protecting/safeguarding its content with a secret key that only authorized
parties can use to decrypt it. Furthermore, to enable operations on encrypted data without
requiring its decryption, homomorphic encryption [6] has been applied to machine leaning
models such as logistic regression and random forest. This approach enables these models
to perform secure computations on encrypted data without requiring access to the de-
crypted data. These machine learning models provide predictions concerning the patient’s
susceptibility to specific diseases using their encrypted health data. As a result, an email
alert is automatically sent to the patient’s healthcare entity following every prediction based
on the data received within the last hour, enabling this entity to respond appropriately to
address potential critical health situations. Since these predictions rely on encrypted data,
confidentiality is preserved throughout the computation process.

As mentioned, given that information sharing is a major concern in the healthcare
industry, our research approach addresses the following key components:

• Data sharing: sharing of information in a controlled manner, including sensitive health
data. This ensures regulatory compliance, confidentiality and integrity both while in
rest and in transit.

• Artificial intelligence: usage of AI algorithms to classify and predict episodes that
require immediate attention, triggering an email alert to notify the corresponding
healthcare entity that action needs to be taken.

• Multi-technology: usage of a combination of technologies to enable a confidential and
collaborative approach to data analysis, including homomorphic encryption. This
allows computation to be carried out in a private and distributed manner.

• Streamlined access: implementation of advanced seamless access mechanisms which
take advantage of the analytics and sharing infrastructure to provide continuous authen-
tication, authorization, and privacy awareness, for privacy-aware data usage control.

For this work, a real case implementation of current DSA was established, allowing
us to gain access to the data of their departments comprising 512,764 patients. In order to
comply with ethical guidelines, we obtained informed consent from participants, follow-
ing the principles outlined in the Declaration of Helsinki and the Oviedo Convention [7].
Furthermore, we ensured the necessary documentation, including a data dictionary, autho-
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rization from the CHULN services in Cardiology, Intensive Care Medicine, and Respiratory
Intensive Care Unit, as well as the CVs of the respective physicians in charge. Additionally,
all members with data access signed a declaration of honor, guaranteeing adherence to
GDPR regulations, which encompassed protecting sensitive information, specifying autho-
rized personnel, defining data retention periods, establishing data disposal procedures, and
preventing unauthorized utilization in other research contexts without explicit consent.

The work is divided into five sections: (1) the introduction; (2) state of the art, where
we identify the current literature work status; (3) description of our proposed framework;
(4) an application case in which the CRISP-DM (Cross-Industry Standard Process for Data
Mining) data mining approach is adopted [8] since we are dealing with data knowledge
extraction; and (5) the conclusions.

2. State of the Art
2.1. Search Strategy and Inclusion Criteria

We undertook a systematic review of the literature using the PRISMA methodology
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [9]. Our investi-
gation was restricted to articles written in English and published between 2016 and 2023,
sourced from databases such as Scopus and Web of Science Core Collection (WoSCC), with
grey literature, conference papers, workshops, books, and editorials being excluded.

To refine our search, we employed a specific search query using the domain of “Ar-
tificial Intelligence” or “Data Analytics”, within the concept of “Health Data” and using
the context of “Data Sharing”. This approach enabled us to identify the relevant articles
across both databases. Nevertheless, it is important to acknowledge that this approach
may lead to the retrieval of some duplicated articles in our research results, which had to
be removed.

2.2. Study Selection

The selection of articles was initially conducted on an assessment of titles and abstracts;
however, in those cases where this information was insufficient or not clear, the full articles
were reviewed.

2.3. Data Extraction and Synthesis

Zotero, Microsoft Excel, and the web interfaces to Scopus and WoSCC were used as
tools for organizing and storing data related to the articles, according to the mentioned
systematic literature review using the PRISMA method. This information included diverse
categories such as the title, author, year of publication, subject area, keywords, and abstract.
Furthermore, to facilitate data examination, a qualitative evaluation was conducted based
on these topics.

2.4. Results

Table 1 provides details of the search criteria employed on the domain, concept,
context, and limitations.

Table 1. Research conducted using Scopus and WoSCC.

Domain Concept Context Limitations
“Artificial Intelligence”

“Health Data” “Data Sharing”
2016–2023

Only journal papers
Articles and reviews

“Data Analytics”

281,382 Documents

14,435 Documents

200 Documents
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The query returned a total of 200 documents (as shown in Figure 1) by utilizing the
keywords from each column. Subsequently, a manual review of each article was conducted
to identify relevant research subjects and eliminate duplicates. This resulted in a set of
18 documents. Additionally, our systematic literature review methodology incorporated
several parameters, such as the year of publication, research field, and the brief description
of each article.
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2.5. Study Characteristics

All 18 studies included in our literature review met the search criteria mentioned above.
As illustrated by Figure 2, the research topic being addressed has gained more rele-

vance in recent years.
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2.6. Goals and Outcomes Analysis

Within the selected and reviewed literature found to be pertinent to our study, data
sharing emerged as the most recurrent subject of discussion (see Table 2). As a highly
relevant topic in recent years (see Figure 2), our research focuses on the application and
implementation of specific technologies to establish a robust data sharing ecosystem, miti-
gating the predominant concerns addressed in various articles. Given the sensitive nature
of the information involved in healthcare, there are some challenges related to its sharing,
including data protection and privacy issues. Within this context, articles [10–12], highlight
the challenges encountered in complying with data regulations in the healthcare industry,
particularly the General Data Protection Regulation (GDPR). While the GDPR is crucial to
ensure privacy and personal data protection, articles [10,13] identify a disparity between
its targets and its actual impacts, emphasizing the need for a trust-based framework in
health data to mitigate the encountered bias. Additionally, while the authors in article [12]
address the difficulties experienced by stakeholders in managing health data during the
COVID-19 pandemic due to the GDPR requirements, article [14] discusses the positive
impact of recent modifications in data sharing regulations in selected states of the USA on
the quality of healthcare service.

Table 2. Detailed topics from articles.

Topic Reference % of Papers
Data Sharing [10–21] 29%

AI/Deep Learning [10–12,15–18,22,23] 22%
Data Privacy [12,19,24] 7%

Data Governance [13,25,26] 7%
Ethics [13,19,22] 7%

Blockchain [17,20,26] 7%
Big Data [11,14,23] 7%

Data Protection [10,25] 5%
Machine Learning [10] 2%

Homomorphic Encryption [27] 2%
Cloud [27] 2%

The healthcare industry has seen a significant increase in the utilization of big data
and AI in recent years, addressing several challenges and concerns. In this context,
articles [19,22], highlight the importance of responsible data governance to ensure eth-
ical research practices, and authors in [22] underscore the importance of liability in clinical
application algorithms to ensure patient safety. Furthermore, in article [19], authors empha-
size the risks of bias in the increasing volume of available data. From a patient´s perspective,
article [16] presents a cross-sectional survey that revealed varying perceptions among pa-
tients and concluded that more public awareness and debate are necessary to ensure the
acceptability of sharing their personal data. In order to address the challenges of data shar-
ing, authors in [25] provide recommendations on establishing and managing data trusts to
ensure that data sharing is conducted in a timely, fair, secure, and equitable manner.

On the other hand, articles [15,17,18,23] discuss the potential advantages of incorpo-
rating AI to standardize data sharing practices across various domains. Authors in [17,18]
suggest that such approach could result in more efficient data management, improve clini-
cal decision making, facilitate the use of supportive diagnostic tools for patient-centered
treatment planning, and provide algorithms to analyze collected data. In [15,23], authors
also suggest that AI could address ethical and data protection challenges related to health
data sharing. Likewise, article [21] discusses how the adoption of near real-time electronic
health record (EHR)-based surveillance systems and the integration of data analytics in-
frastructure proved instrumental for policymakers and epidemiologists in Iran during the
COVID-19 pandemic.

Additionally, authors in [24] discuss how they employed an automated AI-based
anonymization technique based on two heuristic principles, emphasizing privacy protection
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through anonymization. The findings validate that their approach offered a more effective
solution in comparison to alternative techniques.

With the increasing availability of data, the risk of data breaches has become a critical
matter. In this context, articles [20,26] suggest the importance of adopting blockchain-based
technologies to ensure data security and privacy. While authors in [20] propose adopting
this technology for secure data exchange among healthcare entities, authors in [26] draw
attention to a misalignment between the availability and the implementation of advanced
technologies for medical purposes, suggesting the need for a new blockchain framework
to manage big data while simultaneously promoting real-time access, data security, and
patient privacy.

To ensure a secure environment for computational tasks involving health data, in [27],
the authors propose a secure health cloud framework to facilitate the sharing of EHRs. This
framework employs homomorphic encryption algorithms, which enable computations to
be performed on encrypted data without the need for its decryption. The authors demon-
strated that this approach is more efficient than conventional algorithms. Furthermore,
the authors underlined several suggestions for future works, such as the application of
statistical methods and machine learning algorithms for disease prediction, as well as
exploration of bootstrapping techniques to enable full homomorphism.

In order to effectively manage and exchange clinical data while preserving confiden-
tiality, the authors of [11] propose a big data analytics strategy coupled with the utilization
of an AI (deep learning) algorithm for analyzing patient data and producing reports for
stakeholders. The authors also recognize the need for additional research to address se-
curity concerns and suggest integration with a cloud platform to ensure scalability in
the future.

In contrast to the studies found in the literature, our research introduces a novel and
integrated approach to address the challenges of data sharing and privacy concerns in
the healthcare industry. While previous works have explored individual aspects such as
data governance, AI applications, and data anonymization techniques, our paper uniquely
combines multiple technologies to create a comprehensive and secure data sharing ecosys-
tem. The primary novelty lies in our utilization of DSAs to regulate data sharing practices
responsibly, coupled with the adoption of homomorphic encryption algorithms for secure
implementation of AI models. This combination ensures that data remains confidential
and encrypted throughout the computational process, further safeguarding patient privacy.
Additionally, our research showcases practical implementation through real-world use
case validation, demonstrating the superiority and efficacy of our method in improving
healthcare service quality, patient safety, and research practices. By presenting a cohesive
and innovative solution, our paper contributes to advancing the field of data sharing and
AI applications in healthcare, setting a new standard for secure and ethical data-driven
strategies in the industry.

Beyond healthcare data sharing, which is an area where there is lack of access to data,
it is interesting to explore its implementation in engineering tasks, with a particular focus
on 3D applications [28,29]. This extension showcases the adaptability of our approach in
diverse domains and highlights its potential to address data sharing challenges beyond the
healthcare sector. By exploring the application of our method in different fields, we aim to
present the broader implications and appeal of our research to a wider audience of readers
and researchers.

3. A Framework for Information Sharing Infrastructure (ISI)

This chapter discusses a proposed platform that aims to facilitate data sharing among
multiple prosumers by integrating data through Data Sharing Agreements (DSAs) based
on agreed terms. The DSAs specify which data can be used, for what purposes, and how
they can be used, and aim to capture the data sharing policies that restrict both suppliers
and consumers of data while governing the flow of data between them.
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To ensure trust, privacy, and compliance with GDPR, the platform uses homomorphic
encryption. Prosumers define the DSAs at the time of Federation creation, based on their
interests. DSAs govern the storage of prosumers’ data and express constraints on shared
data, such as obligations to process data before or after the data’s usage, anonymize data,
or perform homomorphic encryption operations.

The proposed Information Sharing Infrastructure (ISI) facilitates data sharing, ensuring
continuous enforcement of policies and obligations related to the data. The ISI consists of
an Artificial Intelligence Module (AIM) that operates on top of the shared and integrated
data. The AIM executes the manipulation operations specified in the DSAs related to the
AIM before making classifications or predictions.

This chapter further discusses the workflow involved in the creation of the proposed
ISI. The ISI is a virtual layer that is deployed when Information Prosumers form a Federation
by defining their DSAs to share their information. The ISI manages the Federation’s
information by collecting data from the prosumers and enforcing the DSA paired with the
information, before the AIM executes AI operations. In these, shared data will be applied
to machine learning algorithms in Python with associated keys to support decryption.
Results are computed and distributed back to the Information Prosumers, with enforced
DSAs, ensuring that confidentiality and privacy requirements are respected. The ISI’s main
components are the DSA enforcement engine and the data-protected object store, where
data is encrypted at rest and stored with appropriate usage policies.

Figure 3 shows the logic architecture of the ISI, composed of a “DSA Usage Control
System for Data”, which represents an integral part of the overall “Information Sharing
Infrastructure Diagram” that facilitates secure and controlled data access. The system
consists of several interconnected components. At the core of the system is the Policy
Decision Point (PDP), which receives data access requests and evaluates the relevant policies
to determine whether access should be granted or denied. The PDP relies on contextual
information to make informed decisions. This contextual information is provided by
the Context Handler, which gathers details such as the user’s role, time of access, and
location. The Session Manager handles the management of user sessions within the DSA
system. It handles tasks such as authentication and session termination, ensuring secure
and authorized access to the data. In response to the access decision made by the PDP, the
Obligation Manager enforces any obligations or actions that need to be performed. This
can include tasks such as logging access events, generating audit reports, or executing
specific actions based on the access request. To assist in the policy evaluation process,
the PDP relies on Policy Information Points (PIPs). These PIPs serve as information
sources that provide additional attributes or contextual information required for policy
evaluation. In the diagram, three PIP boxes are shown, representing different sources of
policy information that may include external systems, databases, or services. Additionally,
the system incorporates “External Attributes” that are obtained from external sources.
These attributes provide supplementary information that enhances the context for access
control decisions. External attributes can be fetched from external databases, APIs, or other
systems to make more informed policy evaluations.

The “DSA Usage Control System for Data” diagram is connected to the database
and the anonymization toolbox within the broader “Information Sharing Infrastructure
Diagram.” This connection signifies that the usage control system governs access to the
data stored in the database and ensures that the anonymization toolbox adheres to the
established access policies. Together, these interconnected components and connections
form a robust framework for enforcing access control, policy evaluation, and data protection
within the Information Sharing Infrastructure.

The chapter also discusses how the proposed approach enables Information Prosumers
to selectively share their information with a specific subset of members within the Fed-
eration. They can also perform pre- or post-processing manipulation operations on their
information and apply AI algorithms. Moreover, Information Prosumers can disclose
the analysis results only to certain Information Prosumers and under specific conditions.
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Figure 4 shows that the ISI serves as a data source for the AIM, providing the necessary
input for the AI algorithms and models to process. The ISI consists of various components
and connections that enable secure and controlled data access. Within the ISI, the data
required for the AIM are obtained from multiple sources. This includes structured data
from patients, such as physiological information, which is processed using a machine
learning toolbox specifically designed for structured data analysis. This toolbox employs
statistical correlation techniques and machine learning algorithms to extract meaningful
insights from the structured data.
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In addition to structured data, the ISI also incorporates image data such as MRIs,
CT-scans, and echocardiographies. To process these image data effectively, a deep learning
toolbox is utilized. Deep learning algorithms specifically designed for image analysis are
employed to extract features and patterns from the images, enabling the AIM to make
accurate image classification and perform tasks related to image interpretation.

The outputs generated by the statistical correlation toolbox, machine learning toolbox,
and deep learning toolbox collectively form the results of the AIM module. These outputs
may include predictions, classifications, feature representations, or any other relevant
insights derived from the data. Finally, the output from the AIM module is sent back to the
ISI. This allows the results to be integrated back into the broader system, enabling further
analysis, decision making, or sharing with authorized parties within the ISI.

By connecting the AIM module to the ISI, the system leverages the power of arti-
ficial intelligence and machine learning techniques to extract valuable information and
knowledge from the data available within the Information Sharing Infrastructure. This
integration enables advanced data analysis, predictive modeling, and image interpretation,
ultimately enhancing the overall capabilities and potential benefits of the system.
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The goal of the data sharing platform is to enable the creation of the proposed ISI,
which involves a four-step workflow: (1) identification of data sharing needs and elabora-
tion of DSAs; (2) secure data sharing through the Information Prosumer encrypting their
data and sending it to the ISI; (3) manipulation operations specified in the DSAs being
executed on the data by the AIM before making predictions; and (4) results returned to all
Federation members who can take appropriate actions.

Figure 5 illustrates an example with four prosumers (i.e., a hospital, a clinic, a research
institute, and a home care center), where all data are sent to a server and encrypted using
the AES encryption algorithm. Each prosumer has a unique key, allowing them to encrypt
and decrypt their data.
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Our logical model with integrated data includes a MySQL database where each file is
loaded into a separate table with the data being encrypted using the Advanced Encryption
Standard (AES). Our MySQL database engine was able to properly handle the loading of
data records with different encodings.

AES is a specification for the encryption of electronic data established by the US
National Institute of Standards and Technology (NIST) in 2001 [30]. Encrypting turns the
data into “human-unreadable” text referred to as cipher text instead of plaintext, which
means the data is in its original form.

The algorithm can use keys of 128, 192, or 256 bits to encrypt and decrypt data in
groups of 128 bits of data called blocks. This means it takes 128 bits as input and outputs
128 bits of encrypted cipher text as output. AES relies on the substitution–permutation
network principle. This means it performs a few rounds, including substituting and
shuffling the input data. The key size defines the number of rounds being 10, 12, or 14 for
128, 192, or 256 bits, respectively. Other authors have identified AES as a good encryption
mode for homomorphic encryption.

Homomorphic encryption (HE) is a form of encryption that allows performing com-
putations over encrypted data without access to the secret key. The result of such a
computation remains encrypted. HE enables cloud services to process users’ data without
compromising privacy or security. HE can also be used as part of a secure multi-party
computation protocol.

The current encryption algorithms force the data to be decrypted prior to processing
it. This, however, means that data privacy laws are not complied with. Furthermore,
data become less defended against unauthorized access. By enabling the computing of
encrypted data, HE assures that data privacy and integrity are kept while the data are
processed and ensures an extra layer of data protection. A fully homomorphic encryption
(FHE) algorithm allows unlimited ciphertext operations while producing a valid result.

Figure 6 depicts where some of the risks lie and why FHE helps mitigate those risks.
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There might be a security threat between the prosumer’s computer and the cloud
service (server for AI processing) if the data is in plaintext while in transit.

Having the data encrypted locally, at the prosumer’s side, before sending it to the
cloud service and decrypting upon receiving the prediction means that it is secure while in
transit within the network, thus limiting security risks.

In other words, predictions may be performed on cloud services without compromis-
ing data privacy, which means that medical records are not exposed to unauthorized parties.

This approach has been developed based on data that were made accessible by a
Portuguese hospital from Lisbon and originated from five entities (prosumers). To obtain
these data, DSAs were signed among all entities. The description of all the work and
methodology that followed is depicted in Section 4.

4. Use Case Validation

Our work can be applied to several cases, but we validate it with an encrypted multi-
syndrome dataset of clinical data collected at Hospital Santa Maria, the largest Portuguese
public hospital, located in Lisbon. Health data were collected under the framework of the
FCT project DSAIPA/AI/0122/2020 AIMHealth—Mobile Applications Based on Artificial
Intelligence, co-coordinated by two of the authors, aiming to contribute with a preventive
approach for public health strategies in facing the COVID-19 pandemic situation. The
access to the dataset for research purposes was approved by the Ethical Committee of
the Faculty of Medicine of Lisbon, one of the project partners. The dataset is currently
being accessed by the authors (belonging to the ISTAR research center), Iscte, and the
Faculty of Medicine researchers, under a DSA and within the scope of the mentioned FCT
AIMHealth project. Nonetheless, and because this is a real implementation case, DSAs
were implemented between Hospital Santa Maria (HSM), Faculty of Medicine of Lisbon,
ISTAR, and Iscte.

In this section, we describe this application’s work using a CRISP-DM methodology [31].
CRISP-DM is well-suited for addressing real-world data mining challenges and provides
a structured approach for data mining projects. It is comprised of six phases: business
understanding, data understanding, data preparation, modeling, evaluation, and deploy-
ment [31]. This methodology allows a comprehensive and iterative analysis of the data and
requires close collaboration between data scientists and domain experts. We successfully
addressed a specific data mining problem using CRISP-DM and delivered actionable in-
sights to the organization. To support this approach, we developed the ISI described in
Figure 3.
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4.1. Business and Data Understanding

This is the phase where data was first accessed, with business and variable under-
standing. Data relate to 512,764 patients and contain real-time clinical signals such as
temperature, blood oxygen level (SpO2), and heart rate. Data were extracted from a num-
ber of different information systems and encrypted at the hospital before delivery. The
schema of this dataset includes 138 tables (from an identical number of files) and occupies
around 75 Gbyte of data. We loaded the collected data into our secure local database
taking into account the DSA. It was extracted and transferred to a secure Iscte server and
encrypted, and was then ready for the application of ML algorithms.

The significant number of files (138) reflected, in part, the dispersion of hospital
databases with 1594 variables, some with identical meanings. Their content was formatted
as comma-separated values (CSVs), where all the data belong to the different prosumers.
This is a real-life scenario in some hospitals and, in this case, within the department of
cardiology, involving several small independent databases that lack interoperability. We
found that some of the source hospital databases in production were somehow loosely
coupled with the clinical processes and workflow. This resulted in tables with multiple
fields that are not filled, and important clinical data that are not properly organized or
structured but are instead introduced in free text. This posed difficulties in organizing
and analyzing each variable in the context of overwhelming amounts of information and
fragmented data across the 138 tables.

Most of the files (116 out of 138) are relatively small, with less than 100 thousand records.
For instance, the file containing the types of precautions has 17 lines (i.e., intoxications,
infections, etc.). However, the remaining 22 files are comparatively large, having anywhere
between 280 thousand and 68 million records.

During our data understanding analysis, we identified several important variables,
including gender, blood group, birthdate, and ethnicity of the patients. In addition, we
found 52 different types of diagnosis, ranging from circulatory system illnesses to infec-
tious and parasitic diseases and various pediatric-related diagnoses. Real-time data were
identified in one specific table containing 657 real-time data variables, including systolic
blood pressure, mean arterial pressure, and aortic pulse rate.

Because we aimed to predict whether patients will suffer from specific events (abnor-
mal values of physiological variables), we had the valuable assistance of the mentioned
cardiologist specialist to help to focus our analysis on the most significant variables. Con-
sidering his business knowledge, we considered 85 of 657 real-time measures available in
the table. These 85 variables included patient height, aortic pulse rate, blood pressure, and
heart rate, which were considered the independent variables used to predict the dependent
variable (diagnoses as seen in the “admission diagnosis” table).

4.2. Data Preparation

In this phase, data were prepared for data fusion and encryption. Data in our dataset
were made available in CSV (comma-separated values) text format. Each line in a CSV file
is equivalent to a record, with the variables (columns) being separated by a comma. This
method of distinguishing variables may create problems with descriptive values that often
include commas within them (for example, open text reports). Furthermore, in Portugal, the
decimal point in numbers is not a point, but a comma. Such cases were an extensive issue
while analyzing the structure and content of some files, as it became difficult to identify the
commas that represent column separations. To address this, a Python script was developed
in-house and utilized to automatically replace the problematic commas with semicolons.

As mentioned, due to the existence of several information systems in production at
the hospital, which were the source of our collected dataset, relevant data are scattered,
not integrated, and sometimes duplicated across our various tables, leading to added
challenges while analyzing, understanding, and integrating data.
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The critical tasks of data cleaning, record deduplication, and data integration were
performed, over the mentioned 6-month period, on the premises of the hospital based on
the signed DSA. Confidentiality agreements do not allow us to describe the process.

The output of this first stage was a set of 138 clean files, which were loaded and
populated our MySQL database in an encrypted form. Whilst the number of files is the
same as that of the raw dataset, their contents were, at this stage, cleaned, reduced in terms
of their number of records, and able to be integrated.

The created metadata that allowed an easy understanding of the data were also
important. Since the data were encrypted, these metadata were fundamental for researchers
to know which variables to use for the prediction or other data mining processes. Data
were then ready to be used by machine learning (ML) algorithms.

In this section, we exposed some weaknesses of having data dispersed in multiple,
isolated databases, in the context of the various hospital information systems, often in
different formats. While each individual information system may fulfil its intended purpose,
such segregation makes a full overview extremely difficult to accomplish.

The work developed for this section—by loading the raw data into the same format
in a single, clean set of records, without duplicates, without unnecessary extra data, with
consistent metadata, and while needing considerable amount of work—sets the stage for
new insights to be gained, new analysis to be undertaken, new knowledge to be created,
and new conclusions to be drawn. This is especially important in the context of hospital
health as it might help save lives.

4.3. Modeling and Evaluation

In this section, we describe how this approach can be used, with an example. Since the
data are available, it is possible to use and create knowledge. In this case, since we have the
mentioned data from the COVID lockdown period, the goal was the detection of abnormal
patient data.

Detecting abnormal values in clinical data can be challenging and requires expert
knowledge and experience. In cardiology, the ability to predict abnormal values of specific
variables can provide valuable insights into patient outcomes and disease progression. In
this use case, we developed a machine learning model that can accurately predict abnormal
values (outliers) of specific variables in cardiology data. Moreover, an email alert system
was developed to notify health practitioners every time the model predicts an outlier value,
facilitating real-time patient data tracking and prompt interventions when necessary. The
following section describes how the abnormal value prediction and email alert generation
were made, the results, and their implications for cardiology investigation.

For the modeling phase, we employed a supervised machine learning approach to
predict outliers in patient data, specifically focusing on variables such as oxygen saturation,
pulse, and heart rate identified by the cardiologist specialist. In this context, we collect all
the vital signs from a medical machine that monitors the physiological signs of the patients
every 5 min. For feature selection, we built a function that automatically calculates the
Pearson correlation between the dependent variable (y—physiological variable chosen
by the physician) and all the other variables selected by the physician, such as blood
pressure, respiratory rate, age, height, jugular saturation of O2, esophageal temperature,
ST segments, room temperature, body temperature, invasive blood pressure—diastolic
and systolic, hemoglobin, arterial O2 saturation, pH, pulse, and heart rate. Once the
Pearson correlation is calculated, only the variables with a correlation outside the interval
of ]−0.2;0.2[ are chosen to integrate the set of independent variables. To achieve a more
accurate result, the autocorrelation of the dependent variable is also calculated.

Heart rate was selected as a dependent variable in this paper to showcase the proposed
solution’s effectiveness and provide a practical example of its implementation.

We created an autocorrelation plot to identify a threshold autocorrelation for detecting
outliers in heart rate. The plot revealed an autocorrelation value of 0.7 seven hours before
an abnormal value was registered, as illustrated in Figure 7. This suggests that heart rate
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data showing an autocorrelation of 0.7 or higher seven hours before an event could be
a useful predictor of future outliers. The autocorrelation in Figure 7. was measured as
the correlation between the heart rate variable and its lagged values within the same time
series. Autocorrelation quantifies the degree of correlation between a variable and its past
values at different time lags. Temporal dependence of the heart rate data can impact the
model’s performance. High autocorrelation may suggest a strong temporal relationship
between heart rate values at different time points, implying that the current heart rate
value might be dependent on its past values. In predictive modeling, autocorrelation can
influence the accuracy of the predictions. In this way, by using past values, we can make
future predictions.
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While attempting to predict an outlier using encrypted data, we compared different
algorithms for AI predictions, such as logistic regression (1) and random forest (2). The
random forest achieved the best results.

f (enc(x)) =
1

1 + e−enc(x)
(1)

where enc x is the encrypted data to which the logistic regression is applied.

C

∑
i=1

− fi·log( fi) (2)

f is the frequency of label i at a node and C is the number of unique labels.
The data were split into two groups: one for training the algorithms, consisting of 75%

of all data, and another for testing the models, with the remaining 25%. After training the
algorithms on the training data, we utilized the trained models to predict outcomes on the
test data. The logistic regression model achieved an accuracy of 96.88%, and the random
forest model outperformed it slightly, attaining an accuracy of 97.62%. These accuracies
were calculated by comparing the model’s predictions to the actual outcomes in the test
data, ensuring a comprehensive evaluation of the predictive performance.

Our approach was trained and evaluated using appropriate techniques, including
preprocessing steps and hyperparameter tuning. Regarding hyperparameter tuning, several
variations of random forest were tested, namely by varying the number of estimators from
1 to 15. All fifteen variations produced comparable results, the difference being smaller
than 0.01 percent. Once an outlier was predicted, we emailed the relevant entities to alert
them that the patient needed to be observed because an event was predicted in 7 h; see the
example in Figure 8.
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Our modeling approach has significant implications for patient outcomes and clinical
decision making, as it enables timely interventions that can improve patient care and
potentially save lives. Every time a patient event is predicted, an email is sent to the
patient’s hospital or health center warning about said event. The authors consider the
results satisfactory and within the expected range of values for the algorithms used (random
forest and logistic regression).

4.4. Deployment

The deployment phase is crucial to the CRISP-DM process as it involves implementing
the developed solution into the operational environment. We deployed the developed
outlier detection model to a hospital setting in this use case.

Our research center, ISTAR-IUL at Iscte University in Lisbon, is one of the prosumers
who signed the DSA between the Hospital de Santa Maria and the other entities. This
agreement has enabled us to access and analyze cardiology data to develop and deploy the
outlier detection model.

In this work, we present a novel approach that seamlessly integrates diverse elements,
including cutting-edge technologies such as artificial intelligence, Data Sharing Agree-
ments, and homomorphic encryption. This unique integration enables us to develop a
robust and secure framework for sharing and managing medical data while harnessing the
power of artificial intelligence for advanced data analysis and prediction. Our proposed
method offers significant contributions compared to existing approaches, where real-world
scenarios and practical data were employed for validation. The results show its potential to
improve performance, efficiency, and data security in the healthcare domain. By further
emphasizing the technical novelty and advantages of our method, we aim to underscore its
relevance and potential impact in the field of data sharing and healthcare analytics.

Since deploying the model, we have observed several positive outcomes. The model
is achieving good results and has proven to be an asset for the hospital’s medical staff in
monitoring patient health. Furthermore, the email alert system implemented as part of the
model provides real-time patient data updates, enabling the medical staff to take prompt
actions when necessary.

In addition, the deployment of our model has sparked several ongoing research
endeavors aimed at exploring various aspects of cardiology data analysis. These research
works involve the application of cluster algorithms to patients diagnosed with infarcts,
pneumonia, and myocarditis. In particular, our future work will include efforts to develop
predictive models for infarcts. Through these research initiatives, we aim to deepen our
understanding of patient outcomes and disease progression, ultimately contributing to the
advancement of cardiology research.

Overall, the deployment of the outlier detection model has been successful, en-
abling us to gain valuable insights into cardiology data and improve patient care in the
hospital setting.
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5. Conclusions

In the context of health data exchange, our proposed platform utilizes DSAs to reg-
ulate the secure and confidential transfer of medical data between healthcare providers,
patients, and relevant stakeholders. The agreements establish clear guidelines on data
scope, purpose, and security measures to ensure compliance with privacy regulations and
protect sensitive information. This collaborative framework facilitates the implementation
of contractual agreements, all while preserving data privacy and confidentiality through
encryption techniques.

We proposed a platform composed of an ISI that consists of various components and
connections that enable secure and controlled data access, providing the necessary data
for the AIM, in a secure and collaborative way. The AIM is responsible for all of the AI
component, where predictions can be made and knowledge may be created. While previous
works have explored individual aspects such as data governance, AI applications, and data
anonymization techniques in isolation, our paper uniquely combines multiple technologies
to create a comprehensive and secure data sharing ecosystem. This novel combination
allows for a comprehensive approach that effectively addresses the challenges and concerns
of health data sharing while preserving privacy and confidentiality. By synergizing these
diverse technologies, our research offers a holistic solution that sets a new standard for
responsible and efficient data-driven strategies in the healthcare industry.

This research aims to provide a flexible, secure, and privacy-aware framework al-
lowing sharing of confidential, distributed information in health entities. This allows
knowledge creation based on shared services, and DSAs are one of the first steps towards
data and information sharing in the health sector. We implemented an information anal-
ysis infrastructure using DSA and developed an AI module that uses encrypted data to
make predictions. The experimental results demonstrate the accuracy and efficacy of our
approach, with the logistic regression model achieving 96.88% accuracy and the random
forest model slightly outperforming it with an accuracy of 97.62%.

To the authors’ knowledge, this is one of the first approaches to use a DSA to share
information in the health sector.
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