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Abstract: In the digital economy era, cloud–edge collaboration technology provides the necessary
technical support for the digital transformation of enterprises, which can improve the quality of
services (QoS), and it attracts extensive attention from scholars and entrepreneurs from all fields.
Under the bounded-rationality hypothesis, this paper investigates the service mechanism for the
cloud–edge collaboration system considering the quality of experience (QoE) and presents a dynamic
evolutionary game model between cloud service providers and edge operators by applying the
evolutionary game theory. Then, this paper analyzes the equilibrium and stability conditions for the
decision-making of both parties involved to guarantee the QoE reaches the ideal state. In addition,
we investigate the factors that influence the stable cooperation between the two evolutionary stable
strategies and validate the theoretical analytical results with numerical simulations. The research
results show that the final evolution of the cloud–edge collaboration system depends on the benefits
and costs of the game matrix between the two parties and the initial state values of the system. Under
a specific condition, the cloud–edge collaboration system can eventually be driven to be an ideal state
by reducing the collaboration cost and improving the collaboration benefit. The more both parties
focus on the QoE, the more conducive it will be for the formation of a cloud–edge collaboration, thus
effectively promoting long-term stability and better serving enterprises’ digital transformation.

Keywords: digital economy; digital transformation; cloud–edge collaboration; quality of experience;
evolutionary stable strategy

1. Introduction

The innovation of digital technology has brought tremendous changes in the social
and market environments and became disruptive [1]. The digital economy has facilitated
a high-quality economic and social development in various countries [2]. The strong
resilience demonstrated by Internet-based enterprises based on digital technology has been
widely recognized by the international community. The outstanding performance of digital
technologies such as big data analytics, cloud computing, and the Internet of things has
made all stakeholders more confident that they can achieve the digital transformation of
enterprises so as to promote the development of the digital economy. Many countries
have paid a lot of attention to the development of digital transformation and proposed
a range of strategic decision-making deployments, which have stimulated the demand
and endogenous forces for enterprises’ transformation and upgrading. However, the
characteristics of traditional enterprises, such as various product types, scattered user
data, and different stages of development, affect the overall effect of digital transformation,
making it difficult for some enterprises to achieve digital transformation and upgrade in a
short period of time.

For businesses, users are the fundamental source of their benefits, and the QoE di-
rectly affects their competitiveness in the market, which in turn determines the revenue
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earned in the face of fierce competition. In previous research and production practices,
companies have mainly focused on improving [3], i.e., business sophistication through
some measurable hardware and software improvements and guarantees, yet the QoE [4] is
the key factor for market success and is not always guaranteed by quantification. The QoE
is closely related to the QoS but is not identical to it [5]. The QoE is a user-layer concept and
represents both objective and subjective satisfaction of users, while the QoS is a reflection
provided by the service provider from the network- and service-layer perspective. For each
type of services used by the users, to meet their QoE requirements, the service provider
must understand what level of QoS is required, and the network operator needs to consider
what QoS mechanism to implement to meet the service provider’s requirements. Thus, how
cloud service providers and edge operators focus on the QoE directly affects their benefits
and costs and is one of the indispensable factors in studying the behavior of both parties.
For both parties, guaranteeing the QoE can improve the level and value of the business,
increase user loyalty, and even bring better word-of-mouth communication among users to
enhance core competitiveness in a competitive environment.

Since cloud service providers and edge operators have different types of resources and
different service storage capabilities, they typically make decisions under diverse conditions.
Indeed, based on the premise of bounded rationality, decision-making is an evolutionary
game process for cloud service providers and edge operators [6]. In order to improve the
QoE and better help various large and small enterprises to achieve digital transformation,
we investigate the intrinsic laws of game behavior among digital technology providers
based on evolutionary game theory and obtain the following main contributions:

1. We establish an evolutionary game model for the collaborative service mechanism
of cloud service providers and edge operators and theoretically study the existence
conditions and evolution rules of evolutionary stable strategies (ESSs), which con-
tributes to analyzing the behaviors of cloud service providers and edge operators
when collaboratively handling user service requests;

2. We perform numerical simulations to illustrate the evolution of the cloud–edge col-
laboration system and show quantitatively the impact of the initial conditions and the
variation in decision parameters on the evolutionary results;

3. Finally, we propose some specific measures to promote the stability of the cloud–edge
collaboration system, based on a theoretical analysis and simulation results.

The rest of the paper is organized as follows: Section 2 introduces the research problem,
basic assumptions, and related remarks and constructs an evolutionary game model for the
cloud–edge collaboration system. Section 3 theoretically analyzes the evolutionary game
in some detailed scenarios and identifies evolutionary stable strategies under different
conditions. Section 4 considers the case where there are two evolutionary stable strategies,
illustrates the effect of initial values and decision parameters on the evolution process and
evolutionary outcomes, discusses evolutionary phenomena, and proposes management
measures for the cloud–edge collaboration system. Finally, Section 5 summarizes the
conclusions of our work and gives directions for further research.

2. Literature Review

In findings on digital transformation, researchers have always focused on specific
aspects such as the influencing factors, processes, and outcomes. For example, Kozanoglu
et al. [7] studied the influencing factors of digital transformation in enterprises, including
the attitudes of employees. Warner et al. [8] considered the process of digital transformation
in enterprises from the perspective of dynamic capability. Bouwman et al. [9] investigated
the impact of digital transformation on business models and firm performance. For enter-
prises, the researchers focused on their digital transformation models, pathways, and the
impact of the generalization of digital technologies on business model evolution. Sergei [10]
analyzed the variations in nontechnological digital transformation enablers in high-tech
and low-tech manufacturing companies. Sjodin et al. [11] studied the digitalization of
business models for large manufacturers with an industrial ecosystem coordination frame-
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work. Zainal-Abidin [12] explored the antecedents of digital collaboration and developed
a framework for microdestination management organizations to enhance effective desti-
nation management through digital technologies. Alenezi [13] described some challenges
that higher-education institutions encountered, as well as the technological resources and
methodologies they used in the current scenario to transform higher-education institutions
by embracing digital transformation. It is now agreed that digital technologies are very
essential for both large supply-chain enterprises to deeply understand the enterprise value
creation brought by digital transformation [14] and small and medium enterprises with
numerous resource limitations to realize digital transformation [15,16]. For example, the
development of digital finance can promote enterprise innovation, thus facilitating the
digital transformation of enterprises [17], which means that digital technologies can bet-
ter serve digital enterprises to achieve high-quality economic development. Digitization
can centralize the scattered data of traditional enterprises and mine the business value
of data to promote the organizational transformation of traditional enterprises [18]. A
big-data strategy has not only changed the paradigm of economic research [19], but data
empowerment is also the key factor to the digital transformation of enterprises. Digital
transformation of grassroots governance driven by digital technologies such as the Internet,
cloud computing, and big data can achieve a better governance effectiveness. The new
infrastructure is guided by the new development concept (innovation, coordination, green,
open, sharing), driven by technological change and based on information technology, and
faced with the needs of the digital economy era. The infrastructure provides functions
such as digital transformation, digital integration, and a digital upgrading of traditional
infrastructure. The proposal of a new infrastructure strategy enables enterprises to develop
a digital enablement strategy to value innovation. It can be seen that more and more
established technologies such as the Internet, cloud computing, and big data strategies
provide an optimized development path for solving various problems faced in the digital
economy.

Digital technologies include data storage and processing technologies, networking
technologies, and computing technologies, such as artificial intelligence, cloud computing,
and a wide range of computing algorithms. As cloud infrastructure becomes ubiqui-
tous, the pace of cloud-based intelligence and digitization will continue to accelerate.
Microsoft Azure, Amazon AWS, and other public cloud providers offer support for the
digital transformation of traditional businesses. However, despite its powerful resource
service capabilities, cloud computing suffers from service time delay, energy consump-
tion, and a poor quality of experience due to long-distance transmission between end
users and remote cloud centers. Correspondingly, edge computing has the advantage
of a low transmission delay and a high service responsiveness due to its deployment at
the edge despite certain resource constraints in terms of computation and storage [20].
Thus, cloud–edge collaboration technology can better overcome the shortcomings of both
cloud computing and edge computing, and has attracted a lot of research attention from
academia and industry in recent years, in areas such as computational offloading [21–23],
task and resource scheduling [24–26], and resource allocation [27–30], so as to achieve a
lower transmission latency and better user experience.

Evolutionary game theory has been widely used in related research on group behavior
analysis, providing an effective analytical tool for discussing the strategy selection and
evolutionary logic of the players in cloud–edge collaboration systems from a micro per-
spective, whose core is an “evolutionary stable strategy” and “replication dynamics” [31].
In 1973, Smith and Price proposed the concept of evolutionary stable strategy (ESS) [32],
which means that after each player adopts its strategy in the process of an evolutionary
game, the population can no longer be affected according to the role of natural selection.
In 1978, ecologists Taylor and Jonker proposed the concept of replicator dynamics (RD) [33],
which refers to a population simulating the learning and dynamic adjustment process of
other populations through “replication dynamics” and then making corresponding optimal
decisions through the process of dynamic convergence to an evolutionarily stable strategy.
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Since some players will not adopt a fully rational equilibrium strategy, they will not find
the optimal strategy at the beginning when making decisions. The business processing of
the cloud–edge collaboration system is in a dynamic state of continuous development, and
the instability of the business makes both parties have a certain degree of distrust; thus, it
is difficult for both parties to have complete rationality.

However, it is a critical problem to reasonably describe the collaboration relationship
between public cloud service providers offering cloud computing services and edge opera-
tors providing edge computing services, who are regarded as bounded rational agents, and
also to involve some issues related to their own interests when dealing with user service
requests collaboratively. Digital enterprises can gain more benefits in the digital economy
market by applying digital technologies, so they can help spur digital technology providers
to further provide more technical support for digitalization and high-quality development
in a more active and efficient manner.

3. Model Description

The edge cloud relies on the coverage of massive cluster resources to enable end users
to access edge computing power with a better experience and lower latency. On the one
hand, the flexibility of the user service is enhanced by the upward shift of the terminal
computation. On the other hand, the cost and latency are reduced by the downward shift
of cloud computing power. Therefore, introducing an edge cloud between the remote cloud
center and end users can make the edge service more flexible and achieve quadratic com-
puting with improved territorial performance. We followed the edge cloud architecture [34]
and the service-oriented resource allocation cyclic game [35] in edge computing, then
simplified the cloud–edge collaboration system into two major decision players, namely,
cloud service providers and edge operators, which can operate collaboratively by sharing
computing resources and complementing each other to complete the service requests of
end users, reduce the cost burden, and share cooperation benefits. Cloud service providers
manage service resources via the cloud and deploy them at the edge nodes. They mainly
provide the service distribution strategy of SaaS services in the cloud and edge nodes,
as well as the SaaS service capability undertaken in the cloud, thus they have the vital
resource service and deployment capabilities, but also have the disadvantage of a high
latency due to long-distance transmission. The edge operators mainly control the edge
node resources because the edge cloud (EC) operators provide small and medium-scale
cloud infrastructure on the edge side near the end users and provide edge cloud service
capability based on 5G applications, so they can not only realize part of the EC-SaaS ser-
vices according to the cloud strategy but also realize customer-oriented SaaS through the
collaboration of EC-SaaS and cloud SaaS. In addition to the on-demand SaaS services,
they also have specific edge service capabilities to meet high-bandwidth, low-latency, and
localized-processing business requirements with the advantages of a low transmission
latency and the disadvantages of limited resources. Differences between the agents of
the cloud–edge collaboration system and the uncertainty of the market competition leave
the two parties in an information-asymmetric state. The two types of agents involved in
decision-making need to repeatedly try, learn from experience, and adjust their strategies
in a game process based on bounded rationality to eventually reach an equilibrium.

3.1. Basic Assumptions and Parameter Descriptions

In this part, we give some basic assumptions and parameter descriptions for the
cloud–edge collaboration system. Firstly, we give the following elementary hypothesis
by following the generalization of the related literature on evolutionary games, and the
parameters are described in Table 1.
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Table 1. Parameter definitions in the model.

Parameters Parameter Descriptions

R Benefits of cooperation between S1 and S2
Rs The unique benefits of S1 handling user service requests alone
Re The unique benefits of S2 handling user service requests alone
Is Information transmission cost of S1
Ie Information transmission cost of S2
C Total cost of collaborative processing services for S1 and S2
Cs The cost of S1 to process the user’s service requests alone
Ce The cost of S2 to process the user’s service requests alone
l1 Losses of S1 due to user complaints
l2 Losses of S2 due to user complaints
L Liquidated damages for breach of the cloud–edge collaborative constraint agreement
M Revenue distribution coefficient of S1 when revenue is shared
a Cost allocation ratio of S2 when cost is shared
α The emphasis level of S1 for QoE
β The emphasis level of S2 for QoE

Hypothesis 1: The game process involves cloud service provider S1 and edge operator S2, and they
are boundedly rational players. The action sets of both S1 and S2 are {solo-processing, coprocessing}.
Then, for S1, the probability of taking the “coprocessing” strategy is x (0 ≤ x ≤ 1), and the
probability of choosing the “solo-processing” strategy is 1− x; and for S2, the probability of choosing
the “coprocessing” strategy is y (0 ≤ y ≤ 1), and the probability of choosing the “solo-processing”
strategy is 1− y.

Hypothesis 2: Each user sends a service request to the cloud and edge servers. Edge nodes receive
the service requests from users earlier than the cloud servers due to their superior low-latency
properties. If S1 has deployed the service on the edge node, S2 can choose whether to cooperate or
not; if S1 has not deployed its service on the edge node, S1 can choose whether to cooperate or not.
If both S1andS2 choose “cooperative processing” after receiving the service request, they share the
cooperation benefits.

Hypothesis 3: Here, we do not consider the previous infrastructure investment costs of the cloud–
edge collaboration system. Thus, if the two parties choose to collaborate for the end users, they
continue to invest in the cost of the collaborative service. We only consider the data transmission
cost of S1 and S2 and the service cost of completing the user’s service request and share the service
cost during cooperation. Meanwhile, if one party seeks cooperation and the other party refuses,
the party who chooses the “coprocessing” strategy has invested costs that cannot be recovered and
suffers losses due to a poor service quality delivered to the user, and the other party needs to pay a
penalty.

Hypothesis 4: Now that the Internet is booming, many similar products have emerged with similar
or even identical features, making switching behavior very cost-effective for users. QoE directly
affects the competitiveness of S1 and S2 in the market, and then affects the revenue gained in the
fierce competition. Therefore, it brings more revenue for S1 and S2 when they pay much attention to
user experience. Moreover, if one party chooses to collaborate while the other chooses not to, then the
end users suffer damage since the QoE of each user may not be guaranteed and the benefits of both
parties may decrease.

3.2. Construction of Revenue Matrix

According to the above problem description and research hypothesis, we obtained
the payoffs of S1 and S2 as shown in Table 2, where π

(1)
ij and π

(2)
ij (i = 1, 2; j = 1, 2) de-

note the payoff values of S1 and S2, respectively. Here, S1 can choose the “coprocessing”
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strategy (i.e., i = 1) or “solo-processing” strategy (i.e., i = 2), and S2 can also choose the
“coprocessing” strategy (i.e., j = 1) or “solo-processing” strategy (i.e., j = 2).

Table 2. Payoff matrix for cloud service providers and edge operators.

Both Parties to the Game
Edge Operators (S2)

Coprocessing (y) Solo-Processing (1−y)

Cloud Service
Providers (S1)

Coprocessing (x) π
(1)
11 , π

(2)
11 π

(1)
12 , π

(2)
12

Solo processing (1− x ) π
(1)
21 , π

(2)
21 π

(1)
22 , π

(2)
22

Here,

π
(1)
11 = (1 + α + β)MR− Is − (1− a)C

π
(1)
12 = L + (1 + α + β)MR− Is − (1− a)C− (1 + α)l1

π
(1)
21 = Rs − Cs − L

π
(1)
22 = Rs − Cs

π
(2)
11 = (1 + α + β)(1−M)R− Ie − aC

π
(2)
12 = Re − Ce − L

π
(2)
21 = L + (1 + α + β)(1−M)R− Ie − aC− (1 + β)l2

π
(2)
22 = Re − Ce

Based on the payoff matrix of the parties in Table 2, we can obtain the replicator
dynamic equation for the expected payoff of S1 and the behavioral strategies. Assume
that the expected gain of S1 is E11 if it chooses “coprocessing” and E12 if it chooses “solo
processing”, and that the average expected gain of S1 is E1. Then, we have

E11 = yπ
(1)
11 + (1− y)π(1)

12 (1)

E12 = yπ
(1)
21 + (1− y)π(1)

22 (2)

E1 = xE11 + (1− x)E12 (3)

According to the Malthusian equation, the replicator dynamic equation of S1 can be
obtained by combining (1) with Equation (3)

F(x) = dx/dt = x(E11 − E1) = x(1− x)[E11 − E12]

= x(1− x)
[(

π
(1)
11 − π

(1)
21

)
y +

(
π
(1)
12 − π

(1)
22

)
(1− y)

]
= x(1− x)

([(
π
(1)
11 − π

(1)
21

)
−
(

π
(1)
12 − π

(1)
22

)]
y +

(
π
(1)
12 − π

(1)
22

)) (4)

Similarly, we can also obtain the expected gain of S2 and the replicator dynamic
equation. Suppose the expected gain of S2 choosing the “coprocessing” strategy is E21,
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the expected gain of S2 choosing the “solo-processing” strategy is E22, and the average
expected gain of S2 is E2. Then, we have

E21 = xπ
(2)
11 + (1− x)π(2)

21 (5)

E22 = xπ
(2)
12 + (1− x)π(2)

22 (6)

E2 = yE21 + (1− y)E22 (7)

According to the Malthusian equation, the replicator dynamic equation of S2 can be
obtained by combining (5) with Equation (7)

G(y) = dy/dt= y(E21 − E2) = y(1− y)[E21 − E22]

= y(1− y)
[(

π
(2)
11 − π

(2)
12

)
x +

(
π
(2)
21 − π

(2)
22

)
(1− x)

]
= y(1− y)

([(
π
(2)
11 − π

(2)
12

)
−
(

π
(2)
21 − π

(2)
22

)]
x +

(
π
(2)
21 − π

(2)
22

)) (8)

Then, the replicator dynamics can be shown as
F(x) = x(1− x)

([(
π
(1)
11 − π

(1)
21

)
−
(

π
(1)
12 − π

(1)
22

)]
y +

(
π
(1)
12 − π

(1)
22

))
G(y) = y(1− y)

([(
π
(2)
11 − π

(2)
12

)
−
(

π
(2)
21 − π

(2)
22

)]
x +

(
π
(2)
21 − π

(2)
22

))
4. Results

Let A = π
(1)
11 − π

(1)
21 , B = π

(1)
12 − π

(1)
22 , H = π

(2)
11 − π

(2)
12 , and Q = π

(2)
21 − π

(2)
22 , Then,

we rewrite the dynamic equation of S1 as:

F(x) = x(1− x)[(A− B)y + B] (9)

and we rewrite the dynamic equation of S2 as:

G(y) = y(1− y)[(H −Q)x + Q] (10)

where

A = π
(1)
11 − π

(1)
21 = (1 + α + β) MR− Is − (1− a)C− Rs + Cs + L

B = π
(1)
12 − π

(1)
22 = L + (1 + α + β)MR− Is − (1− a)C− (1 + α)l1 − Rs + Cs

H = π
(2)
11 − π

(2)
12 = (1 + α + β)(1−M)R− Ie − aC− Re + Ce + L

Q = π
(2)
21 − π

(2)
22 = L + (1 + α + β)(1−M)R− Ie − aC− (1 + β)l2 − Re + Ce

4.1. Stability Analysis of the Evolution of One-Party Strategies

According to the stability theorem for differential equations, the conditions for S1 or
S2 to evolve to a stable strategy are F(x) = 0 and F′(x) < 0 or G(y) = 0 and G′(y) < 0.

4.1.1. Evolutionary Stability Analysis of Cloud Service Provider

Let F(x) = 0; there are two definite solutions, i.e., x = 0, and x = 1, and one possible
solution y = y∗ = B

B−A . For the S1 party, we take the derivative of the replicator dynamics
system (9) with respect to variable x and can obtain F′(x) = (1− 2x)[ (A− B)y + B].
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The solutions satisfying F′(x) < 0 are evolutionary stable strategies (ESS); therefore,
we discuss the following cases:

• If A > B > 0, the stable point y∗ < 0, and (A− B)y + B > 0 for ∀y ∈ (0, 1). When

x = 1, F′(x) < 0. Moreover, this type of condition satisfies B > 0, i.e., π
(1)
12 − π

(1)
22 > 0.

Thus, in this case, for S1, its coprocessing gain is larger than the solo-processing gain,
i.e., π

(1)
12 > π

(1)
22 ; hence, S1 chooses the coprocessing strategy no matter how S2 chooses

its strategy.
• If B < A < 0, the stable point y∗ > 1, and (A− B)y + B < 0 for ∀y ∈ (0, 1). When

x = 0, F′(x) < 0. Moreover, this type of condition satisfies B < 0, i.e., π
(1)
12 − π

(1)
22 < 0.

Thus, in this case, for S1, its coprocessing gain is smaller than the solo-processing
gain, i.e., π

(1)
12 < π

(1)
22 ; hence, S1 chooses the solo-processing strategy no matter how

S2 chooses its strategy.
• If B < 0 < A, the stable point y∗ ∈ (0, 1), and (A− B)y+ B < 0 if y < y∗. When x = 0,

F′(x) < 0. If y > y∗, (A− B)y + B > 0, and when x = 1, F′(x) < 0. Moreover, this
type of condition satisfies B < 0, that is, π

(1)
12 − π

(1)
22 < 0. Then, in this case, for S1, its

coprocessing gain is less than the solo-processing gain, i.e., π
(1)
12 < π

(1)
22 ; thus, whether

S1 chooses solo-processing or coprocessing is influenced by the strategy choice of S2.
• From A− B = (1 + α)l1 > 0, we know there is no A− B < 0.

4.1.2. Evolutionary Stability Analysis of Edge Operator

Similarly, let G(y) = 0; there are two definite solutions, i.e., y = 0, y = 1 and one possi-
ble solution x = x∗ = Q

Q−H . For the S2 party, we take the derivative of the replicator dynam-
ics system (10) with respect to variable y and can obtain G′(y) = (1− 2y)[ (H −Q)x + Q].

Only the solution satisfying G′(y) < 0 is the ESS; thus, we discuss the following cases:

• If H > Q > 0, the stable point x∗ < 0, and (H −Q)x + Q > 0 for ∀x ∈ (0, 1). When

y = 1, G′(y) < 0. This type of condition satisfies Q > 0, i.e., π
(2)
21 − π

(2)
22 > 0. Thus,

in this case, for S2, its coprocessing gain is larger than the solo-processing gain, i.e.,
π
(2)
21 > π

(2)
22 ; thus, S2 will choose co-processing no matter how S1 chooses its strategy.

• If Q < H < 0, the stable points x∗ > 1, and (H −Q)x + Q < 0 for ∀x ∈ (0, 1).

When y = 0, G′(y) < 0. This type of condition satisfies Q < 0, i.e., π
(2)
21 − π

(2)
22 < 0.

Then, in this case, the coprocessing gain of S2 is less than its solo-processing gain, i.e.,
π
(2)
21 < π

(2)
22 ; thus, S2 chooses solo-processing no matter how S1 chooses its strategy.

• If Q < 0 < H, the stable point x∗ ∈ (0, 1). If x < x∗, then (H −Q)x + Q < 0. When
y = 0, G′(y) < 0. If x > x∗, then (H −Q)x+Q > 0. When y = 1, G′(y) < 0. This type
of condition satisfies Q < 0, i.e., π

(2)
21 − π

(2)
22 < 0, which means that the coprocessing

gain of S2 is less than its solo-processing gain, i.e., π
(2)
21 < π

(2)
22 ; thus, whether S2

chooses solo-processing or coprocessing is indeed influenced by the strategy choice of
S1;

• From H −Q = (1 + β)l2 > 0, we know there is no H −Q < 0.

4.2. Analysis of the Evolutionary Stability of the Combination Strategies of Both Game Parties in
the System

According to the replicator dynamic Equations (4) and (8) and following the single-
party strategy evolution analysis in Section 3.1, the local equilibrium point of the system
can be obtained as (0, 0), (0, 1), (1, 0), (1, 1), (x∗, y∗). However, the equilibrium points
derived by the replicator dynamic equations are not necessarily the evolutionary stable
strategy of the system, so it is necessary to follow the Friedman method [36]. That is,
the Jacobi matrix (J) of the system can be constructed by taking the partial derivatives
of Equations (9) and (10) with respect to x and y, respectively. The local stability of the
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stationary points can be obtained according to the values of the determinant (det J) and
trace (tr J) at each stationary point. The Jacobi matrix of the system is given as follows.

J =
(
(1− 2x)[(A− B)y + B] x(1− x)(A− B)

y(1− y)(H −Q) (1− 2y)[(H −Q)x + Q]

)
Then, the determinant of this matrix is

Det J = (1− 2x)[(A− B)y + B](1− 2y) [(H −Q)x + Q]− (A− B)x(1− x)(H −Q)y(1− y) (11)

and the trace of this matrix is

Tr J = (1− 2x)[(A− B)y + B] + (1− 2y)[(H −Q)x + Q] (12)

From the evolutionary game theory, it is known that when the Jacobi matrix at the
equilibrium point satisfies the condition det J > 0 and tr J < 0, the equilibrium point is ESS.
When the Jacobi matrix satisfies the condition det J > 0 and tr J > 0, the equilibrium point
is unstable. When the above condition is not satisfied, it is a saddle point. Substituting the
five equilibrium points into Equations (11) and (12), we obtain the evolutionary stability
points of the system under different conditions, as shown in Table 3.

Table 3. Evolutionary stable equilibrium points under different conditions.

Conditions H > 0, Q > 0 H < 0, Q < 0 H > 0, Q < 0

A > 0, B > 0 (1, 1) (1, 0) (1, 1)
A < 0, B < 0 (0, 1) (0, 0) (0, 0)
A > 0, B < 0 (1, 1) (0, 0) (0, 0) (1, 1)

Following the above study and analysis, we can obtain the following nine scenarios,
which are shown in Table 4.

Table 4. Balanced analysis of cloud–edge collaboration system.

Combination of Conditions ESS Impacts Evolutionary
Results

Condition 1: A > 0, B > 0, H > 0, Q > 0 (1, 1) No impact Collaboration
Condition 2: A > 0, B > 0, H < 0, Q < 0 (1, 0) No impact
Condition 3: A > 0, B > 0, H > 0, Q < 0 (1, 1) S2 affected Collaboration
Condition 4: A < 0, B < 0, H > 0, Q > 0 (0, 1) No impact
Condition 5: A < 0, B < 0, H < 0. Q < 0 (0, 0) No impact
Condition 6: A < 0, B < 0, H > 0, Q < 0 (0, 0) S2 affected
Condition 7: A > 0, B < 0, H > 0, Q > 0 (1, 1) S1 affected Collaboration
Condition 8: A > 0, B < 0, H < 0, Q < 0 (0, 0) S1 affected
Condition 9: A > 0, B < 0, H > 0, Q < 0 (0, 0) (1, 1) Interactions Not necessarily

• Mutual influence relationship: From the game process of the S1 and S2 strategy
selection, there are three different states:

• The strategy choices of the two parties do not affect each other, as in the case of
condition 1;

• One party is affected; for example, S2 is affected by the choice of S1’s strategy selection
in condition 3;

• The two parties affect each other; for example, S1 and S2 are affected by each other’s
strategy choice in condition 9.

We also find that the three states depend on different combinations of conditions, that
is, S1 and S2 take different values of costs and benefits during the game evolution, and then
the strategy selection process is affected accordingly. As can be seen from conditions 3 and 6,
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the final evolutionary directions are also different, even with the same strategy influence.
Particularly, it can be seen from condition 9 that the final evolutionary outcome of the
system may also be related to the initial state of the system. Thus, the final evolutionary
direction depends mainly on the factor values of the two-party evolution game matrix and
the initial state of the system.

• Evolutionary results: As can be seen from Table 4, there are four evolutionary results,
i.e., (0, 0), (1, 0), (0, 1), and (1, 1), in the evolutionary game of S1 and S2. The
evolutionary results are (1, 1) in conditions 1, 3, and 7, indicating that in these cases, S1
and S2 choose to collaborate in handling various service requests from users. In other
words, regardless of the initial state of the whole system, the two parties eventually
reach a stable cloud–edge cooperative relationship after continuously learning and
adjusting their strategies, and the common conditions in these three cases are A > 0
and H > 0 through a comparative analysis, as shown in Equation (13):{

MR− Cd − Is − (1− a)(C + NCr)− Rs + Cs + Cr + L > 0
(1−M)R− Cm − Ie − a(C + NCr)− Re + Ce + L > 0

,

that is, 
π
(1)
11 − π

(1)
22 + L > 0

π
(1)
11 − π

(1)
22 + L > 0

. (13)

Following the mathematical analysis above, the primary criterion for the constraint
loss cost L is L > π

(1)
22 − π

(1)
11 and L > π

(2)
22 − π

(2)
11 . The above essential criterion indicates

that if S1 and S2 are to undergo a long-term dynamic evolutionary adjustment to form a
cloud–edge collaboration system and eventually achieve joint stability, the constraint loss
cost L should be at least larger than the difference between the gain when both parties
choose to deal with it alone and the gain when they deal with it cooperatively.

• Is the evolutionary stable strategy unique? From condition 9 in Table 4, it can be seen
that there are two evolutionary-stable strategies, namely, (0, 0) and (1, 1), for the
cloud–edge collaboration system composed of S1 and S2, which mainly depend on the
values of the cost and benefit in the evolutionary game matrix and the initial state of
this system, i.e., the saddle point (x∗, y∗).

4.3. Factors Affecting Evolutionary Stability and Evolutionary Results

Through the analysis of the evolutionary game system constituted by S1 and S2 under
different conditions in Section 3.2, it was found that after a long-term evolutionary game
under different conditions, the final evolutionary result of the relationship between S1 and
S2 was either cooperation or noncooperation or no equilibrium state. In contrast, there
were two evolutionary stable strategies in condition 9, so it is necessary to further explore
the variation of each factor of the cloud–edge collaboration system in condition 9 and the
influence of the initial state of the system on the final evolutionary result. We derived the
following theorem:

Theorem 1. The probability x increases with the increase in y, that is, the stronger the willingness
of S2 to cooperate, the more inclined S1 is to choose the cooperative processing strategy.

Proof of Theorem 1. Let y0 = B
B−A ; when y = y0, F (x) ≡ 0; then, no matter what

value x takes, S1’s strategy selection is in a stable state. When y 6= y0, two cases are
discussed: First, when 0 < y < y0, x = 0 is the evolutionarily stable point, that is, when
the proportion of S2’s cooperative processing is not high, S1 is evolutionarily stable in the
“solo-processing” strategy; second, when y0 < y < 1, x = 1 is the evolutionarily stable
point, that is, when the cooperative proportion of S2 is high, S1 is evolutionarily stable in
the “coprocessing” strategy. �
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Theorem 2. The probabilityyincreases with the increase inx, that is, the stronger the willingness of
S1 to cooperate, the more inclinedS2is to choose the cooperative processing strategy.

Proof of Theorem 2. Let x0 = Q
Q−H ; when x = x0, G (y) ≡ 0; then, no matter what

value y takes, S2’s strategy selection is in a stable state. When x 6= x0, two cases are
discussed: First, when 0 < x < x0, y = 0 is the evolutionarily stable point, that is, when
the proportion of S1’s cooperative processing is not high, S2 is evolutionarily stable in the
“solo-processing” strategy; second, when x0 < x < 1, y = 1 is the evolutionarily stable
point, that is, when the cooperative proportion of S1 is high, S2 is evolutionarily stable in
the “coprocessing” strategy. �

It is known from the assumptions that V = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} in condition 9,
and the factors have the values of A > 0, B < 0, H > 0, Q < 0; through a mathematical
calculation, (x∗, y∗) ∈ V is satisfied, and the stability analysis can be obtained by judging
the signs of the determinant and trace of the Jacobian matrix at each equilibrium point, as
shown in Table 5.

Table 5. Stability analysis of equilibrium points (condition 9).

Equilibrium Points Det J Symbol Tr J Symbol Stability

E1(0, 0) BQ + B + Q − ESS
E2(0, 1) −AQ + A−Q + Unstable
E3(1, 0) −BH + −B + H + Unstable
E4(1, 1) AH + −A− H − ESS

O(x∗, y∗) − 0 Unknown Saddle point

From Table 5 under condition 9, we can find that among the five possible local equi-
libria in the system composed of S1 and S2, E1(0, 0) and E4(1, 1) are evolutionary stable
strategies, E2(0, 1) and E3(1, 0) are unstable points, and O(x∗, y∗) is a saddle point. To
show the dynamical evolution law between S1 and S2 more graphically, we illustrate the
phase diagram of the evolution game between the two parties in Figure 1.

Systems 2023, 11, x FOR PEER REVIEW 11 of 24 
 

 

proportion of 𝑆1’s cooperative processing is not high, 𝑆2 is evolutionarily stable in the 

“solo-processing” strategy; second, when 𝑥0 < 𝑥 < 1, 𝑦 = 1 is the evolutionarily stable 

point, that is, when the cooperative proportion of 𝑆1 is high, 𝑆2 is evolutionarily stable 

in the “coprocessing” strategy. □ 

It is known from the assumptions that 𝑉 = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1} in condition 

9, and the factors have the values of 𝐴 > 0, 𝐵 < 0, 𝐻 > 0, 𝑄 < 0; through a mathematical 

calculation, (𝑥∗, 𝑦∗) ∈ 𝑉 is satisfied, and the stability analysis can be obtained by judging 

the signs of the determinant and trace of the Jacobian matrix at each equilibrium point, as 

shown in Table 5. 

Table 5. Stability analysis of equilibrium points (condition 9). 

Equilibrium Points 𝑫𝒆𝒕 𝑱 Symbol 𝑻𝒓 𝑱 Symbol Stability 

𝐸1(0, 0) 𝐵𝑄 + 𝐵 + 𝑄 − ESS 

𝐸2(0, 1) −𝐴𝑄 + 𝐴 − 𝑄 + Unstable 

𝐸3(1, 0) −𝐵𝐻 + −𝐵 + 𝐻 + Unstable 

𝐸4(1, 1) 𝐴𝐻 + −𝐴 − 𝐻 − ESS 

𝑂(𝑥∗, 𝑦∗) −  0 Unknown Saddle point 

From Table 5 under condition 9, we can find that among the five possible local equi-

libria in the system composed of 𝑆1 and 𝑆2, 𝐸1(0, 0) and 𝐸4(1, 1) are evolutionary stable 

strategies, 𝐸2(0, 1) and 𝐸3(1, 0) are unstable points, and 𝑂(𝑥∗,  𝑦∗) is a saddle point. To 

show the dynamical evolution law between 𝑆1 and 𝑆2 more graphically, we illustrate the 

phase diagram of the evolution game between the two parties in Figure 1. 

 

Figure 1. System phase diagram. 

As can be seen from Figure 1, the fold line consisting of the saddle point and the two 

unstable points constitutes the critical line of the convergence state of the system. If the 

initial state is in the lower left region of the critical line, denoted as 𝐴1, the final evolution 

result of the system converges to (0, 0). If the initial state is in the upper right region of 

the critical line, denoted as 𝐴2, the final evolution result of the system converges to (1, 1). 

The evolution path and final evolution result of the system composed of 𝑆1 and 𝑆2 are 

related to the initial state of the system and the payoff matrix, and when the initial state is 

near the saddle point 𝑂, a slight variation in the initial state will affect the final evolution 

result of the game. When 𝐴2 > 𝐴1, 𝑆1 and 𝑆2 converge to increase the possibility of co-

operative treatment, and the system evolves along 𝑂𝐸4  toward the equilibrium point 

Figure 1. System phase diagram.

As can be seen from Figure 1, the fold line consisting of the saddle point and the two
unstable points constitutes the critical line of the convergence state of the system. If the
initial state is in the lower left region of the critical line, denoted as A1, the final evolution
result of the system converges to (0, 0). If the initial state is in the upper right region
of the critical line, denoted as A2, the final evolution result of the system converges to
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(1, 1). The evolution path and final evolution result of the system composed of S1 and
S2 are related to the initial state of the system and the payoff matrix, and when the initial
state is near the saddle point O, a slight variation in the initial state will affect the final
evolution result of the game. When A2 > A1, S1 and S2 converge to increase the possibility
of cooperative treatment, and the system evolves along OE4 toward the equilibrium point
E4(1, 1). When A2 < A1, S1 and S2 tend to decrease the possibility of coprocessing, and
the system evolves along OE1 toward the equilibrium point E1(0, 0). From Figure 1, the
area of A2 is computed as

A2 = 1− 1
2 (x∗ + y∗) = 1− 1

2

(
Q

Q−H + B
B−A

)
= 1 + 1

2

(
Q

H−Q + B
A−B

)
= 1 + 1

2

(
L+(1+α+β)(1−M)R−Ie−aC−(1+β)l2−Re+Ce

(1+β)l2
+

L+(1+α+β)MR−Is−(1−a)C−(1+α)l1−Rs+Cs
(1+α)l1

)
= 1

2

(
L+(1+α+β)(1−M)R−Ie−aC−Re+Ce

(1+β)l2
+

L+(1+α+β)MR−Is−(1−a)C−Rs+Cs
(1+α)l1

)
(14)

From Equation (14), it can be found that the factors affecting the area of A2 are
the variables Rs, Cs, Is, l1, α, and M, which are directly related to S1, the variables
Re, Ce, Ie, l2, β, a, which are directly related to S2, and the variables L, R, and C, which are
related to both parties. The analysis of these parameters leads to the following conclusions:

• With increasing L, R, Ce, Cs, α, β, the possibility of the system evolving to (1, 1)
increases;

• With increasing Ie, Re, Is, Rs, C, l1, l2, the possibility of the system evolving to (0, 0)
increases;

• For M, when A− B > H−Q, the possibility of the system evolving to (0, 0) increases
with an increment in M; when A− B < H −Q, the possibility of the system evolving
to (1, 1) increases with an increment in M;

• For a, when A− B < H −Q, the possibility of the system evolving to (0, 0) increases
with an increment in a. When A− B > H −Q, the possibility of the system evolving
to (1, 1) increases with an increment in a.

5. Numerical Simulation Analysis
5.1. Simulation Analysis

The theoretical derivation of the model does not intuitively reflect how each param-
eter in the system affects the system’s stability; thus, in this section, we conducted some
simulations to further demonstrate the trajectory of each equilibrium point above and the
evolution of different initial points of the game to the final equilibrium point. From a prac-
tical point of view, the net benefits of both S1 and S2 should be larger than zero, no matter
which strategy is chosen. For both S1 and S2, the aggregated benefit of the cooperative pro-
cessing strategy should be larger than the aggregated benefit of the individual processing.
The cost of service for the coprocessing strategy should be lower than the cost of service for
the solo-processing strategy, that is, the total benefit is larger and the cost of service for the
two parties to cooperate is less. According to the condition combination, the combination
of various cost and benefit values should follow conditions A > 0, B < 0, H > 0, and
Q < 0. In this paper, we considered the practical scenario of cloud service providers and
edge operators and chose the following parameters to discuss the condition combination.
The parameters for S1 were Rs = 23, Cs = 11, Is = 3, l1 = 3, M = 0.6, α = 0, the
parameters for S2 were Re = 15, Ce = 8, Ie = 3, l2 = 4.2, a = 0.4, β = 0, and the common
parameters for both parties were L = 5, R = 40, C = 18.

• The influence of the initial willingness of both parties on the evolution of the system

Figure 2 depicts the dynamic evolution of the strategy choice of the participating parties
over time. The initial values of the game for both parties were taken as (0.1, 0.3), (0.1, 0.6),
(0.1, 0.9), (0.2, 0.3), (0.5, 0.3), (0.8, 0.3). As can be seen from Figure 2, when x = 0.1,
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the evolutionary stability of the system gradually changes from (0, 0) to (1, 1) with the
increase in y, verifying that the stronger the willingness of S2 to cooperate is, the more
inclined S1 is to evolve to a stable state in co-processing. When y = 0.3, with the increase in
x, the evolutionary stability of the system gradually changes from (0, 0) to (1, 1), which
verifies that the stronger the cooperative willingness of S1, the more inclined S2 is to evolve
to a stable state in co-processing.
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It can be seen from the figure that when the two parties choose different initial values
(x, y), the game finally evolve to different results accordingly. In this state, the value of
the saddle point E can be calculated as (0.24, 0.47). Recall the aforementioned theoretical
analysis, it can be seen that when the initial value of (x, y) falls into region A1, the initial
value finally converges to (0, 0), and S1 and S2 choose the “solo-processing” game strategy.
When the initial value of (x, y) falls into region A2, the initial value finally converges to
(1, 1), and S1 and S2 choose the “coprocessing” game strategy. It is obvious that the final
evolution of both strategies depends on the initial value of (x, y).

• Factors affecting evolutionary stability and evolutionary results

From Equation (14), we know that the parameters in the equation also influence the
final evolutionary results of the game. Due to the limited space, we only selected the
cooperation benefit R, cooperation cost C of both parties, data transmission cost Is of
S1, and complaint loss l2 of S2 as variables and analyzed the influence of the emphasis
parameters α and β on the system evolution results. We set the initial value as (0.3, 0.4) to
analyze the evolutionary process of the game and verify the theoretical analysis results.

First, we sequentially set the values of R to be 40, 41, and 42, to verify the impact of
the cooperation gain R on the stability of the cloud–edge collaboration service system. As
shown in Figure 3, we can find the trend of the evolutionary results of the two parties
S1 and S2 with the parameter adjustment of cooperative gain R. The result shows that
with the increment in R, both parties S1 and S2 tend to collaboratively process user service
requests faster and faster, which means that increasing the cooperative gain R can pro-
mote the cloud–edge collaboration system to evolve towards the final evolutionary result
{coprocessing, coprocessing}.
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Figure 3. Impacts of cooperation benefit R on the stability of the cloud–edge collaboration system.

Cost management is an essential part of enterprise management. Thus, we set the
values of C to be 16, 17, and 18 sequentially to further verify the impact of cooperation cost
C on the stability of the cloud–edge collaboration service system. As shown in Figure 4,
we can derive the trend of the evolutionary results of the two parties S1 and S2 with the
parameter adjustment of cooperation cost C. The result shows that with the increment
in C, both parties S1 and S2 tend to process user service requests more and more slowly in
collaboration, indicating that increasing the collaboration cost C inhibits the cloud–edge
collaboration system to evolve towards the evolutionary result {coprocessing, coprocessing}.
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The values of Is were chosen sequentially as 2, 2.5, 3, 3.5, 4 to verify the impact
of the data transmission cost Is of S1 on the stability of the cloud–edge collaboration
service system with the participation of S2. As shown in Figure 5, we derived the trend of
the evolutionary results of the game party S1 with the parameter adjustment of the data
transmission cost Is. When Is = 2, the system’s saddle point E can be calculated and the
initial state (0.3, 0.4) falls into the region A2, indicating that the value Is of S1 is within the
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tolerable range. Based on the sensitivity of the evolutionary results to the initial conditions,
both parties eventually evolve to (1, 1). As Is keeps increasing, the path evolution to (1, 1)
slows down, the evolution point of the system gradually evolves from the stable state (1, 1)
to the state (0, 0), and the convergence speed of S1 and S2 choosing their own processing
strategies accelerates. The above research result indicates that when Is gradually increases
or even exceeds the budget, S1 rapidly chooses the solo-processing strategy in order to
avoid more losses, i.e., the increase in data transmission cost Is is damaging the stability of
the cloud–edge collaboration service system and may even lead to the breakdown of the
collaborative processing relationship.
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Furthermore, the loss cost l2 of S2 was selected sequentially as 4, 5, 6, 7, and 8
to further verify the impact of the loss cost l2 due to user complaints on the stability of
the cloud–edge collaboration system with S1 participation. Figure 6 derives the trend
of the evolutionary results of the game party S2 with the parameter adjustment of the
complaint loss l2. When l2 = 4, the system’s saddle point E is calculated and the initial state
(0.3, 0.4) falls into the region A2, indicating that the value l2 of S2 is within the tolerable
range. Based on the sensitivity of the evolutionary results of the game system to the initial
conditions, both parties eventually evolve to (1, 1). As l2 increases, the path evolution to
(1, 1) slows down, the evolution point of the system gradually evolves from the stable
state (1, 1) to the state (0, 0), and the convergence speed of S1 and S2 choosing to handle
the solo-processing strategy accelerates. This indicates that when l2 gradually increases
or even exceeds the budget, S2 rapidly chooses the solo-processing strategy in order to
avoid more losses, i.e., the benefit loss l2 due to user complaints plays a negative role in
the stability of the cloud–edge collaboration system, leading to an increased possibility of
relationship breakdown.
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Figure 6. Impacts of user complaint loss l2 of S2 on the stability of the cloud–edge collaboration system.

Finally, we show the details of the transition from (0, 0) and (1, 1) to the ESS of the cloud–
edge collaboration system when increasing the level of emphasis gradually, to verify the
influence of the emphasis level on the stability of the cloud–edge collaboration system. We
set the values of variables to be M = 0.6, a = 0.4, R = 40, Re = 15, Rs = 23, Ie = 3, Is = 3,
C = 18, Ce = 8, Cs = 11, l1 = 6, l2 = 5, L = 5, which satisfied l1 > l2. Figures 7–9
show the phase diagram of the system when the values of the importance degree α and β

were 0, 0.05, and 0.09, respectively, where each different color line describes the evolution
path and the final evolution result of the strategies of both parties from a certain initial
state of the system, and all lines represent the evolution trend of the system from different
initial states. We can find that with the increment in emphasis level parameters α and β,
the combination of variables transitions from satisfying A > 0, B < 0, H > 0, Q < 0,
to satisfying A > 0, B < 0, H > 0, Q > 0, and finally reaches the state with
A > 0, B > 0, H > 0, Q > 0. The result shows that the cloud–edge collaboration service
system evolves from {solo-processing, solo-processing} and {coprocessing, coprocessing} to
the evolutionary stable result of {coprocessing, coprocessing}, and gradually eliminates the
dependence on the initial value.
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Figure 9. Impacts of the emphasis level parameters α and β for the QoE on the stability of the
cloud–edge collaboration system when l1 > l2, α = β = 0.09.

Similarly, the variables were assigned the values M = 0.6, a = 0.4, R = 40, Re = 15,
Rs = 23, Ie = 3, Is = 3, C = 18, Ce = 8, Cs = 11, l1 = 6, l2 = 8, L = 5, which
satisfied l1 < l2. Figures 10–12 show the phase diagram of the system when the values of
the importance degree α and β were 0, 0.05, and 0.09, respectively, where each different
color line describes the evolution path and the final evolution result of the strategies of
both parties from a certain initial state of the system, and all lines represent the evolution
trend of the system from different initial states. We can find that with the increment in
emphasis level parameters α and β, the combination of variables transitions from satisfying
A > 0, B < 0, H > 0, Q < 0, to satisfying A > 0, B > 0, H > 0, Q < 0, and finally
reaches the state with A > 0, B > 0, H > 0, Q > 0. The final evolution results are similar
to the former. This fully indicates that the higher the emphasis level of S1 and S2 on the
QoE, the more it contributes to the stability of the cloud–edge collaboration system, and
when the emphasis level is high enough, the evolutionary result of the system is no longer
relying on the initial value.
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Furthermore, this paper also considered the emphasis level parameter α of S1 as
0, 0.05, 0.15, 0.25, 0.3, when l1 < l2. As shown in Figure 13, with α = 0 and initial value
(0.1, 0.1), the final strategy of S1 is the “solo-processing” one. As α increases, S1 evolves
towards the “solo-processing” strategy more and more slowly. When α reaches a certain
value, the final strategy of S1 becomes the “coprocessing” one and evolves faster and
faster as α increases. As shown in Figure 14, when the value of l2 decreases to a certain
value so that l1 > l2, the overall evolutionary trend is consistent with that in Figure 13,
but the evolutionary process keeps accelerating. This means that S1 prefers to choose the
“co-processing” strategy in that case. This indicates that the higher the emphasis level of
S1, the more favorable it is for the formation and stability of the cloud–edge collaboration
system.
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Similarly, this paper also considered the emphasis level parameters β of S2 as 0, 0.1, 0.2,
0.3, 0.4 when l1 < l2. As shown in Figure 15, with β = 0 and initial value (0.1, 0.1), the
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final strategy of S2 is the “solo-processing” one. As β increases, S2 evolves towards the
“solo-processing” strategy more and more slowly. When β reaches a certain value, the final
strategy of S2 becomes the “co-processing” one and evolves faster and faster as β increases.
As shown in Figure 16, when the value of l2 decreases to a certain value so that l1 > l2, the
overall evolutionary trend is consistent with that in Figure 15, but the evolutionary process
also keeps accelerating. This means that the acceleration of this evolutionary trend is caused
by the decrement in the value of l2, and is independent of the relationship between the
values of l1 and l2. This indicates that the numerical relationship between l1 and l2 only
affects the evolution mechanism of the cloud–edge collaboration system but does not affect
the whole evolution process.
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5.2. Further Discussion

From the above research analysis, we conclude the following:

• The strategy choices of cloud service providers and edge operators promote each
other. The improvement of one party’s willingness to cooperate in processing drives
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the improvement of the other party’s willingness to cooperate, thus promoting the
cooperative stability of the whole cloud–edge system.

• For the cloud service providers and edge operators, the smaller the solo-processing
benefit, the larger the solo-processing cost, the less the user loss, the less the cost
of data transmission, and the higher the emphasis level on the QoE, thus the more
favorable the evolutionary stability of collaborative processing. For the cloud–edge
collaboration system, the initial willingness of both parties has a particular influence
on the system evolution results. The larger the cooperation benefit, the lower the
cooperation cost, and the stronger the stability of the system, the more favorable it is
to achieve cooperation.

• The lost fee due to the service constraint agreement breach should be at least larger
than the difference between the aggregated benefit when the parties choose to handle
processing separately and the benefit when they cooperate to handle processing
together, in order to establish a stable cooperative processing relationship between the
parties, and to avoid possible speculation by both parties.

• In the cloud–edge collaborative processing, profit-sharing and cost-sharing should be
dynamically adjusted in real time with the changes in the market environment, and
different shares have different effects on the stability of the cloud–edge collaboration
system. This is related to the importance both parties attach to the QoE and the loss of
users who quit or complain.

• The higher the emphasis on user experience both parties put, the stronger the coopera-
tion intention is, and this effect is obvious.

To effectively maintain the stability of the cloud–edge collaboration system and pro-
mote digital technologies to better serve the digital transformation of enterprises, the
following recommendations are proposed in this paper based on the above-mentioned
research analysis and results:

• Focusing on improving the cooperation willingness of cloud service providers or edge
operators can achieve the effect of improving the cooperation willingness of both
parties, so as to promote the harmony and stability of the whole system.

• Cloud service providers and edge operators, as the two major stakeholders of digital
services, can reasonably use the policy dividends of the digital economy era and
Internet technology to accelerate product development and constantly upgrade and
transform to reduce the various costs of user services and improve economic returns,
so as to further construct a more stable and mutually reinforcing cooperative relation-
ship between them and jointly promote the high-quality development of the digital
economy.

• The governments can supply a sound system to provide a legal basis and guarantee
for the cost of service constraint agreement breach, enhance the binding force and
enforcement of the agreement, provide credit guarantees for both parties to improve
each other’s credit, increase the cooperation stickiness of both parties, integrate all
forces together to maintain a stable cloud–edge collaboration system to serve the
digital transformation of enterprises, drive the innovation and evolution of business
models, and increase the value creation of enterprises.

• The benefit and cost distribution proportion of both parties in the cloud–edge collab-
oration system should be dynamically adjusted. Cloud service providers and edge
operators influence each other in multiple dimensions. Therefore, in the changing
market economy environment, both parties should adjust their benefit and cost dis-
tribution strategy in real time according to the actual cost and contribution, so that
the allocation of benefits and costs can quickly respond to the market and satisfy both
parties, thus improving the enthusiasm of cooperation and ensuring the long-term
stability of the cloud–edge collaboration system.

• The greater the emphasis on QoE by cloud service providers and edge operators, the
more it helps the establishment and stability of the cloud–edge collaboration system.
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Therefore, we should lower market entry barriers, improve competition in similar
services, and create a favorable competitive environment in the future.

6. Conclusions

In this paper, we constructed an evolutionary game model of cloud service providers
and edge operators in the cloud–edge collaboration system in the digital economy era
and thoroughly analyzed the internal principle of the evolution of the decision-making
behavior of both parties and the internal mechanism of collaboratively processing user
service requests. We also obtained the equilibrium and stability conditions for the two-
party decision to reach the ideal state, performed numerical simulations to verify the
two-party evolutionary path, and discussed the parameters that influenced the stability
of the cloud–edge collaboration system. We further proposed some specific measures to
promote the stability of the cloud–edge collaboration system from the perspective of cloud
service providers, edge operators, and external entities, respectively.

A summary of future research directions is given below. First, we will apply other
game models to investigate the equilibrium strategies of cloud service providers and edge
operators. Second, we will further refine the assumptions to bring the model much closer
to the actual scenario. Third, we will further analyze the relevant intrafluid factors, e.g.,
incentives, penalties, etc. Finally, we will consider the influence of other parties in the
system, such as cloud agents and other external entities that may affect the stability of the
system.
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