
Citation: Baron, C.; Grenier, L.;

Ostapenko, V.; Xue, R. Using the

ARCADIA/Capella Systems

Engineering Method and Tool to

Design Manufacturing

Systems—Case Study and Industrial

Feedback. Systems 2023, 11, 429.

https://doi.org/10.3390/

systems11080429

Received: 8 May 2023

Revised: 25 July 2023

Accepted: 31 July 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Using the ARCADIA/Capella Systems Engineering Method and
Tool to Design Manufacturing Systems—Case Study and
Industrial Feedback
Claude Baron 1, Lorenzo Grenier 1, Vitalina Ostapenko 1 and Rui Xue 2,*

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA Toulouse, 7 Avenue du Colonel Roche,
31400 Toulouse, France; claude.baron@insa-toulouse.fr (C.B.); lorenzo.grenier@insa-toulouse.fr (L.G.);
vitalina.ostapenko@insa-toulouse.fr (V.O.)

2 College of Economics and Management, Beijing University of Technology, Beijing 100124, China
* Correspondence: xuerui@bjut.edu.cn

Abstract: In a trend towards digital continuity, model-based systems engineering is becoming widely
adopted for the design of complex systems, supporting system development from the very first stages.
A narrow panel of methods and tools are available on the market; they offer different scopes and
approaches, are more or less intuitive to follow, and are sometimes supported by tools. Among them,
the Architecture Analysis & Design Integrated Approach (ARCADIA) is becoming popular and is
gradually spreading in different industrial fields to model a wide variety of systems at different stages
of their development and from different points of view. It is implemented using an open-source
tool called Capella. Few feedback on its use in industrial settings have been published, while other
feedback remains confidential. The goal of this paper is to analyze the interests and limitations
of ARCADIA/Capella. To reach this goal, we experimented with ARCADIA/Capella in several
projects and chose one to explain how the method and tool proceeded. In addition, we conducted
a survey to obtain industrial feedback. As a result, the paper gives an overview of the relevance
of ARCADIA/Capella in projects and of its usefulness, effectiveness, and adaptability in modeling
different types of systems. It also provides some perspectives for the evolution of the method and the
tool according to industrial feedback.

Keywords: model-based systems engineering; modeling methods; MBSE tools; ARCADIA; Capella

1. Introduction

Systems engineering activities govern every technical and human aspect of the devel-
opment of a system throughout its whole life cycle [1]. Nevertheless, the complexity of
systems is ever-increasing due to their multidisciplinary nature, growing customer require-
ments, and multiple external constraints [2]. Managing this complexity has become crucial
in the success of projects, despite a rigorous application of systems engineering processes.
To address this issue, systems engineering has slowly moved towards model-based systems
engineering (MBSE), which provides engineers with methods and tools to model complex
systems and follow their evolution during their whole life cycle (from concept design to
operations) [3].

With the increasing attention given to MBSE, many methods and tools have been
developed. Among them, ARCADIA provides a methodology to progress towards the
complete modeling (functions, architecture, constraints, etc.) of a system [4,5]. It is sup-
ported by the Capella software tool [4,6,7]. At present, there is little literature on this
method and tool, which is nevertheless attracting a growing interest from systems engi-
neering practitioners. ARCADIA/Capella is mainly presented with a pragmatic objective
and promoted in books [4,8] and through online webinars. Alai compares it with other
methodologies such as the object-oriented SE method (OOSEM) or IBM Harmony [9]. In

Systems 2023, 11, 429. https://doi.org/10.3390/systems11080429 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11080429
https://doi.org/10.3390/systems11080429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://doi.org/10.3390/systems11080429
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11080429?type=check_update&version=1

Systems 2023, 11, 429 2 of 22

addition, some industrial case studies are presented on the Eclipse website [10]. However,
as ARCADIA/Capella has only recently spread in the industry, less research has put into
perspective the advantages and limitations of the tool in different situations.

To address this point, the goal of this paper is to support the researcher and practi-
tioner via a tool-supported method by exploring the possibilities offered by the ARCADIA
method and the Capella tool, e.g., for retro-engineering or redesign with less effort, while
maintaining the coherence of functional and architectural models, as well as demonstrating
how it addresses practicing industrialists’ needs. To this goal, we carried out several case
studies to learn from by using ARCADIA/Capella in different representative situations
and conducting a survey of industrial practitioners. Our motivation here is to provide our
experimental results in as much detail as possible and to explain them step by step in a
pedagogical way so that the experiments can be reproduced.

Section 2 first provides a preliminary overview and positioning of systems engineering
methods and tools. Section 3 focuses on the ARCADIA method. The Capella tool sup-
porting the method is presented in Section 4. Section 5 shows how to use ARCADIA and
illustrates the Capella application in a simple industrial case study. It shows how to apply
ARCADIA/Capella in different situations and highlights their interests and limitations.
Based on a conducted survey, the feedback of industrial practitioners, completed with an
overview of some advanced features of the tool, is provided in Section 6. Section 7 draws
the conclusions and gives the perspectives.

2. Model-Based Systems Engineering

In accordance with the vision of the International Council of Systems Engineering
(INCOSE) [2] about the future challenges that systems engineering will face in the next
decade, considering human and societal needs as well as global and technology trends, this
section highlights the interests of MBSE and provides an overview of MBSE methods and
tools. According to [11], systems engineering is a transdisciplinary and integrative approach
to enable the successful realization, use, and retirement of engineered systems, using
systems principles and concepts, and scientific, technological, and management methods.
Systems engineering (SE) provides a systematic approach, a framework and language
accessible to anyone, to create holistic solutions that allows crossing the boundaries of
other disciplines [12–14]. It is defined by the INCOSE and IEEE Systems Council as an
“interdisciplinary approach governing the total technical and managerial effort required to
transform a set of stakeholder needs, expectations, and constraints into a solution and to
support that solution throughout its life” [15].

As highlighted by this definition, systems engineering is concerned with understand-
ing the needs of stakeholders and the context of the problem and determining how to meet
those needs with a system or product throughout its useful life. It focuses on eliciting,
analyzing, and documenting customer needs and the required functionality and then
transforms these needs and requirements into an optimal and validated solution using
architecture and design analyses [16]. SE can be viewed as a methodology, a set of methods
and tools, and a process [17].

According to the INCOSE analysis [2], future systems will need to respond to an
expanding and diverse spectrum of societal needs to create value. System life cycles will
need to be aligned with global trends in the industry, economy, and society, which will, in
turn, influence system needs and expectations. In addition, systems will be more complex
due to safety, environmental, security, performance, or human factor constraints: future
systems will need to harness the ever-growing body of technology innovations while
protecting against unintended consequences [18]. As a result, with this increasing system
complexity, traditional document-based systems engineering (DBSE) is being progressively
replaced by model-centric engineering to explore the use of models, which are more
expressive and less ambiguous than documents, as presented in [1]. The adoption of MBSE
enables an efficient systems engineering approach, which overcomes many challenges
facing engineers [19].

Systems 2023, 11, 429 3 of 22

MBSE is defined by the INCOSE as “the formalized application of modeling to support
system requirements, design, analysis, verification and validation activities beginning in
the conceptual design phase and continuing throughout development and later life cycle
phases” [20]. It takes a holistic system approach to manage the system information and data
relationships, treating all information as a model and therefore adding value to technical
processes and project processes. MBSE is a move from a document-centric approach to a
model-centric approach. All or part of the textual documents are replaced by models. In
MBSE, a model represents a system and its environment. Models are usually created from
meta-models (or conceptual models), which are sets of concepts within a system and the
relationships among those concepts [15]. Different diagrams allow representing different
points of view of the same model.

The MBSE approach supports systems engineering and the complexity resulting
from interdisciplinarity. MBSE not only ensures that the language/tool/approach cho-
sen will allow the system to be ‘represented’, but also ensures that the information can
be properly used to support systems engineering. MBSE provides a representation of
information in different ways that show specific analysis capabilities for different types of
users that have different interests. It also allows refining a system and a system model into
subsystem models.

According to several analyses and feedback [15], MBSE brings many benefits to SE
practices in different fields, including technical and management processes. It allows better
control of the system complexity thanks to a formalized, unambiguous, and complete mod-
eling of the functional requirements. The manipulation of models offers a practical way to
perform trade-offs and comparisons between alternative designs. MBSE allows traceability
between the different views and between models of different levels of abstraction to be
easily established; in this way, it also improves the quality, consistency, and completeness
of the system definition. Moreover, verification, validation, safety, and system performance
analysis activities are enabled during design definition using model checkers or simulation
tools [21]. Finally, according to [9], MBSE also helps in reducing development costs and
improving productivity (thanks to the possibility of reusing and simplifying design models
and promoting communication between people working on the project).

A model can be captured via a mathematical equation, a graph, a formal expression, or
a drawing. MBSE ensures consistency across all views by using one model at its core from
which all the views are derived. Views can express different points of view, for example,
the structure of a system, its behavior, and its interaction with its operational context [15].
These views can be represented with different modeling languages and tools following
various methodologies, according to the domains involved in the system, the level of
detail, the system aspects to be modeled, etc. The model-driven approach is organized
around languages (SysML, DSL, UML, etc.), methods (OOSEM, ARCADIA, SPES, etc.),
and tools (CAPELLA, CORE, Cameo Systems Modeler, Cameo Enterprise Architecture,
Papyrus, etc.).

The methods offer a framework that helps to model a system by providing guidelines.
For example, in [22], OOSEM is a top-down method with object-oriented concepts using
systems engineering methods to create the right architecture for a multidisciplinary system.
The Business Process Modeling Notation (BPMN) specification was developed by the Busi-
ness Process Management Initiative (BPMI), and it defines the Business Process Diagram
(BPD), which is based on a flowchart technique tailored for creating graphical models of
business process operations [23,24].

Table 1 compares some of the most commonly used methods in systems engineering,
most of which are presented in [22]; more details can be found in [9,22]. Each method is
supported by a dedicated tool, a formalism (or language), and processes (a set of actions
that can be performed). Each method offers different advantages.

Systems 2023, 11, 429 4 of 22

Table 1. Synthesis on MBSE methods and tools.

Methods Process Focus Tools Advantages Type of System Languages

OOSEM [9,22,25]

- Iterative approach
- Top-down approach
- Recursive method

alternating black boxes
and white boxes

- Object-oriented
concepts

- Usage-driven
approach

- Analyze
stakeholder
needs

- Define system
requirements

- Define logical
architecture

Neutral tool

- Flexible
methodology

- Capacity of
adapting to
changing
technologies or
requirements

Physical or
nonphysical systems SysML

OPM [9,22,26]
- Object-oriented and

process-oriented in the
same model

- Clarify the
characteristics
of a specific
product

- Clarify the
characteristics
of the life cycle

- Requirements
specification

- Analysis and
design

- Integration

OPCAT

- Global vision of the
life cycle

- Choice of
development
(graphical or
textual)

Physical or nonphysical
systems OPM

Pattern-Based Systems
Engineering (PBSE) [22,27]

- Reused existing
models

- Describe
requirements

- Design
elements

- Behavioral
analysis

Neutral tool; works on
Dassault Systèmes
ENOVIA™, Siemens
Team Center™, etc.

- Rapid generation
of risk analyses

- Reduced recurring
cost of modeling
with reused
models

- Strong expression
of life cycle

CPS, physical or
nonphysical systems
(enterprise modeling,
pharmaceutical
industry, etc.)

Any system
modeling language

Systems 2023, 11, 429 5 of 22

Table 1. Cont.

Methods Process Focus Tools Advantages Type of System Languages

NASA JPL State Analysis
Methodology [9,22,28]

- Based on the
state model

- Determine system and
software requirements

- Behavior and
safety analysis

- Combine safety
and system
analysis
through
architectural
models

Oracle

- Anticipates the
different states that
the system
could take

- Guarantees system
control

Critical systems,
embedded systems SysML

BPMN [23,24] - Process-oriented

- Capture and
document
business
processes

- Verify the
consistency
between
business
processes

- Respond to any
issues in
the processes

Neutral tool

- Represents the
semantics of
complex processes

- Reduces noise
communication
between business
processes

- Integrates other
professional tools
with BPM

Physical or
nonphysical systems

Any process
modeling language

IBM Harmony for SE [9,29]

- System behavioral
approach

- Service-request
demand

- Iterative and
incremental approach

- State-based
behavior

- Right side of
the V cycle

Rhapsody
- Directly analyzes

different possible
design alternative

Physical or
nonphysical systems SysML

Systems 2023, 11, 429 6 of 22

Table 1. Cont.

Methods Process Focus Tools Advantages Type of System Languages

Vitech MBSE
Methodology [9,22]

- Functional behavior of
the system

- Incremental process
- Solutions at different

levels of design

- Design
analysis

- Problem
solving

CORE

- Good traceability
- Flexible models
- Lower costs

of change
- Limited risks

Physical or
nonphysical systems

System definition
language

ARCADIA [4,9] - Top-down approach
- V-cycle approach

- Analysis of
the needs

- Functional
architecture

- Logical
architecture

- Behavioral
analysis

- Validation
and
verification

Capella

- Flexibility
- Understandable
- Good traceability
- Open source

Systems or software Domain-specific
Language

Systems 2023, 11, 429 7 of 22

Most of the methods presented in the table above are based on SysML or the languages
inspired/derived from it. SysML stands for “systems modeling language” and is a general-
purpose modeling language designed to support systems engineers in specifying, designing,
analyzing, and verifying systems [30]. This language is derived from the Unified Modeling
Language (UML), a standard for model-based software development, and it is used in all
phases of development as described in [31]. Providing a standard view of modeling, UML
uses the concepts of class and object to optimize code generation [32]. SysML uses the
same concepts but replaces class modeling with block modeling, defining a vocabulary
that is more adapted to systems engineering [9]. SysML models are based on nine types of
diagrams, modeling either the system behavior (e.g., activity or sequence diagrams) and
structure (e.g., block definition diagram), or the requirements (e.g., requirement diagram).

However, some studies consider that SysML remains too complex or not completely
adequate for systems engineers. Indeed, as described in [33] and underlined by the AFIS
Working Group «MBSE avec SysML» [34], a limitation of the SysML language lies in the
lack of the notion of function. In SysML, however fundamental in system development,
the concept of function is not clear because it corresponds to both activities (actions and
blocks). SysML also does not allow dissociating the structural elements from its functions.
Belloir, Bruel, and Faudou argue that it is difficult to use SysML with respect to the
requirements described in other languages/tools such as Word or Simulink [35]. Moreover,
the management of elements at the instance level is another current weakness outlined
by [36]. It is impossible to distinguish each candidate architecture by associating different
characteristics to perform nonfunctional analyses (safety, performance, etc.). In addition, as
SysML does not impose any method or modeling guidelines, as explained by [9], and allows
the practitioner great freedom in the creation and use of the diagrams, this may induce
some form of ambiguity in its utilization. These are the reasons why some companies or
consortiums feel that SysML is not completely adequate to model systems.

3. The ARCADIA Method
3.1. ARCADIA/Capella Genesis

The Architecture Analysis and Design Integrated Approach (ARCADIA) is an MBSE
method developed by the Thales group in 2000, when it evolved from a simple supplier of
equipment to a supplier of integrated systems [4]. In 2001, the group carried out a study of
the current MBSE standards, methods, and tools, which concluded that the methods cov-
ered too limited a part of Thales’ activities and were too far from the company’s practices.
Moreover, the use of UML as a modeling language, in addition to being somewhat complex
for use, did not seem to be appropriate for system design. At the same time, a survey
was conducted within the company to gather feedback and ideas for improving prac-
tices. Despite the diversity of answers, several major general pathways for improvement
emerged [33]:

• Understand the customer/user needs;
• Define and share the solution among stakeholders;
• Secure system/software/hardware engineering and prepare subcontracting;
• Evaluate and justify architectural design early;
• Prepare and master verification and validation.

Therefore, in 2006, a first version of the ARCADIA method was released with struc-
tured recommendations of a top-down approach where the activities were clearly de-
fined and followed one another in a fixed order [4], in conformance with the ISO/IEC
15288 standard [37]. Between 2008 and 2010, a tool called Melody Advance was internally
deployed throughout the Thales group. Its open-source version, Capella, appeared in 2015.
In complete accordance with the ARCADIA method, it provides tools to model systems,
hardware, or software architectures using various diagrams. Its structure supports the
application of the ARCADIA method’s architecture levels and concepts to use a unified
language through the process and ensure co-engineering. The software tool is in continuous
improvement, a major update is released each year to add new functionalities, and some

Systems 2023, 11, 429 8 of 22

minor versions are delivered to fix bugs. The new functionalities can meet needs associated
with particular fields of systems engineering, such as performance, safety, cost, or mass
analyses. New functionalities as transitions from the system to the subsystem level can be
added. Consequently, particular architectures can be modeled using extensions.

3.2. ARCADIA/Capella Walkthrough

ARCADIA is divided into four main levels and can be adapted to top-down, bottom-
up, and iterative approaches [38]. Each step has its own objectives and advances progres-
sively deeper into the design of the system [4]: Operational Analysis (what system users
need to accomplish; for more details, see Section 5.1.1); System Need Analysis (what the
system must achieve for actors; see Section 5.1.2); Logical Architecture (how the system will
work to meet expectations; see Section 5.1.3); and Physical Architecture (how the system
will be built; see Section 5.1.4). Figure 1 presents the global system V cycle and the local V
cycle of the system architecture stage.

Systems 2023, 11, x FOR PEER REVIEW 7 of 22

use a unified language through the process and ensure co-engineering. The software tool
is in continuous improvement, a major update is released each year to add new
functionalities, and some minor versions are delivered to fix bugs. The new functionalities
can meet needs associated with particular fields of systems engineering, such as
performance, safety, cost, or mass analyses. New functionalities as transitions from the
system to the subsystem level can be added. Consequently, particular architectures can be
modeled using extensions.

3.2. ARCADIA/Capella Walkthrough
ARCADIA is divided into four main levels and can be adapted to top-down, bottom-

up, and iterative approaches [38]. Each step has its own objectives and advances
progressively deeper into the design of the system [4]: Operational Analysis (what system
users need to accomplish; for more details, see Section 5.1.1); System Need Analysis (what
the system must achieve for actors; see Section 5.1.2); Logical Architecture (how the
system will work to meet expectations; see Section 5.1.3); and Physical Architecture (how
the system will be built; see Section 5.1.4). Figure 1 presents the global system V cycle and
the local V cycle of the system architecture stage.

As shown on the left of Figure 1, the ARCADIA method decomposes the system
architecture stage of the V cycle into four steps (corresponding to the Capella 4 levels):
operational analysis, system need analysis, logical architecture, and physical architecture.

Figure 1. V cycle with a focus on the system architecture layer adapted from [39].

ARCADIA is implemented in a dedicated tool, Capella.

4. The Capella Tool
The main interest of Capella is that it maintains consistency and coherency between

the modeling levels: the constituent elements of each level are linked to each other via
traceability links and justification (an example is presented in 5.1.3).

As presented in [4], the purpose of Capella is to support system architecture, a key
stage in system development. According to the ARCADIA method, Capella starts from
the elicitation of the stakeholders' needs, and it guides the design process until the
exploration of the different technological and architectural possibilities of the solution
domain is realized. Through the method at different levels, it allows a graphical,
organized, and simplified understanding of the design stage.

Capella proposes a metamodel that can be used in different ways. Among them, the
most common consists of following the classical top-down ARCADIA process (see the
case study in Section 5.1) from the operational analysis to the physical architecture when
designing a new system. Capella also allows performing a bottom-up method for retro-

Figure 1. V cycle with a focus on the system architecture layer adapted from [39].

As shown on the left of Figure 1, the ARCADIA method decomposes the system archi-
tecture stage of the V cycle into four steps (corresponding to the Capella
4 levels): operational analysis, system need analysis, logical architecture, and
physical architecture.

ARCADIA is implemented in a dedicated tool, Capella.

4. The Capella Tool

The main interest of Capella is that it maintains consistency and coherency between
the modeling levels: the constituent elements of each level are linked to each other via
traceability links and justification (an example is presented in Section 5.1.3).

As presented in [4], the purpose of Capella is to support system architecture, a key
stage in system development. According to the ARCADIA method, Capella starts from the
elicitation of the stakeholders’ needs, and it guides the design process until the exploration
of the different technological and architectural possibilities of the solution domain is
realized. Through the method at different levels, it allows a graphical, organized, and
simplified understanding of the design stage.

Capella proposes a metamodel that can be used in different ways. Among them, the
most common consists of following the classical top-down ARCADIA process
(see the case study in Section 5.1) from the operational analysis to the physical archi-
tecture when designing a new system. Capella also allows performing a bottom-up method
for retro-engineering (see the case study in Section 5.2) when the system development is
based on an already existing system or on its parts. Finally, the tool can be used to solve
a specific problem by analyzing only one level (for example, an interface problem can be
analyzed at the logical architecture level).

Systems 2023, 11, 429 9 of 22

Being very guided by the ARCADIA method, the Capella tool allows the creation of
different elements (diagrams, activities, interactions, actors, capacities) that are adapted
to each step of the method. As shown in Figure 2, some tools are provided by Capella to
facilitate the handling of the software tool. The Activity Explorer displays the different
levels of architecture, with shortcuts to create associated diagrams within those levels and
facilitate the transitions between levels. The Semantic Browser allows navigating through-
out the model. When an element is selected, it displays all the involved relationships and
references existing within the model. The Project Explorer represents the tree of the Capella
project, listing all the diagrams and elements created by the user. Properties displays all
the properties of a selected element of the model. Information provides a quick debugging
solution for model validation, indicates the type of error and the associated rule that is
lacking in compliance, and allows checking the selection for error messages or warnings.

Systems 2023, 11, x FOR PEER REVIEW 8 of 22

engineering (see the case study in Section 5.2) when the system development is based on
an already existing system or on its parts. Finally, the tool can be used to solve a specific
problem by analyzing only one level (for example, an interface problem can be analyzed
at the logical architecture level).

Being very guided by the ARCADIA method, the Capella tool allows the creation of
different elements (diagrams, activities, interactions, actors, capacities) that are adapted
to each step of the method. As shown in Figure 2, some tools are provided by Capella to
facilitate the handling of the software tool. The Activity Explorer displays the different
levels of architecture, with shortcuts to create associated diagrams within those levels and
facilitate the transitions between levels. The Semantic Browser allows navigating
throughout the model. When an element is selected, it displays all the involved
relationships and references existing within the model. The Project Explorer represents
the tree of the Capella project, listing all the diagrams and elements created by the user.
Properties displays all the properties of a selected element of the model. Information
provides a quick debugging solution for model validation, indicates the type of error and
the associated rule that is lacking in compliance, and allows checking the selection for
error messages or warnings.

Figure 2. Workbench interface of Capella.

The following subsection illustrates the application of the four levels of
ARCADIA/Capella on a simple system.

5. Experimenting ARCADIA/Capella
To illustrate the application of ARCADIA/Capella, we consider the design of a

counter bell, adapted in [40], which is used in hotels to notify the receptionist of the
presence of a client. The system should be accessible to everyone and be operational
during opening hours. There are no technological constraints.

5.1. Top-Down Analysis of the Counter Bell
Hereafter, we apply the methodology step by step and illustrate how we move from

one level to another.

Figure 2. Workbench interface of Capella.

The following subsection illustrates the application of the four levels of ARCA-
DIA/Capella on a simple system.

5. Experimenting ARCADIA/Capella

To illustrate the application of ARCADIA/Capella, we consider the design of a counter
bell, adapted in [40], which is used in hotels to notify the receptionist of the presence of
a client. The system should be accessible to everyone and be operational during opening
hours. There are no technological constraints.

5.1. Top-Down Analysis of the Counter Bell

Hereafter, we apply the methodology step by step and illustrate how we move from
one level to another.

5.1.1. Operational Analysis

First, it is necessary to start with a need analysis, corresponding in Capella to the “Oper-
ational Analysis (OA)”. This step allows for capturing the stakeholders’ needs, independent
of any solution. This means identifying all the operational entities
(Capella’s name for stakeholders) involved in the different stages of the life cycle and

Systems 2023, 11, 429 10 of 22

their interactions with the project. Each entity, whether physical or not, will express
her/his/its needs that are transcribed as an operational activity or a constraint. One of the
particularities of the operational analysis is that the system is not recognized as a modeling
element. It is only at the next level that certain elements (entities and/or operational
activities) will be assigned to the system.

Analyzing the example of the counter bell, three operational entities can be
identified: the client; the receptionist, who are two operational actors (human operational
entities); and a third operational entity, the hotel, hosting the two others. The association of
the client and the receptionist with the operational entity is described in Figure 3, showing
an operational entity breakdown (OEBD) diagram. This diagram is mainly used to list the
operational entities and to show the relationships between them.

Systems 2023, 11, x FOR PEER REVIEW 9 of 22

5.1.1. Operational Analysis
First, it is necessary to start with a need analysis, corresponding in Capella to the

“Operational Analysis (OA)”. This step allows for capturing the stakeholders' needs,
independent of any solution. This means identifying all the operational entities (Capella’s
name for stakeholders) involved in the different stages of the life cycle and their
interactions with the project. Each entity, whether physical or not, will express her/his/its
needs that are transcribed as an operational activity or a constraint. One of the
particularities of the operational analysis is that the system is not recognized as a
modeling element. It is only at the next level that certain elements (entities and/or
operational activities) will be assigned to the system.

Analyzing the example of the counter bell, three operational entities can be identified:
the client; the receptionist, who are two operational actors (human operational entities);
and a third operational entity, the hotel, hosting the two others. The association of the
client and the receptionist with the operational entity is described in Figure 3, showing an
operational entity breakdown (OEBD) diagram. This diagram is mainly used to list the
operational entities and to show the relationships between them.

Figure 3. Operational Entity Break Down (OEBD) diagram of the bell.

Figure 3 shows the operational actors contained in the hotel. This corresponds to
what is described in the OEBD diagram in Figure 3. The client notifies the receptionist of
his arrival at the counter by using an audible signal, and the receptionist comes to
welcome the guest in response. ‘Notify the receptionist’ (the same for ‘Welcome the
client’) is represented by an operational activity (orange rectangle) inside the box ‘Client’
in Figure 4. This corresponds to an allocation relation, meaning that the operational
activity is allocated to the client entity. Moreover, between activities, an operational
interaction named ‘Signal’ appears. It corresponds to an exchange of information between
the operational activities. To complete the OAB diagram, it is possible to add
communication means between the operational entities. Here, the client can notify the
receptionist with the sound.

Figure 4. Operational Architecture Blank (OAB) diagram of the counter bell.

Once this step is completed, all the created elements are listed in the project explorer
(as shown in Figure 5), where they are automatically sorted by Capella (unlike the Cameo
Systems Modeler, for example). If the project were more complex, there would be more
operational entities, more operational interactions, and more possible operational

Figure 3. Operational Entity Break Down (OEBD) diagram of the bell.

Figure 3 shows the operational actors contained in the hotel. This corresponds to what
is described in the OEBD diagram in Figure 3. The client notifies the receptionist of his
arrival at the counter by using an audible signal, and the receptionist comes to welcome
the guest in response. ‘Notify the receptionist’ (the same for ‘Welcome the client’) is
represented by an operational activity (orange rectangle) inside the box ‘Client’ in Figure 4.
This corresponds to an allocation relation, meaning that the operational activity is allocated
to the client entity. Moreover, between activities, an operational interaction named ‘Signal’
appears. It corresponds to an exchange of information between the operational activities.
To complete the OAB diagram, it is possible to add communication means between the
operational entities. Here, the client can notify the receptionist with the sound.

Systems 2023, 11, x FOR PEER REVIEW 9 of 22

5.1.1. Operational Analysis
First, it is necessary to start with a need analysis, corresponding in Capella to the

“Operational Analysis (OA)”. This step allows for capturing the stakeholders' needs,
independent of any solution. This means identifying all the operational entities (Capella’s
name for stakeholders) involved in the different stages of the life cycle and their
interactions with the project. Each entity, whether physical or not, will express her/his/its
needs that are transcribed as an operational activity or a constraint. One of the
particularities of the operational analysis is that the system is not recognized as a
modeling element. It is only at the next level that certain elements (entities and/or
operational activities) will be assigned to the system.

Analyzing the example of the counter bell, three operational entities can be identified:
the client; the receptionist, who are two operational actors (human operational entities);
and a third operational entity, the hotel, hosting the two others. The association of the
client and the receptionist with the operational entity is described in Figure 3, showing an
operational entity breakdown (OEBD) diagram. This diagram is mainly used to list the
operational entities and to show the relationships between them.

Figure 3. Operational Entity Break Down (OEBD) diagram of the bell.

Figure 3 shows the operational actors contained in the hotel. This corresponds to
what is described in the OEBD diagram in Figure 3. The client notifies the receptionist of
his arrival at the counter by using an audible signal, and the receptionist comes to
welcome the guest in response. ‘Notify the receptionist’ (the same for ‘Welcome the
client’) is represented by an operational activity (orange rectangle) inside the box ‘Client’
in Figure 4. This corresponds to an allocation relation, meaning that the operational
activity is allocated to the client entity. Moreover, between activities, an operational
interaction named ‘Signal’ appears. It corresponds to an exchange of information between
the operational activities. To complete the OAB diagram, it is possible to add
communication means between the operational entities. Here, the client can notify the
receptionist with the sound.

Figure 4. Operational Architecture Blank (OAB) diagram of the counter bell.

Once this step is completed, all the created elements are listed in the project explorer
(as shown in Figure 5), where they are automatically sorted by Capella (unlike the Cameo
Systems Modeler, for example). If the project were more complex, there would be more
operational entities, more operational interactions, and more possible operational

Figure 4. Operational Architecture Blank (OAB) diagram of the counter bell.

Once this step is completed, all the created elements are listed in the project explorer
(as shown in Figure 5), where they are automatically sorted by Capella (unlike the Cameo
Systems Modeler, for example). If the project were more complex, there would be more
operational entities, more operational interactions, and more possible operational sce-
narios (a scenario describes the behavior of entities and/or operational activities in a
specific context [8]). In this case, it would have been interesting to create specific capacities
(a capacity is a modeling element that provides a high level of service to achieve an opera-
tional objective [8]) and scenarios for each situation that the system may encounter.

Systems 2023, 11, 429 11 of 22

Systems 2023, 11, x FOR PEER REVIEW 10 of 22

scenarios (a scenario describes the behavior of entities and/or operational activities in a
specific context [8]). In this case, it would have been interesting to create specific capacities
(a capacity is a modeling element that provides a high level of service to achieve an
operational objective [8]) and scenarios for each situation that the system may encounter.

Figure 5. Project explorer of the counter bell.

5.1.2. System Analysis
After defining all entities that will participate in the mission, the next phase, called

system analysis (SA), aims at identifying functions (behaviors or services) that will satisfy
the operational needs defined in the previous level [8]. The Capella tool allows automatic
transitions between the different analysis layers. In this way, all operational entities with
associated activities become actors with associated functions at this level.

In contrast to the OA, the SA introduces the notion of a system, which represents an
organized group of elements that work as a unit (black box). The main idea of this phase
is to understand what the boundaries of our system are; that is, which functions will
finally be allocated to the system and which ones will continue to be allocated to the
external elements, the actors. Therefore, at this level, the identification of the system is
accomplished through its interactions with all actors. The exchanges of information or
matter between the functions are allocated to the system (which becomes ‘system
function’) or allocated to the actors that are named ‘functional exchanges’. Finally, Capella
allows creating channels that circulate the exchanges between the system and the actors,
which are called ‘component exchanges’.

In the counter bell example, all previously defined elements (in the OA level) can be
represented in a system analysis blank (SAB) diagram (see Figure 6). In this way, the
system (the doorbell) and the actors (the client and the receptionist) are represented as
blue boxes. Moreover, we assumed at the operational analysis level that there is a sound
signal between the client and the receptionist. In the system analysis, the sound signal will
pass through the mechanical counter bell. We then add a series of functions to the SAB
diagram that we allocate to the counter bell system. These functions are as follows (see
Figure 6):
 Ring: transmits the system’s sound signal to the receptionist;
 Activating the ringer: receives the client’s ‘activation order’ to ring the counter bell

and transmits it to the ring function;
 Stop the ringing after a while: receives the ‘ringing start time’ and transmits a stop

signal ‘end of ringing’ after a certain amount of time.

Figure 5. Project explorer of the counter bell.

5.1.2. System Analysis

After defining all entities that will participate in the mission, the next phase, called
system analysis (SA), aims at identifying functions (behaviors or services) that will satisfy
the operational needs defined in the previous level [8]. The Capella tool allows automatic
transitions between the different analysis layers. In this way, all operational entities with
associated activities become actors with associated functions at this level.

In contrast to the OA, the SA introduces the notion of a system, which represents an
organized group of elements that work as a unit (black box). The main idea of this phase is
to understand what the boundaries of our system are; that is, which functions will finally
be allocated to the system and which ones will continue to be allocated to the external
elements, the actors. Therefore, at this level, the identification of the system is accomplished
through its interactions with all actors. The exchanges of information or matter between
the functions are allocated to the system (which becomes ‘system function’) or allocated
to the actors that are named ‘functional exchanges’. Finally, Capella allows creating chan-
nels that circulate the exchanges between the system and the actors, which are called
‘component exchanges’.

In the counter bell example, all previously defined elements (in the OA level) can
be represented in a system analysis blank (SAB) diagram (see Figure 6). In this way, the
system (the doorbell) and the actors (the client and the receptionist) are represented as blue
boxes. Moreover, we assumed at the operational analysis level that there is a sound signal
between the client and the receptionist. In the system analysis, the sound signal will pass
through the mechanical counter bell. We then add a series of functions to the SAB diagram
that we allocate to the counter bell system. These functions are as follows (see Figure 6):

• Ring: transmits the system’s sound signal to the receptionist;
• Activating the ringer: receives the client’s ‘activation order’ to ring the counter bell

and transmits it to the ring function;
• Stop the ringing after a while: receives the ‘ringing start time’ and transmits a stop

signal ‘end of ringing’ after a certain amount of time.

Systems 2023, 11, x FOR PEER REVIEW 11 of 22

Figure 6. System Analysis Blank (SAB) diagram of the counter bell.

Finally, to refine the model of the counter bell, it is also possible to clarify the
interfaces between the system and the external actors by adding component exchanges,
namely, ‘client UI’ and ‘sound wave’ (see Figure 6).

The SAB diagram is a static representation, and it does not consider the time
constraints that could exist in the functional analysis. However, the ‘stop ringing’ function
is triggered 30 s after the ‘ring’, which will constrain the choice of architecture in the next
phase. To describe the temporal behavior of the system, scenario diagrams are available
from this phase. As shown in Figure 7, the exchange scenario diagram illustrates not only
the exchanges that take place between the different actors and the system, but also the
types of activation (a duration of 30 s between two activities, for example).

Figure 7. Exchange Scenario (ES) of the counter bell.

Note: as this example does not present any major difficulty for its understanding, we
will not describe any other diagrams in detail.

This level of analysis provides an accessible approach for inexperienced systems
engineers. The notion of function is clearly established as presented in [36] and allows us
to obtain a closer view of the theoretical processes of systems engineering. In addition, a
number of semantic elements, such as functional chains, constraints, etc., allows for a
better visibility of the diagrams. Capella allows us to present different views/aspects of
the system according to the aimed stakeholder: indeed, the granularity and the type of
information are different for the engineer and the client.

Figure 6. System Analysis Blank (SAB) diagram of the counter bell.

Systems 2023, 11, 429 12 of 22

Finally, to refine the model of the counter bell, it is also possible to clarify the interfaces
between the system and the external actors by adding component exchanges, namely,
‘client UI’ and ‘sound wave’ (see Figure 6).

The SAB diagram is a static representation, and it does not consider the time constraints
that could exist in the functional analysis. However, the ‘stop ringing’ function is triggered
30 s after the ‘ring’, which will constrain the choice of architecture in the next phase. To
describe the temporal behavior of the system, scenario diagrams are available from this
phase. As shown in Figure 7, the exchange scenario diagram illustrates not only the
exchanges that take place between the different actors and the system, but also the types of
activation (a duration of 30 s between two activities, for example).

Systems 2023, 11, x FOR PEER REVIEW 11 of 22

Figure 6. System Analysis Blank (SAB) diagram of the counter bell.

Finally, to refine the model of the counter bell, it is also possible to clarify the
interfaces between the system and the external actors by adding component exchanges,
namely, ‘client UI’ and ‘sound wave’ (see Figure 6).

The SAB diagram is a static representation, and it does not consider the time
constraints that could exist in the functional analysis. However, the ‘stop ringing’ function
is triggered 30 s after the ‘ring’, which will constrain the choice of architecture in the next
phase. To describe the temporal behavior of the system, scenario diagrams are available
from this phase. As shown in Figure 7, the exchange scenario diagram illustrates not only
the exchanges that take place between the different actors and the system, but also the
types of activation (a duration of 30 s between two activities, for example).

Figure 7. Exchange Scenario (ES) of the counter bell.

Note: as this example does not present any major difficulty for its understanding, we
will not describe any other diagrams in detail.

This level of analysis provides an accessible approach for inexperienced systems
engineers. The notion of function is clearly established as presented in [36] and allows us
to obtain a closer view of the theoretical processes of systems engineering. In addition, a
number of semantic elements, such as functional chains, constraints, etc., allows for a
better visibility of the diagrams. Capella allows us to present different views/aspects of
the system according to the aimed stakeholder: indeed, the granularity and the type of
information are different for the engineer and the client.

Figure 7. Exchange Scenario (ES) of the counter bell.

Note: as this example does not present any major difficulty for its understanding, we
will not describe any other diagrams in detail.

This level of analysis provides an accessible approach for inexperienced systems
engineers. The notion of function is clearly established as presented in [36] and allows us
to obtain a closer view of the theoretical processes of systems engineering. In addition,
a number of semantic elements, such as functional chains, constraints, etc., allows for a
better visibility of the diagrams. Capella allows us to present different views/aspects of
the system according to the aimed stakeholder: indeed, the granularity and the type of
information are different for the engineer and the client.

5.1.3. Logical Architecture

After the system analysis, a logical architecture must be made. The goal of this level is
to remain independent of the final physical implementation and its technology. Therefore,
the components presented in this phase can be suitable for several further solutions.

To present the architecture of the counter bell example, a LAB (logical architecture
blank) diagram can be built, as shown in Figure 8. In this diagram, we recognize our
system, the ‘counter bell’, which now contains logical components (structural elements
of the system that can interact with other components or actors), such as the ‘activation
receiver’. At this architecture level, we find the equivalent elements of the SA level. Thus,

Systems 2023, 11, 429 13 of 22

the functions become logical functions, and the actors become logical actors. For example,
the logical actor ‘client’ can ‘ring the bell’.

Systems 2023, 11, x FOR PEER REVIEW 12 of 22

5.1.3. Logical Architecture
After the system analysis, a logical architecture must be made. The goal of this level

is to remain independent of the final physical implementation and its technology.
Therefore, the components presented in this phase can be suitable for several further
solutions.

To present the architecture of the counter bell example, a LAB (logical architecture
blank) diagram can be built, as shown in Figure 8. In this diagram, we recognize our
system, the ‘counter bell’, which now contains logical components (structural elements of
the system that can interact with other components or actors), such as the ‘activation
receiver’. At this architecture level, we find the equivalent elements of the SA level. Thus,
the functions become logical functions, and the actors become logical actors. For example,
the logical actor ‘client’ can ‘ring the bell’.

As shown in Figure 8, certain functions have been added according to system
analysis, such as ‘receive the activation order’. This was necessary because to be able to
activate the ringer, the system had to be able to receive the activation order. However,
these two actions require two different components, and, therefore, two different logical
functions.

Figure 8. Logical Architecture Blank (LAB) diagram of the counter bell.

Additionally, although the logical architecture is the first step in the world of the
solution, the names given to the components or functions are still generic. The objective
of this step is to avoid orienting the technological choice of the solution and to allow
everyone to propose their ideas based on the same logical architecture.

Moreover, with the progress of the project, it is possible to forget some of the
allocations previously made or the links between some elements. Therefore, the Semantic
Browser (see Figure 9) allows checking the traceability of information between levels.

If we take the example of the logical function ‘activate the ringer’, we can find that,
thanks to the Semantic Browser, this function comes from the system level. Here, we
notice that it realizes the system function ‘activate the ringer’ and that it is allocated to the
logical component ‘ring manager’. We can also examine its inputs and outputs. As shown
in Figure 9, the logical function ‘activate the ringer’ receives a functional exchange called
‘activation’ from the logical function ‘receive the activation order’ and sends two pieces
of information called ‘beginning of ringing’ and ‘ringing start time’ to two other logical
functions.

Figure 8. Logical Architecture Blank (LAB) diagram of the counter bell.

As shown in Figure 8, certain functions have been added according to system analysis,
such as ‘receive the activation order’. This was necessary because to be able to activate the
ringer, the system had to be able to receive the activation order. However, these two actions
require two different components, and, therefore, two different logical functions.

Additionally, although the logical architecture is the first step in the world of the
solution, the names given to the components or functions are still generic. The objective of
this step is to avoid orienting the technological choice of the solution and to allow everyone
to propose their ideas based on the same logical architecture.

Moreover, with the progress of the project, it is possible to forget some of the allocations
previously made or the links between some elements. Therefore, the Semantic Browser
(see Figure 9) allows checking the traceability of information between levels.

Systems 2023, 11, x FOR PEER REVIEW 13 of 22

Figure 9. Semantic Browser of the ‘Activate the ringer’ function.

Another advantage of Capella diagrams lies in the offer of building matrices. They
can be generated at each step. They allow us to display the different relationships between
the elements of the model and facilitate verification. This way, at the logical layer, we can
check that each logical function is associated with a unique component and that each
component has at least one associated logical function. An example is shown in Figure 10.

Figure 10. Logical Components/Actors—Logical Functions Matrix.

The logical architecture is the entry point into the solution world, without
considering a particular technological solution. We can start evaluating the system,
performing the safety analysis, and preparing the verification and validation steps. Co-
engineering and cross-functional fields of systems engineering must be used to develop
the optimal solution.

5.1.4. Physical Architecture
The physical architecture allows someone to understand how the system is built and

what it is composed of. Thus, we find the logical functions and components in the physical
system. Depending on the choice made for the solution, it is possible to modify the names
and assignments of certain components and functions.

For example, in this case study, the counter bell is a mechanical bell, so we could have
the architecture shown in the Physical Architecture Blank (PAB) in Figure 11. The
activation receiver would become the push button, the ringer manager would become the
hammer, and the sound transmitter would become the dome. These elements are
represented as the blue boxes in Figure 11. There may be changes in the function
assignments depending on the nature of the components (by its nature, the dome will
manage stopping the ringing).

As shown in Figure 11, we add a new element, the pedestal (the box included in the
mechanical counter bell) because all other components are positioned on this element.
Moreover, we can see in Figure 11 that there are two types of components: the physical
component (PC) nodes (in yellow), representing the physical elements in the material
sense of the term, and deployed PCs (in blue), which are behavioral physical components.

Figure 9. Semantic Browser of the ‘Activate the ringer’ function.

If we take the example of the logical function ‘activate the ringer’, we can find that,
thanks to the Semantic Browser, this function comes from the system level. Here, we
notice that it realizes the system function ‘activate the ringer’ and that it is allocated to
the logical component ‘ring manager’. We can also examine its inputs and outputs. As
shown in Figure 9, the logical function ‘activate the ringer’ receives a functional exchange
called ‘activation’ from the logical function ‘receive the activation order’ and sends two
pieces of information called ‘beginning of ringing’ and ‘ringing start time’ to two other
logical functions.

Another advantage of Capella diagrams lies in the offer of building matrices. They can
be generated at each step. They allow us to display the different relationships between the

Systems 2023, 11, 429 14 of 22

elements of the model and facilitate verification. This way, at the logical layer, we can check
that each logical function is associated with a unique component and that each component
has at least one associated logical function. An example is shown in Figure 10.

Systems 2023, 11, x FOR PEER REVIEW 13 of 22

Figure 9. Semantic Browser of the ‘Activate the ringer’ function.

Another advantage of Capella diagrams lies in the offer of building matrices. They
can be generated at each step. They allow us to display the different relationships between
the elements of the model and facilitate verification. This way, at the logical layer, we can
check that each logical function is associated with a unique component and that each
component has at least one associated logical function. An example is shown in Figure 10.

Figure 10. Logical Components/Actors—Logical Functions Matrix.

The logical architecture is the entry point into the solution world, without
considering a particular technological solution. We can start evaluating the system,
performing the safety analysis, and preparing the verification and validation steps. Co-
engineering and cross-functional fields of systems engineering must be used to develop
the optimal solution.

5.1.4. Physical Architecture
The physical architecture allows someone to understand how the system is built and

what it is composed of. Thus, we find the logical functions and components in the physical
system. Depending on the choice made for the solution, it is possible to modify the names
and assignments of certain components and functions.

For example, in this case study, the counter bell is a mechanical bell, so we could have
the architecture shown in the Physical Architecture Blank (PAB) in Figure 11. The
activation receiver would become the push button, the ringer manager would become the
hammer, and the sound transmitter would become the dome. These elements are
represented as the blue boxes in Figure 11. There may be changes in the function
assignments depending on the nature of the components (by its nature, the dome will
manage stopping the ringing).

As shown in Figure 11, we add a new element, the pedestal (the box included in the
mechanical counter bell) because all other components are positioned on this element.
Moreover, we can see in Figure 11 that there are two types of components: the physical
component (PC) nodes (in yellow), representing the physical elements in the material
sense of the term, and deployed PCs (in blue), which are behavioral physical components.

Figure 10. Logical Components/Actors—Logical Functions Matrix.

The logical architecture is the entry point into the solution world, without considering
a particular technological solution. We can start evaluating the system, performing the
safety analysis, and preparing the verification and validation steps. Co-engineering and
cross-functional fields of systems engineering must be used to develop the optimal solution.

5.1.4. Physical Architecture

The physical architecture allows someone to understand how the system is built and
what it is composed of. Thus, we find the logical functions and components in the physical
system. Depending on the choice made for the solution, it is possible to modify the names
and assignments of certain components and functions.

For example, in this case study, the counter bell is a mechanical bell, so we could have
the architecture shown in the Physical Architecture Blank (PAB) in Figure 11. The activation
receiver would become the push button, the ringer manager would become the hammer,
and the sound transmitter would become the dome. These elements are represented as the
blue boxes in Figure 11. There may be changes in the function assignments depending on
the nature of the components (by its nature, the dome will manage stopping the ringing).

Systems 2023, 11, x FOR PEER REVIEW 14 of 22

Figure 11. Physical Architecture Blank (PAB) of the counter bell.

Based on this case study, this section presented how the ARCADIA method guides
the top-down architectural design process of a system. By following the different steps
and using the main diagrams of the application, we managed to represent the system
accurately. Later, this representation can be used to develop the components of the
solution and to define the test sequences.

However, in a situation where a physical system already exists but the solution needs
to evolve, if we have the models of the system, especially the physical architecture model,
then we can adopt a bottom-up approach. To illustrate this situation, Section 5.2 considers
the example of the doorbell to show that ARCADIA/Capella can be used not only to
perform an initial design of a technical system, but also to make an existing system design
evolve by retro-engineering following a bottom-up approach.

5.2. Retro-Engineering of the Counter Bell
Let us consider that the hotel owner (the customer who ordered the product) changes

his mind and asks for the doorbell to be electronic. The stakeholders and their needs
remain the same. Therefore, the physical layer is no longer adapted to the needs; however,
we can reuse Capella’s logical layer to propose a new technological solution.

One solution could be to replace the dome and the hammer with a buzzer and an
Arduino card, respectively, as shown in Figure 12. In this solution, a power manager has
also been added. As several physical component nodes have been introduced, physical
links between them are necessary to allow the exchanges between the functions via
component exchanges (for example, the buzzer manager and the buzzer will exchange
buzzer commands via a cable). They appear in red in Figure 12.

Figure 11. Physical Architecture Blank (PAB) of the counter bell.

As shown in Figure 11, we add a new element, the pedestal (the box included in
the mechanical counter bell) because all other components are positioned on this element.

Systems 2023, 11, 429 15 of 22

Moreover, we can see in Figure 11 that there are two types of components: the physical
component (PC) nodes (in yellow), representing the physical elements in the material sense
of the term, and deployed PCs (in blue), which are behavioral physical components.

Based on this case study, this section presented how the ARCADIA method guides
the top-down architectural design process of a system. By following the different steps and
using the main diagrams of the application, we managed to represent the system accurately.
Later, this representation can be used to develop the components of the solution and to
define the test sequences.

However, in a situation where a physical system already exists but the solution needs
to evolve, if we have the models of the system, especially the physical architecture model,
then we can adopt a bottom-up approach. To illustrate this situation, Section 5.2 considers
the example of the doorbell to show that ARCADIA/Capella can be used not only to
perform an initial design of a technical system, but also to make an existing system design
evolve by retro-engineering following a bottom-up approach.

5.2. Retro-Engineering of the Counter Bell

Let us consider that the hotel owner (the customer who ordered the product) changes
his mind and asks for the doorbell to be electronic. The stakeholders and their needs remain
the same. Therefore, the physical layer is no longer adapted to the needs; however, we can
reuse Capella’s logical layer to propose a new technological solution.

One solution could be to replace the dome and the hammer with a buzzer and an
Arduino card, respectively, as shown in Figure 12. In this solution, a power manager has
also been added. As several physical component nodes have been introduced, physical
links between them are necessary to allow the exchanges between the functions via compo-
nent exchanges (for example, the buzzer manager and the buzzer will exchange buzzer
commands via a cable). They appear in red in Figure 12.

Systems 2023, 11, x FOR PEER REVIEW 15 of 22

Figure 12. Electronic counter bell PAB.

This example shows that we can easily obtain another implementation of the same
expressed needs by re-engineering a physical solution from the reuse of its logical layer.

In this case study, we started with an existing physical model to recreate a new
model. However, there are other bottom-up approaches in industrial projects. It is
common to have a design team working directly on a prototype physical architecture
(components, controllers, sensors) and a system team defining maturing system functions.
Then, reconciliation between the system functions and the physical architecture must
occur. These parallel activities cause a bottom-up approach when the project requires fast
development.

6. Industrial Feedback on ARCADIA/Capella and Advanced Features
Even if this work primarily focuses on the support of the researcher and the

practitioner using a tool-supported method and not on showing the features of the tool,
this section, however, extends our conclusions with some feedback on the problems
encountered by industrial practitioners of ARCADIA/Capella and on interests they found
when using it to develop a project. To achieve this goal, we analyzed the online Capella
forums and conducted a survey among a panel of industry practitioners. We therefore
obtained some information on the practitioners, as well as on limitations and expressed
needs related to the achievement of more complex projects.

Our survey was carried out over a three-month period between July and September
2020. More than 400 organizations worldwide using Capella have been identified by [41].
This number is growing exponentially, as shown in Figure 13.

Figure 12. Electronic counter bell PAB.

This example shows that we can easily obtain another implementation of the same
expressed needs by re-engineering a physical solution from the reuse of its logical layer.

In this case study, we started with an existing physical model to recreate a new model.
However, there are other bottom-up approaches in industrial projects. It is common to
have a design team working directly on a prototype physical architecture (components,

Systems 2023, 11, 429 16 of 22

controllers, sensors) and a system team defining maturing system functions. Then, recon-
ciliation between the system functions and the physical architecture must occur. These
parallel activities cause a bottom-up approach when the project requires fast development.

6. Industrial Feedback on ARCADIA/Capella and Advanced Features

Even if this work primarily focuses on the support of the researcher and the practitioner
using a tool-supported method and not on showing the features of the tool, this section,
however, extends our conclusions with some feedback on the problems encountered by
industrial practitioners of ARCADIA/Capella and on interests they found when using
it to develop a project. To achieve this goal, we analyzed the online Capella forums and
conducted a survey among a panel of industry practitioners. We therefore obtained some
information on the practitioners, as well as on limitations and expressed needs related to
the achievement of more complex projects.

Our survey was carried out over a three-month period between July and September
2020. More than 400 organizations worldwide using Capella have been identified by [41].
This number is growing exponentially, as shown in Figure 13.

Systems 2023, 11, x FOR PEER REVIEW 16 of 22

Figure 13. Identified organizations using Capella [41].

Among them, we identified a panel of companies that consisted of users having
different profiles in terms of geographical location, company size, and line of business.
ARCADIA/Capella is indeed used in different fields of application, such as railways
(Bombardier, SNCF [38]), aviation (Rolls-Royce [42]), aerospace (ArianeGroup [43]),
automotive (Continental [44]), and energy (Framatome [45]). In this expanding ecosystem,
organizations such as OBEO provide help and support to new users [10].

To proceed with this survey, we identified potential contacts either on LinkedIn, via
internet searches, through participating in conferences, and from the online list of
practitioners listed on the Clarity Ecosystem website. We ended up with a selection of
thirty systems engineers. Among them, approximately fifteen engineers answered, with a
variety of opinions. The collection of feedback was performed via a survey and interviews.
A first set of generic questions aimed to give context of the company (size, activity sector,
location, etc.). The main goal of the developed questions was to determine why the
engineers interviewed were using Capella rather than other MBSE software and what, in
their opinion, were the advantages and limitations. Depending on their use, we followed
up with specific questions that included additional details, such as the use of add-ons, or
the use of Capella following a bottom-up approach.

Figure 14 shows the distribution of identified Capella users according to the lines of
business. It gives an idea of the impact of Capella in engineering: there is no specific sector
in which this software is used; this domain independence can be an asset.

Figure 14. Lines of business of Capella users.

Figure 13. Identified organizations using Capella [41].

Among them, we identified a panel of companies that consisted of users having
different profiles in terms of geographical location, company size, and line of business.
ARCADIA/Capella is indeed used in different fields of application, such as railways
(Bombardier, SNCF [38]), aviation (Rolls-Royce [42]), aerospace (ArianeGroup [43]), au-
tomotive (Continental [44]), and energy (Framatome [45]). In this expanding ecosystem,
organizations such as OBEO provide help and support to new users [10].

To proceed with this survey, we identified potential contacts either on LinkedIn,
via internet searches, through participating in conferences, and from the online list of
practitioners listed on the Clarity Ecosystem website. We ended up with a selection of
thirty systems engineers. Among them, approximately fifteen engineers answered, with a
variety of opinions. The collection of feedback was performed via a survey and interviews.
A first set of generic questions aimed to give context of the company (size, activity sector,
location, etc.). The main goal of the developed questions was to determine why the
engineers interviewed were using Capella rather than other MBSE software and what, in
their opinion, were the advantages and limitations. Depending on their use, we followed
up with specific questions that included additional details, such as the use of add-ons, or
the use of Capella following a bottom-up approach.

Figure 14 shows the distribution of identified Capella users according to the lines of
business. It gives an idea of the impact of Capella in engineering: there is no specific sector
in which this software is used; this domain independence can be an asset.

Systems 2023, 11, 429 17 of 22

Systems 2023, 11, x FOR PEER REVIEW 16 of 22

Figure 13. Identified organizations using Capella [41].

Among them, we identified a panel of companies that consisted of users having
different profiles in terms of geographical location, company size, and line of business.
ARCADIA/Capella is indeed used in different fields of application, such as railways
(Bombardier, SNCF [38]), aviation (Rolls-Royce [42]), aerospace (ArianeGroup [43]),
automotive (Continental [44]), and energy (Framatome [45]). In this expanding ecosystem,
organizations such as OBEO provide help and support to new users [10].

To proceed with this survey, we identified potential contacts either on LinkedIn, via
internet searches, through participating in conferences, and from the online list of
practitioners listed on the Clarity Ecosystem website. We ended up with a selection of
thirty systems engineers. Among them, approximately fifteen engineers answered, with a
variety of opinions. The collection of feedback was performed via a survey and interviews.
A first set of generic questions aimed to give context of the company (size, activity sector,
location, etc.). The main goal of the developed questions was to determine why the
engineers interviewed were using Capella rather than other MBSE software and what, in
their opinion, were the advantages and limitations. Depending on their use, we followed
up with specific questions that included additional details, such as the use of add-ons, or
the use of Capella following a bottom-up approach.

Figure 14 shows the distribution of identified Capella users according to the lines of
business. It gives an idea of the impact of Capella in engineering: there is no specific sector
in which this software is used; this domain independence can be an asset.

Figure 14. Lines of business of Capella users. Figure 14. Lines of business of Capella users.

Figure 15 shows that the main contributors to the survey are French, and most of them
are European, which can also represent a bias of the survey; however, we obtained a few
answers from the USA and Brazil, therefore revealing the following.

Systems 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 15 shows that the main contributors to the survey are French, and most of
them are European, which can also represent a bias of the survey; however, we obtained
a few answers from the USA and Brazil, therefore revealing the following.

Figure 15. Geographical distribution of contributors to the survey.

In addition, as shown in Figure 16, this software is not used exclusively by companies
of a specific size, though a plurality of Capella’s customers are large companies.

Figure 16. Company size distribution.

Through the survey feedback, we were able to gather several useful pieces of
information and collect different points of view, which led us to several detailed insights
about the benefits and limitations of using ARCADIA/Capella and some pathways to
make the tool evolve, as presented below.

6.1. Highlighted Features
This section will present some features highlighted by the engineers interviewed. The

topics that were most frequently mentioned will be discussed: flexibility, simplicity,
traceability, visual tool, and open-source tool. Section 5.2 will illustrate some of these
limitations that can be solved by the use of add-ons.

6.1.1. Flexibility
The first major benefit discussed is the flexibility of the software. Capella is a tool

capable of adapting to companies and projects. It is not specific to a standard. For example,
the tool can be used in automotive or aeronautics fields, indicating that it is possible to
model systems from different fields of application. As shown in Figure 14, whether it is

Figure 15. Geographical distribution of contributors to the survey.

In addition, as shown in Figure 16, this software is not used exclusively by companies
of a specific size, though a plurality of Capella’s customers are large companies.

Systems 2023, 11, x FOR PEER REVIEW 17 of 22

Figure 15 shows that the main contributors to the survey are French, and most of
them are European, which can also represent a bias of the survey; however, we obtained
a few answers from the USA and Brazil, therefore revealing the following.

Figure 15. Geographical distribution of contributors to the survey.

In addition, as shown in Figure 16, this software is not used exclusively by companies
of a specific size, though a plurality of Capella’s customers are large companies.

Figure 16. Company size distribution.

Through the survey feedback, we were able to gather several useful pieces of
information and collect different points of view, which led us to several detailed insights
about the benefits and limitations of using ARCADIA/Capella and some pathways to
make the tool evolve, as presented below.

6.1. Highlighted Features
This section will present some features highlighted by the engineers interviewed. The

topics that were most frequently mentioned will be discussed: flexibility, simplicity,
traceability, visual tool, and open-source tool. Section 5.2 will illustrate some of these
limitations that can be solved by the use of add-ons.

6.1.1. Flexibility
The first major benefit discussed is the flexibility of the software. Capella is a tool

capable of adapting to companies and projects. It is not specific to a standard. For example,
the tool can be used in automotive or aeronautics fields, indicating that it is possible to
model systems from different fields of application. As shown in Figure 14, whether it is

Figure 16. Company size distribution.

Through the survey feedback, we were able to gather several useful pieces of informa-
tion and collect different points of view, which led us to several detailed insights about the
benefits and limitations of using ARCADIA/Capella and some pathways to make the tool
evolve, as presented below.

Systems 2023, 11, 429 18 of 22

6.1. Highlighted Features

This section will present some features highlighted by the engineers interviewed.
The topics that were most frequently mentioned will be discussed: flexibility, simplicity,
traceability, visual tool, and open-source tool. Section 5.2 will illustrate some of these
limitations that can be solved by the use of add-ons.

6.1.1. Flexibility

The first major benefit discussed is the flexibility of the software. Capella is a tool
capable of adapting to companies and projects. It is not specific to a standard. For example,
the tool can be used in automotive or aeronautics fields, indicating that it is possible
to model systems from different fields of application. As shown in Figure 14, whether
it is being used for nuclear, space, or telecommunications settings, Capella can model
these systems.

This flexibility can also be found in the presence of projects that do not require an
end-to-end systems analysis. Capella can be used at any level of a project: systems of
systems, subsystems, low-level components, or software. It depends on whether the
project requires an operational analysis, a functional analysis, logical architecture, and/or
physical architecture.

It is equally possible to use only one level of modeling if we wish to represent only
the physical or logical layer. Therefore, flexibility exists in the approaches, although the
ARCADIA method, which accompanies Capella, allows top-down, bottom-up, or iterative
approaches, if necessary, as presented in Section 3.2 [38].

However, some industries explain that Capella may not be flexible enough, especially
since a predefined methodology is linked to the tool. The use of functional exchange in
the logical architecture is too generic for some projects. For fast development, the use of
different types of functional exchange (for example, DC or AC electrical power types) will
permit faster development of models and allow for more efficient review with the design
and software teams.

Another limit is the inability to allocate a system function to a physical component
without passing through the logical layer. If the logical layer is considered useless, it is
generally creating additional work.

6.1.2. Simplicity

The language and the software are understandable to beginners. While the abundance
of diagrams and abbreviations takes some practice, engineers unfamiliar with the software
code can more easily manipulate ARCADIA systems engineering concepts. For the less
experienced practitioner, simple training is required, and most of the functionalities can be
learned during on-the-job training. The user is guided in the usage of the tool by the method
itself. Indeed, the method (ARCADIA) is known by the tool (Capella): the methodology is
embedded, which is an advantage over other SysML tools (e.g., Cameo Systems Modeler),
which are more open in their use but less simple. Moreover, the diagram types are similar
between the layers, which makes them easier to learn: structural (SAB, LAB), dynamic (ES,
functional chains), and interface diagrams, for instance.

Simplicity is also expressed in changes. Changing an element in one diagram affects
the rest of the model. Moving the function from component A to component B will affect
the entire layer. In addition, it is easy to reuse a model to evolve a solution. The presence of
the logical layer makes it possible to reuse the same need analysis.

On the other hand, Capella has its own language and its own vocabulary, which is not
entirely in accordance with ISO/IEC 15288. The simplicity allowed by this aspect can lead
to confusion between two entities that do not use the same software or the same method.
For example, the notion of a system of interest does not exist in Capella.

Systems 2023, 11, 429 19 of 22

6.1.3. Traceability

As mentioned in Section 5.1.3, the Semantic Browser is an indispensable asset. When
projects are vast, it is sometimes difficult to retrieve all the information about an element
using a single diagram with a single view. The traceability provided by the Semantic
Browser makes it possible to check the consistency of an element with the layer at which
it is located and with previous layers. This “tool” simplifies and speeds up the search for
accurate and complete information. However, the inability to save versions to be able to
go back to in case of an error may be a problem when decisions need to be reversed; this
shortfall prevents good traceability for the project in question.

6.1.4. Visual Tool

One of Capella’s most important advantages is visualization, which helps to commu-
nicate concepts. Thanks to the homogeneity of the colors, the readability and coherence
of the diagrams between different levels are reinforced. For example, in the case study
presented in Section 4, it can be seen that the operational analysis diagrams have or-
ange, gray, and brown colors, whereas the logical architecture diagrams have green and
blue colors.

Furthermore, a diagram represents one or more points of view of the system but must
be easily readable and understandable. Filters simplify some parts to represent only a
specific view of the model. For example, two functions may have several interactions in
common, but it may be that only one of them is desired in a particular view. Another way
of highlighting a view is the notion of functional chains. By helping to highlight a set of
functions, it makes it easier to read a sequence on static diagrams.

However, some modeling problems require a significant amount of time to restructure
the diagrams. The addition of elements and interactions can lead to the creation of real bags
of nodes on the model. Alternatively, the inclusion of functional chains in Capella could be
optimized for time savings because a manual adjustment of the diagrams is required.

6.1.5. Open-Source Tool

Two parts of this theme emerged from our discussions with the industry. The free-
of-charge aspect promotes its diffusion among systems engineers. Indeed, the evolution
of the ecosystem of users improves the tool with new add-ons and functionalities: The
more actors there are, the more innovation there is. If the users associated with the project
work on the same tool (suppliers, equipment manufacturers, designers, regulators, etc.),
this makes it possible to develop the system in line with all the stakeholders.

Another way to take advantage of Capella is to modify the source code. As a result, it
is possible to adapt the tool to a company, systems engineering team, or specific project.
This would allow for a consistent workflow when using the tool.

However, the fact that Capella is open source can also be seen as a disadvantage.
Indeed, adapting Capella to the projects of certain companies can be complex. ARCA-
DIA/Capella alone is not enough; it must be used in interaction with other tools for good
project realization, in accordance with ISO/IEC 15288. There are add-ons to add new
features and support actions. However, not all of them are from the same development
company, which can cause some problems. Typically, when Capella evolves and version
changes occur, the add-ons owned by other companies do not necessarily follow the move-
ment and are not always compatible with the current version of Capella. This is one of the
disadvantages of open-source software. It is simpler to ensure the continuity of a project by
acquiring a package of tools that allow the development of additional systems engineering
activities (for example, the set of tools developed by IBM).

6.2. Evolution of ARCADIA/Capella

Our survey has highlighted several limitations, some of which can be solved in two
ways: by developing extensions (specific add-ons) or by interconnecting Capella with other
software. This section highlights two limitations raised by the survey:

Systems 2023, 11, 429 20 of 22

• The first limitation (Section 5.1.1) concerns the inability of the basic tool to specify the
different types of functional interactions.

• The second limitation raised in the survey (Section 5.1.3) is related to the lack of
versioning and traceability of the models created with Capella.

To overcome the first limitation, the Thales group has developed an open-source
extension called PVMT (Property Values Management Tools). This extension development
is made possible thanks to the open-source aspect of Capella (Section 6.1.5), with a source
code directly accessible to users, which allows the community of practitioners to adapt
the tool to their needs. The PVMT add-on allows enriching the modeling of complex
systems by defining and setting domain-specific properties on Capella model elements and
changing the graphical aspect of elements according to their property values. As a result of
the creation of domain property models, users can not only specify the graphical style of
their domain properties, but also choose which ones may be displayed on the diagrams.

To overcome the second limitation, some industrial initiatives interconnect Capella
with agile project management tools offering ticket management, to guarantee the trace-
ability of model evolutions with version management tools. For example, Vitesco shared
their experience of interconnecting Capella with Jira and Jenkins tools, resulting in a sys-
tems engineering framework with off-the-shelf, field-proven and mature solutions, which
enables continuous integration and review. This approach can also be enriched with tools
for requirements management, safety assessments, validation, and verification.

7. Conclusions

As model-based systems engineering enhances the ability to capture, analyze, share,
and manage the information associated with the complete product life cycle, many organi-
zations are moving from traditional document-based systems engineering to model-based
systems engineering. Moreover, MBSE extends to domains beyond engineering to support
complex predictive and affect-based modeling that includes the integration of engineering
models with scientific and phenomenology models; social, economic, and political models;
and human behavioral models [46]. We can see the development of several operational
usages and the deep democratization of the MBSE for a wide variety of business areas
and companies.

However, this journey remains challenging and has a huge impact on company prac-
tices and organizations. One of them is the deep gap between theory and practice; for
example, the offer of model-based systems engineering methods and tools available on
the market is still limited. To fill this gap, this paper focused on ARCADIA/Capella, an
open-source method and tool whose use is becoming increasingly widespread in companies.
Its aim is to support the systems engineering researcher and practitioner by exploring the
possibilities offered by this method and its accompanying tool, as well as demonstrating
how it meets the needs of practicing industrialists.

We first introduce and compare the different MBSE methods and tools to determine
their advantages and weaknesses. Then, a detailed presentation of ARCADIA/Capella is
provided to understand it comprehensively. Additionally, we illustrate the usage of Capella
in an industrial case study from engineering and retro-engineering perspectives.

Moreover, five highlighted features of this software tool are identified by engineers
through different case studies and an industrial survey. Generally, we can conclude that
Capella is a powerful MBSE tool that is easy to learn and adaptable to many different
types of projects. In contrast, due to the large number of domains in which the tool can be
used, some weaknesses may appear because some projects or companies may have specific
demands that are not adapted to the generic nature of Capella. These generally give rise to
complementary developments to Capella, which are carried out in very close collaboration
between the company that requests it and the developers of Capella. In this research, we
identified the reactions of the sector, their appreciation of the interests and limitations of
Arcadia/Capella, as well as the evolutions they felt were necessary to bring to the tool to
meet their needs as closely as possible. From this analysis, it seems necessary to invest in

Systems 2023, 11, 429 21 of 22

the way of working on the integration of ARCADIA/Capella with other enterprise tools,
particularly project management tools.

Author Contributions: Conceptualization, C.B.; methodology, C.B.; software, L.G. and V.O.; vali-
dation, C.B., L.G., V.O. and R.X.; formal analysis, C.B., L.G., V.O. and R.X.; writing—original draft
preparation, C.B., L.G., V.O. and R.X.; writing—review and editing, C.B. and R.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request due to restrictions e.g., privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Walden, D.D.; Roedler, G.J.; Forsberg, K. INCOSE systems engineering handbook version 4: Updating the reference for practition-

ers. INCOSE Int. Symp. 2015, 25, 78–686. [CrossRef]
2. Beihoff, B.; Oster, C.; Friedenthal, S.; Paredis, C.; Kemp, D.; Stoewer, H.; Nichols, D.; Wade, J. A World in Motion–Systems

Engineering Vision 2025. INCOSE-SE Leading Indicators Guide. 2014. Available online: https://conference.conflr.com/events/
Demo/showcases/incose/INCOSE-automotive-vision-2025.pdf (accessed on 3 August 2023).

3. Glatt, M.; Sinnwell, C.; Yi, L.; Donohoe, S.; Ravani, B.; Aurich, J.C. Modeling and implementation of a digital twin of material
flows based on physics simulation. J. Manuf. Syst. 2021, 58, 231–245. [CrossRef]

4. Voirin, J.L. Conception Architecturale des Systèmes Basée sur les Modèles Avec la Méthode Arcadia; ISTE Group: London, UK, 2018.
5. Caliò, E.; Di Giorgio, F.; Pasquinelli, M. Deploying Model-Based Systems Engineering in Thales Alenia Space Italia; CIISE: Rome, Italy,

2016; pp. 112–118.
6. Suryadevara, J.; Tiwari, S. Adopting mbse in construction equipment industry: An experience report. In Proceedings of the

25th Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, 4–7 December 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 512–521.

7. Badache, N.; Roques, P. Capella to SysML Bridge: A Tooled-up Methodology for MBSE Interoperability. In Proceedings of the 9th
European Congress on Embedded Real Time Software and Systems (ERTS), Toulouse, France, 29–31 January 2018.

8. Roques, P. Systems Architecture Modeling with the Arcadia Method: A Practical Guide to Capella; Elsevier: Amsterdam,
The Netherlands, 2017.

9. Alai, S.P. Evaluating ARCADIA/Capella vs. OOSEM/SysML for System Architecture Development; Purdue University Graduate
School: West Lafayette, IN, USA, 2019.

10. Capella. “Capella—Resources”. Available online: https://www.eclipse.org/capella/resources.html (accessed on
15 January 2022).

11. Sillitto, H.; Martin, J.; McKinney, D.; Griego, R.; Dori, D.; Krob, D.; Godfrey, P.; Arnold, E.; Jackson, S. Systems Engineering and
System Definitions; INCOSE: San Diego, CA, USA, 2019.

12. Maier, M.W. Architecting principles for system of systems. J. Int. Council Syst. Eng. 1998, 1, 267–284. [CrossRef]
13. Rouse, W.B. Engineering complex systems: Implications for research in systems engineering. IEEE Trans. Syst. Man Cybernet. C

2003, 33, 154–156. [CrossRef]
14. Zhang, L.; Zhao, C. Modeling and Simulation Based Systems Engineering: Theory and Practice; World Scientific: Singapore, 2023.
15. Cloutier, R. SEBoK: Guide to the Systems Engineering. 2019. Available online: https://sebokwiki.org/wiki/Guide_to_the_

Systems_Engineering_Body_of_Knowledge_(SEBoK) (accessed on 3 August 2023).
16. Sotelo, K.G. Quality Assurance Methodology for System Requirement Definition; INSA de Toulouse: Toulouse, France, 2019.
17. Ryen, E. Maintenance–ITS Physical Education. In Overview of the System Engineering Process; North Dakota Department of

Transportation: Bismarck, ND, USA, 2008.
18. Laing, C.; David, P.; Blanco, E.; Dorel, X. Questioning integration of verification in model-based systems engineering: An

industrial perspective. Comput. Ind. 2020, 114, 103163. [CrossRef]
19. Liu, J.; Liu, J.; Zhuang, C.; Liu, Z.; Miao, T. Construction method of shop-floor digital twin based on MBSE. J. Manuf. Syst. 2021,

60, 93–118. [CrossRef]
20. Friedenthal, S.; Griego, R.; Sampson, M. INCOSE model based systems engineering (MBSE) initiative. In Proceedings of the

INCOSE 2007 Symposium, San Diego, CA, USA, 24–28 June 2007; p. 11.
21. Bemmami, K.E.; David, P. Managing the use of simulation in systems engineering: An industrial state of practice and a

prioritization method. Comput. Ind. 2021, 131, 103486. [CrossRef]
22. Watson, J.C. Methodology and Metrics. OMG: MBSE Wiki. Available online: http://www.omgwiki.org/MBSE/doku.php?id=

mbse:methodology#List%20of%20MBSE%20Methodologies (accessed on 15 April 2021).
23. Hadi, H.N.; Kurniawan, T.A.; Aknuranda, I. Plug-in for Annotating Semantic Effect on BPMN Business Process Models. J. Infor.

Technol. Comput. Sci. 2019, 4, 116–126. [CrossRef]

https://doi.org/10.1002/j.2334-5837.2015.00089.x
https://conference.conflr.com/events/Demo/showcases/incose/INCOSE-automotive-vision-2025.pdf
https://conference.conflr.com/events/Demo/showcases/incose/INCOSE-automotive-vision-2025.pdf
https://doi.org/10.1016/j.jmsy.2020.04.015
https://www.eclipse.org/capella/resources.html
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1109/TSMCC.2003.813335
https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
https://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
https://doi.org/10.1016/j.compind.2019.103163
https://doi.org/10.1016/j.jmsy.2021.05.004
https://doi.org/10.1016/j.compind.2021.103486
http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology#List%20of%20MBSE%20Methodologies
http://www.omgwiki.org/MBSE/doku.php?id=mbse:methodology#List%20of%20MBSE%20Methodologies
https://doi.org/10.25126/jitecs.20194255

Systems 2023, 11, 429 22 of 22

24. Camargo, M.; Dumas, M.; González-Rojas, O. Automated discovery of business process simulation models from event logs. Decis.
Support Syst. 2020, 134, 113284. [CrossRef]

25. Pearce, P.; Hause, M. ISO-15288; OOSEM and Model-Based Submarine Design. SETE APCOSE: Brisbane, QLD, Australia, 2012.
26. Dori, D.; Shpitalni, M. Mapping knowledge about product lifecycle engineering for ontology construction via object-process

methodology. CIRP Ann. 2005, 54, 117–122. [CrossRef]
27. Schindel, B.; Peterson, T. Pattern Based Systems Engineering–Leveraging Model Based Systems Engineering for Cyber-Physical

Systems. In Proceedings of the NDIA Ground Vehicle Systems Engineering and Technology Symposiusm, Novi, MI, USA,
12–14 August 2014.

28. Joshi, A.; Heimdahl, M.P.; Miller, S.P.; Whalen, M.W. Model-Based Safety Analysis. 2006. Available online: https://ntrs.nasa.gov/
citations/20060006673 (accessed on 3 August 2023).

29. Hoffmann, H.P. Systems Engineering Best Practices with the Rational Solution for Systems and Software Engineering; IBM Corporation:
Armonk, NY, USA, 2011.

30. Friedenthal, S.; Moore, A.; Steiner, R. A Practical Guide to SysML: The Systems Modeling Language; Morgan Kaufmann: Burlington,
MA, USA, 2014.

31. Chaudron, M.; Werner, H.; Ariadi, N. How Effective Is UML Modeling? An Empirical Perspective on Costs and Benefits; Software
& Systems Modeling. Softw. Syst. Model. 2012, 11, 571–580.

32. Laurent, A. UML 2—From Learning to Practice, 2nd ed; ELLIPSES: Paris, France, 2014; ISBN 978-2-3400-0204-3.
33. Bonnet, S. The Spirit of Arcadia and Capella in 7 Minutes. Available online: https://www.youtube.com/watch?v=BtzhlZUaWA8

&feature=youtu.be (accessed on 14 April 2021).
34. Remi, B.; Abhaya, L.; Raphaël, F.; Bruel, J.M. Au Coeur Des CTs de l’AFIS: Le CT MBSE. Available online: https://www.afis.fr/

les-webinaires-de-lafis-le-comite-technique-mbse/ (accessed on 22 June 2020).
35. Nicolas, B.; Bruel, J.M.; Faudou, R. Modélisation Des Exigences En UML/SysML. Génie Log. Mag. L’ing. Log. Syst. 2014, 111, 6–12.
36. Bonnet, S.; Voirin, J.L.; Exertier, D.; Normand, V. Not (strictly) relying on SysML for MBSE: Language, tooling and development

perspectives: The Arcadia/Capella rationale. In Proceedings of the 2016 Annual IEEE SysCon, Orlando, FL, USA, 18–21 April
2016; pp. 1–6.

37. ISO/IEC/IEEE 15288:2015; Systems and Software Engineering—System Life Cycle Processes. ISO/IEC JTC 1/SC 7; ISO: Geneva,
Switzerland, 2015.

38. Thales. “Datasheet_Arcadia”. Available online: https://www.eclipse.org/capella/resources/Datasheet_Arcadia.pdf (accessed
on 15 January 2022).

39. Renan, L.B.; Pantel, M.; Ober, I.; Bruel, J.M. Model-Based Systems Engineering for Systems Simulation. In Proceedings of the
Symposium On Leveraging Applications of Formal Methods, Limassol, Cyprus, 5–9 November 2018; Verification and Validation.
Volume 11246, pp. 429–448.

40. Capella. Tutoriel: La Sonnette Electronique 1/2. Available online: https://www.youtube.com/watch?v=6B0AtWEdj9I&t=419s
(accessed on 15 January 2022).

41. Rochet, S. Challenges and Pratical Solutions for MBSE. Available online: https://blog.obeosoft.com/challenges-and-practical-
solutions-for-mbse (accessed on 14 April 2021).

42. Daly, J. Case-Study Rolls Royce—Arcadia and Capella for a Large Complex Mechanical System. Available
online: https://www.eclipse.org/capella/resources/pdf/Case_Study_Rolls_Royce.pdf (accessed on 15 January 2022).

43. Huet, A. Case-Study ArianeGroup—Model-Based Systems Engineering Must Become a Team Sport! Available
online: https://www.eclipse.org/capella/resources/pdf/Case_Study_ArianeGroup.pdf (accessed on 15 January 2022).

44. Montigny, J. “Case-Study Continental—Driving Intelligent Transportation Systems with Capella”. Available
online: https://www.eclipse.org/capella/resources/pdf/Case_Study_Continental.pdf (accessed on 15 January 2022).

45. Tannery, P. Case-Study Framatome—Progressive Deployment of MBSE Methods in French Nuclear Industry. Available
online: https://www.eclipse.org/capella/resources/pdf/Case_Study_Framatome.pdf (accessed on 15 January 2022).

46. Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: A
review. J. Manuf. Syst. 2021, 60, 119–137. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.dss.2020.113284
https://doi.org/10.1016/S0007-8506(07)60063-8
https://ntrs.nasa.gov/citations/20060006673
https://ntrs.nasa.gov/citations/20060006673
https://www.youtube.com/watch?v=BtzhlZUaWA8&feature=youtu.be
https://www.youtube.com/watch?v=BtzhlZUaWA8&feature=youtu.be
https://www.afis.fr/les-webinaires-de-lafis-le-comite-technique-mbse/
https://www.afis.fr/les-webinaires-de-lafis-le-comite-technique-mbse/
https://www.eclipse.org/capella/resources/Datasheet_Arcadia.pdf
https://www.youtube.com/watch?v=6B0AtWEdj9I&t=419s
https://blog.obeosoft.com/challenges-and-practical-solutions-for-mbse
https://blog.obeosoft.com/challenges-and-practical-solutions-for-mbse
https://www.eclipse.org/capella/resources/pdf/Case_Study_Rolls_Royce.pdf
https://www.eclipse.org/capella/resources/pdf/Case_Study_ArianeGroup.pdf
https://www.eclipse.org/capella/resources/pdf/Case_Study_Continental.pdf
https://www.eclipse.org/capella/resources/pdf/Case_Study_Framatome.pdf
https://doi.org/10.1016/j.jmsy.2021.05.011

	Introduction
	Model-Based Systems Engineering
	The ARCADIA Method
	ARCADIA/Capella Genesis
	ARCADIA/Capella Walkthrough

	The Capella Tool
	Experimenting ARCADIA/Capella
	Top-Down Analysis of the Counter Bell
	Operational Analysis
	System Analysis
	Logical Architecture
	Physical Architecture

	Retro-Engineering of the Counter Bell

	Industrial Feedback on ARCADIA/Capella and Advanced Features
	Highlighted Features
	Flexibility
	Simplicity
	Traceability
	Visual Tool
	Open-Source Tool

	Evolution of ARCADIA/Capella

	Conclusions
	References

