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Abstract: Earthquakes pose a significant threat to infrastructure systems. However, improving the
seismic resilience of infrastructure systems in earthquake-prone regions is fraught with obstacles. First,
this article reviews the current status of earthquake resilience research, points out the gaps of existing
research, and then focuses on the adaptability in resilience. Secondly, five groups of influencing
factors of infrastructure system adaptability are identified and clustered through literature review and
expert knowledge. Thirdly, the structure and conditional probability table of the Bayesian network
model are given in detail, and the evaluation model of Bayesian network adaptability is created. A
Chinese earthquake-prone county was used to verify the applicability of the model. The research uses
forward propagation analysis to calculate the adaptability of the case and obtains the probability of
the case’s adaptability. The backward propagation to obtain the ranking of the influence degree of the
critical influencing factors on the adaptability and the top three factors are respectively earthquake
history, relevant information and contingency mechanisms. Finally, the research suggests measures
to improve adaptability.

Keywords: infrastructure systems; seismic resilience; adaptability Bayesian network

1. Introduction

According to the EM-DAT database, there were 1154 large earthquakes worldwide
between 1970 and 2022, resulting in over 1.3 million deaths and over 23 million displace-
ments [1,2]. In many regions of the world, earthquakes are now the primary threat to
infrastructure systems. The US President’s Commission on Critical Infrastructure Pro-
tection (PCCIP) first brought this concern to public attention, proposing the notion of
interdependent infrastructure systems [3]. Infrastructure system refers to a “system-of-
systems” comprising water, power, communication, roads, and other systems that are
closely linked to the provision of those needs on which people are reliant for survival [4].
Globalization has highlighted the interconnectedness that exists between essential in-
frastructure systems, which have become increasingly commonplace and intricate [5–7].
Infrastructure systems’ operational effectiveness is enhanced by this interconnectedness.
However, this has also made infrastructure systems more susceptible to interruption. One
infrastructure system through topology and proximity to laying locations causes disruption
of undamaged components in other infrastructure systems and further generates a series
of cascading failures [5,8–11] and/or escalating and common cause failures in an entire
network of critical infrastructure systems [5].

Thus, in mitigating against the consequences of earthquake-related catastrophes, the
construction of robust and resilient infrastructure systems is crucial. The challenge until
now has been in how to analyze and measure the resilience of existing infrastructure
systems in order to investigate mechanisms by which such systems may be strengthened.
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Recognition of this importance is seen in the significant body of research on resilience
published to date.

1.1. Related Research in Resilience

Bruneau et al. first introduced the notion of seismic resilience [11,12]. Subsequent
research on seismic resilience has been largely carried out across two dimensions, those
being geospatial research emphasizing locale or research exploring specific infrastructure
types. These two dimensions are, of course, interdependent; for instance, assessing the
impact of key infrastructure systems on communities is a prerequisite to boosting commu-
nity resilience [13]. Moreover, the overall resilience of a town or city is contingent on the
resilience of its essential infrastructure systems, without which daily life can expect to be
severely disrupted following any devastating event [14].

The resilience of a single infrastructure system type, including water, power, roads, or
communications, is the primary focus of academic research. The most prolific literature
relates to water systems [15–19] and power systems [20,21]. Farahmandfar et al. evaluated
the quake resilience of the water system in Charleston, South Carolina, USA [19]. Chang
and Shinozuka quantified the seismic capacity of the Shelby drinking water systems in
Tennessee, USA [22]. Ouyang and Duenas-Osorio studied the power supply system in
Harris County, Texas, USA, using the case to simulate and evaluate the time-dependent
aspects of resilience and efficacy of a resilience heuristic technique [23].

Other scholars have investigated the resilience of multi-infrastructure systems and
their interdependencies. In regards to interaction between infrastructure systems, the most
prevalent theory holds that the interdependence of infrastructure systems networks is
comprised of four relationships: functional (physical), informational (cyber), geographical,
and logical [5]. Given the interdependence of infrastructure systems, evaluation of the
resilience of critical infrastructure systems cannot be carried out without also evaluating
that interdependence [14]. When examining the seismic resilience of infrastructure systems,
functional dependency and geographical dependency are the two most critical linkages.
The degree of interaction between these two types of dependencies determines the severity
of consequences when the system is subjected to external pressure [4]. As the operation
of the majority of infrastructure systems is dependent on a stable energy supply, energy
systems are characteristically at the center of multi-infrastructure systems research. There
are, in fact, numerous publications on the interactions between power and water [15,19],
power and communication [21,24], energy, water, transport, information communication
technology (ICT) and waste sectors [25].

There is no general index for evaluating the resilience of multiple systems under threat
of an earthquake [26]. Existing quantitative techniques for resilience assessment mostly
concern a single system. This practice narrows the standard indicators, restricts flexibility
and adaptability to new contexts, and disregards the nature of the interdependence between
systems [27].

To solve the above problems, this study first defines the resilience of “system-of-
systems”, then evaluates and quantifies it, and finally gives specific improvement strategies
or measures. The resilience is defined as: the comprehensive performance of the resistibility,
recoverability and adaptability of “system-of-systems” in response to earthquake disasters
and the ability to maintain service performance in the face of a catastrophic earthquake.
It can be measured as a percentage of system performance degradation and shown as
Equation (1).

Recoverability: the capacity to restore service performance of the system to the level
delivered prior to an earthquake calamity. The recoverability is measured as the time of
recovery and illustrated as Equation (2).

Adaptability: the capacity to learn, adjust and deal with future seismic calamities
more effectively. Adaptability embodies technical, economic, organizational, and social
capability to adjust to earthquakes; therefore, it cannot be represented by a single indicator
as in the previous two capabilities.
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The definitions and models in this paper simplify the recovery process and possible
recovery states after recovery in line with the models of Miles and Chang [28] and Cimellaro
et al. [29].

As depicted in Figure 1, earthquakes occur at times t1, t3, and t5. In our research,
earthquakes are viewed as instantaneous event. The performance of the resistibility, re-
coverability, and adaptability of infrastructure systems between two earthquakes may
be illustrated using the time period [t3, t5] as an example. t3 indicates the time when
the infrastructure system is affected by the earthquake; t4 indicates the time when the
infrastructure system recovers to its original performance; and t5 indicates the time when
the next earthquake occurs.
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Equation (1) measures the resistibility of the infrastructure system:

Res =
P(t2)− P(t3)

P(t2)
× 100% (1)

P(t) represents the performance of the infrastructure system corresponding to the
t time. A smaller Res indicates that the infrastructure system loses less service perfor-
mance after a seismic event, hence indicating that the infrastructure system has stronger
resistibility.

Equation (2) measures the recoverability of infrastructure systems:

Rec = t4 − t3 (2)

A small Rec suggests that the infrastructure system recovers to pre-earthquake service
performance in a short amount of time, indicating that the infrastructure system has a
strong capacity for recovery.

The time interval [t4, t5] denotes the period of time between the infrastructure sys-
tem’s service performance returning to its pre-earthquake level and the next earthquake
occurring. During this time interval, the assessed area should learn and adjust in response
to previous earthquakes in terms of technology, economy, organization, and society, and
establish sufficient coping and preparation capabilities to resist subsequent earthquakes
and restore infrastructure system performance faster. These capabilities can be used to mea-
sure the adaptability of infrastructure systems. The adaptability of infrastructure systems is
measured by the response and preparedness capabilities internalized and adjusted during
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earthquakes. The coping and preparedness learned from the earthquake at the time of t3 is
part of the adaptability of resilience in the [t3,t5] time interval.

The quantification of adaptability is the research focus of this paper, elaborated on in
the third and fourth sections of this paper.

1.2. Existing Literature Related to Bayesian Networks in Seismic Resilience

The Bayesian network (BN), developed in the field of artificial intelligence, is used to
handle ambiguous issues. A Bayesian network combines the benefits of graph theory and
probability statistics, as well as the benefits of intuitive and adaptive probabilistic reasoning.
In order to account for uncertainty and incompleteness, Bayesian networks can factorize
the joint distribution of variables based on conditional dependencies [30]. A Bayesian
network is an analytical tool that illustrates all the causal relationships between qualitative
and quantitative considerations in order to assist decision makers in comprehending how
variables are interconnected, and in understanding how the modification one variable may
affect others [31].

There are few extant studies that employ Bayesian networks in resilience assessments.
Johansen and Tien sought to comprehend the effect of interdependencies on overall system
vulnerability and suggested a probabilistic method based on Bayesian networks to describe
the interdependencies of critical infrastructure systems [32].

De Iuliis, Kammouh et al. defined downtime as the time required to restore the
functionality of an infrastructure system. They used available human resources, epicentral
distance, and infrastructure maintenance as variables and built a Bayesian network model
to quantitatively analyze the recovery time of power systems and communication systems
under varying earthquake intensities. But the model does not consider the dependence
between the power system and the communication system [21].

Kammouh, Gardoni et al. considered vulnerability reduction, robustness and restora-
tion as the three pillars of resilience. They matched indicator characteristics for their pillars
of resilience and constructed a static Bayesian network composed of an index layer, a
resilience pillar layer, and a resilience index. The model is simple and captures the three
essential manifestations of resilience, but the confidence level of the model has yet to be
determined [24].

Hossain et al. presented a method for quantifying resilience using Bayesian net-
works. Resilience was defined in their study by three parameters: absorptive, adaptive
and restorative capacity. The research focused on absorbency, adaptability, and Bayesian
network inference. However, only four indicators are used to express the adaptability,
which does not fully reflect the adaptability of the studied system, leaving accuracy in need
of improvement [31].

This paper quantifies resilience into resistibility, recoverability, and adaptability. Com-
pared with the resilience quantification methods proposed in the above literature, our
division method is more conducive to intuitive understanding with the coordinate axes of
infrastructure system performance and time, as shown in Figure 1.

In regions with a high seismic risk, enhancing the resilience and adaptability of infras-
tructure systems is crucial. The period between the recovery of an infrastructure system
from a previous earthquake to that of a subsequent earthquake should be properly utilized.
Infrastructure managers should make the most of this time to enhance the adaptability
of infrastructure systems, learn from seismic disasters, and improve and alter current
resources, organizational structure, and division of work in order to be better prepared for
the next earthquake. Nevertheless, few studies exist on this matter.

It has become typical for research to examine the seismic resilience of infrastructure
systems in earthquake catastrophes in order to employ more resilient infrastructure systems
to deal with the increasing frequency of earthquake disasters. Quantitative research on the
resilience of infrastructure systems in the existing literature emphasizes two priorities. One
emphasis investigates resilient infrastructure systems with a view to reducing the damage
rate in order to maintain a certain minimum service level when earthquakes occur. The other
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is to study the recovery ability rate or ways in which infrastructure systems could quickly
recover from a disaster. Undoubtedly, research on these two aspects has played a significant
role in improving the resilience of infrastructure systems. However, few studies are
concerned with how to increase the adaptability of infrastructure systems, how to learn from
seismic disasters, or how to enhance and alter resource allocation, organizational structure,
and labor distribution to be better prepared for the next earthquake. In earthquake-prone
regions, it is crucial to increase the resilience of infrastructure systems. Two significant
weaknesses in existing research need to be addressed, and addressed urgently:

• Lack of research on infrastructure adaptability as a critical feature of resilience.
• Lack of understanding on how to quantify adaptability and account for interdepen-

dencies between different infrastructure systems and factors, as may be provided by a
Bayesian network BN analysis.

In order to solve the above two problems, the aim of this study is to construct a
Bayesian network-based infrastructure system adaptability model to solve the complex re-
lationship between different types of influencing factors and interdependent infrastructure
systems.

This paper makes the following contributions:

• Classifying the underlying factors of interdependent networks with respect to the
concept of adaptability.

• Developing a new conceptual BN framework for interdependent networks.
• Using different types of inferences to provide a better insight regarding the result of

the BN model.

2. Background
2.1. Background of Bayes Theorem

Bayes’ theorem, proposed by Thomas Bayes, provides the foundation for the Bayesian
Network. The Bayesian method has been widely improved on in terms of robustness since
its first appearance [33]. According to Bayes’ theorem, the following formula can be used
to compute the conditional probability:

P(A|B) = P(AB)
P(B)

(3)

where, P(A|B) = probability of A given that B already occurred; P(AB) = probability of A
and B both would occur; P(B) = initial probability of B.

According to Equation (3), we can state the multiplication theorem of probability:

P(AB) = P(B)·P(A|B)
P(AB) = P(A)·P(B|A)

(4)

By extending the multiplication theorem (4) of probability to the occasion of n events,
if P(A1 A2 . . . An−1) > 0, then we have

P(A1 A2 . . . An) = P(A1)P(A2|A1)P(A3|A1 A2) . . . . . . P(An|A1 A2 . . . An−1) (5)

Equation (5) decomposes the joint probability of n events into the product of many
conditional probabilities, which is the basis for solving the Bayesian network. Formula (6)
is also referred to as the chain rule of the joint probability distribution.

2.2. Background of Bayesian Network

The Bayesian network is also called the credibility network or belief network. If three
events Xi, Xj, Z can achieve P(Xi, Xj

∣∣Z) = P(Xi
∣∣Z)P(Xj

∣∣Z) , then Xi and Xj are indepen-
dent, with ZZ conditionally. Furthermore, there is

P
(
Xi,

∣∣Xj, Z
)
= P(Xi

∣∣Z) (6)
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Conditional independence is the basis of the Bayesian network, and its strength is
that it can effectively solve the ‘N-hard problem’ brought on by an increase in variables.
Bayesian networks are mainly composed of network structures and network parameters.
The network structure is a directed acyclic graph. The nodes (X1, X2, · · · , Xn) in the
network represent random variables, while the directed edges between nodes reflect the
dependencies between variables.

The arrow points to the child node, and the tail of the arrow is the parent node. The
structure of a Bayesian network contains the following categories of nodes:

Parent nodes: parent nodes are without root nodes.
Intermediate nodes: intermediate nodes are nodes with parent and child nodes.
Child nodes: child nodes are without leaf nodes.
Network parameters are conditional probabilities between nodes, which are the quan-

tification of causal relationships between nodes and expressions of local dependencies.
Each state of a node has a probability function, and conditional probabilities are used to
show associations between variables.

Given its parent node, each node in the Bayesian network is conditionally independent
of its nondescendant nodes. Thus, the joint probability distribution of the Bayesian network
can be expressed as follows:

P(X1X2 . . . Xn) =
n

∏
i=1

P(Xi|X1, X2, . . . , Xi−1) =
n

∏
i=1

P(Xi|Pa(Xi)) (7)

In formula (7), Pa(Xi) represents the set of all parent nodes of node Xi.
The following is a simplified example demonstrating the Bayesian network:
The example Bayesian network, shown in Figure 2, is composed of five nodes: X1, X2

and X4 are the parent nodes, X3 is an intermediate node, and X5 is the child node. Mean-
while, X1, X2 are the parent node of X3, while X3, X4 are the parent node of X5.
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Applying Equation (7), we can express the above as follows:

P(X1X2X3X4X5) = P(X1)P(X2)P(X4)P(X3|X1, X2)P(X5|X3, X4) (8)

The joint probability can be split into the product of prior probability and conditional
probability using Bayesian networks to reduce the difficulty in finding a solution. The
prior probability and conditional probability of each node come from expert knowledge in
combination with existing literature. The specific details will be discussed in the Section 4
of this paper.

2.3. The Methodology

The method undertaken can be divided into the following steps:
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• Undergo adaptability modeling: the adaptability key variables and link of the BN are
acquired from expert knowledge and published studies.

• Determine the parameters of Bayesian networks: the unconditional probability of the
root node, the conditional probability of intermediate nodes and leaf nodes all derive
from historical data, published literature and expert judgment.

• Conduct an inference: calculate the adaptability of the infrastructure system in the
target area by way of forward reasoning of the Bayesian network model in order to
identify important influencing factors of the adaptability through the unique backward
reasoning of the Bayesian network. This is done so as to propose targeted adaptability
improvement measures.

3. Adaptability Modeling Using Bayesian Networks
3.1. Variables Selection

Based on a review and collation of existing literature, 19 key factors were identified
that affect the adaptability of infrastructure systems. In the process of identifying factors,
factors were discarded that were not relevant to this study or which had a high degree
of similarity with other factors. The factor of ‘ground motion’ (vibration of soil near the
surface caused by seismic waves released by a seismic source), for example, is referred to
in some papers [34–36], but the term is synonymous with ‘seismic intensity,’ which is the
technical term recognized by the academic community.

In accordance with the identification, grouping, and linking of factors, the following
actions were taken to complete this portion of the study:

• Step 1: Identify the factor. Identify a list of key factors affecting the adaptability of
infrastructure systems from the existing literature.

• Step 2: Cluster the factor. The identified 19 key factors affecting the adaptability of
infrastructure systems were divided into five categories.

• Step 3: Construct a Bayesian network structure. Apply the parent-child structure and
causal relationship to construct the Bayesian network structure.

When constructing the Bayesian network structure, consideration should be made in
regard to dividing the state of each factor and corresponding performance measure in order
to prepare for the construction of a complete Bayesian network adaptability evaluation
model. Each factor is then divided into two to four states according to expert knowledge
and extant literature. The state low represents negative outcome on adaptive capacity, and
the state high represents positive outcome. The factor’s state and corresponding indicator
performances are listed in Tables 1–5.

Table 1. Description of the earthquake intensity variables.

Factor State Performance
Measure Reference

Epicentral distance

Close Visual
inspection/Expert

opinion
[21]Far

Very far

Earthquake
magnitude

Strong M5–5.9

Major M6–6.9

Severe M7–7.9

Violent M8-Above

Earthquake intensity

Dangerous V–VII

[37]Severe VIII–IX

Violent X–XII
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Table 2. Description of the technology variables.

Factor State Performance
Measure References

Normative operation

Low σ ≤ 80%

[5]Medium 80% < σ ≤ 90%

High σ > 90%

Professional
No Inadequate

[15,16,38,39]
Yes Adequate

Maintenance routine
No Irregular maintenance

[40,41]
Yes Regular maintenance

Advanced technology
No Inadequate

[31]
Yes Adequate

Earthquake history
No Did not happen

[42–44]
Yes Happened

Table 3. Description of the organization variables.

Factor State Performance
Measure References

Training drills and
rehearsals

No None
[17,24,45]

Yes Not less than once

Leadership
No Unsatisfied

[17,45–47]
Yes Satisfied

Contingency
mechanisms No Inadequate/No

update [24,46,48]

Table 4. Description of the Economic variables.

Factor State Performance
Measure References

Operation and
maintenance funds

No Inadequate
[23,41,49,50]

Yes Adequate

Government
investment decisions

No No special investment
[5,24,51]

Yes Special investment

Financial reserves

Bad Deficit

[23,24,41,49,52,53]Medium Balance

Good Surplus

Local economic
development

situation

Low Below average

[52,54]Medium Equal to average

High More than average
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Table 5. Description of the Social variables.

Factor State Performance
Measure References

Social information
sharing

No None
[12,48]

Yes Done

The level of residents’
culture

Low Below average

[38,46,47,55]Medium Equal to average

High More than average

Public awareness

Low Unwillingness

[24,52]Medium Average

High Willingness

Relevant information

Low Inadequate/no
communication

[24,56]Medium Average but not
sufficient

High Adequate/communicate
sufficiently

3.2. Variables Connectivity

In order to build a Bayesian network for adaptability, it is necessary to establish a
conceptual link between factors. This must be done while considering the interaction
between factors and their impact on adaptability.

Factors are clustered into five categories according to the following principles:

• Factors associated with seismic events are clustered to determine response capabilities
matched to magnitude of earthquake damage.

• The basic elements and operational specifications required to maintain the normal
service of the infrastructure system are clustered, which support daily supply services
and provide technical support in the event of an earthquake.

• Policy and mechanism factors are clustered and conduct coordinated drills between
systems to ensure effective integration of resources from all parties for rapid recovery
when the next earthquake occurs.

• Factors related to economic reserves are clustered for possible economic support.
• The potential support factors of stakeholders in the assessed area are clustered to

determine the degree of cooperation of stakeholders when the next earthquake occurs.

The graphical representation of the proposed adaptability assessment model is shown
in Figure 3. The target node (adaptive capacity) is marked in red and has five parent
nodes, which are marked in green. These are namely earthquake intensity, technology,
organization, economic and social. Apart from earthquake intensity, the remaining four
parent nodes, technology, organization, economic and social, come from the previous factor
clustering. Putting these factors into the model comprehensively classifies the influencing
factors on the adaptability of the infrastructure system. It also reduces the computational
complexity of the BN. The corresponding state and conditional probability table of these
four nodes is given in Section 4.



Systems 2023, 11, 84 10 of 20

Systems 2023, 11, x FOR PEER REVIEW 9 of 19 
 

 

• Factors associated with seismic events are clustered to determine response capabili-

ties matched to magnitude of earthquake damage. 

• The basic elements and operational specifications required to maintain the normal 

service of the infrastructure system are clustered，which support daily supply ser-

vices and provide technical support in the event of an earthquake. 

• Policy and mechanism factors are clustered and conduct coordinated drills between 

systems to ensure effective integration of resources from all parties for rapid recovery 

when the next earthquake occurs. 

• Factors related to economic reserves are clustered for possible economic support. 

• The potential support factors of stakeholders in the assessed area are clustered to 

determine the degree of cooperation of stakeholders when the next earthquake oc-

curs. 

The graphical representation of the proposed adaptability assessment model is 

shown in Figure 3. The target node (adaptive capacity) is marked in red and has five par-

ent nodes, which are marked in green. These are namely earthquake intensity, technology, 

organization, economic and social. Apart from earthquake intensity, the remaining four 

parent nodes, technology, organization, economic and social, come from the previous fac-

tor clustering. Putting these factors into the model comprehensively classifies the influ-

encing factors on the adaptability of the infrastructure system. It also reduces the compu-

tational complexity of the BN. The corresponding state and conditional probability table 

of these four nodes is given in Section 4. 

 

Figure 3. Adaptability assessment model for critical infrastructures. 

3.2.1. Earthquake Intensity 

Earthquake intensity is the most intuitive and widely employed gauge for determin-

ing the severity of earthquake damage. Its effect is dependent on both epicentral distance 

and magnitude. In general, the intensity of an earthquake and the amount of damage are 

proportional to the magnitude and distance from the epicenter. In the model, earthquake 

intensity has two parent nodes, epicentral distance and earthquake magnitude. 

The epicentral distance has three states: close, far and very far. The earthquake mag-

nitude has four states: strong, major, severe and violent. The earthquake intensity has 

three states: dangerous, severe and violent. Each state and the corresponding performance 

measure are shown in Table 1. The unconditional probability of epicentral distance and 

earthquake magnitude as the root node and the conditional probability of earthquake in-

tensity as the intermediate node are presented together in Section 4. 

3.2.2. Technology 

Figure 3. Adaptability assessment model for critical infrastructures.

3.2.1. Earthquake Intensity

Earthquake intensity is the most intuitive and widely employed gauge for determining
the severity of earthquake damage. Its effect is dependent on both epicentral distance
and magnitude. In general, the intensity of an earthquake and the amount of damage are
proportional to the magnitude and distance from the epicenter. In the model, earthquake
intensity has two parent nodes, epicentral distance and earthquake magnitude.

The epicentral distance has three states: close, far and very far. The earthquake
magnitude has four states: strong, major, severe and violent. The earthquake intensity has
three states: dangerous, severe and violent. Each state and the corresponding performance
measure are shown in Table 1. The unconditional probability of epicentral distance and
earthquake magnitude as the root node and the conditional probability of earthquake
intensity as the intermediate node are presented together in Section 4.

3.2.2. Technology

Technology plays a vital role in the disaster preparedness stage. Effective technology
can help infrastructure systems reduce cascading failures during earthquake disasters,
reduce loss rates, and quickly restore service capabilities in the post-earthquake period,
while ensuring people’s normal activities can be conducted.

Technology has five parent nodes, namely: normative operation, professional, mainte-
nance routine, advanced technology and earthquake history. See Table 2 for the specific
status and the corresponding performance measure.

Normative operation refers to the proportion of operations according to the manual [5].
This indicator is measured by the operation accuracy rate σ. There are three states. If the
operation accuracy rate is less than or equal to 80%, σ is low; if the operation accuracy rate
is greater than 80% and less than or equal to 90%, σ is medium, if the operation accuracy
rate is greater than 90%, σ is high.

Professional refers to whether the number and ability of existing professional staff
match the workload of daily repairs and maintenance [15,16,38,39]. If it matches, the status
of the node is yes, otherwise it is no.

Maintenance routine refers to the regular maintenance of equipment and instruments
in accordance with operating specifications [40,41]. If these are regularly maintained, the
status of the node is yes, otherwise it is no.

Advanced technology means that the technological level of the infrastructure system in
the evaluated area must not be lower than the level of the country as a whole; it also must
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match the appropriate equipment and must not exhibit any technical lag [31]. If it matches,
the status of the node is yes, otherwise it is no.

Earthquake history refers to whether an earthquake of magnitude 5 or above has ever
occurred in the assessed area [42–44]. If it has occurred, the status of the node is yes, and if
not, it is no.

3.2.3. Organization

An organized structure provides the foundation for effectively integrating resources,
breaking down communication barriers between stakeholders, and coordinating between
infrastructure systems. Organization contains four parent nodes, namely: earthquake
history, training drills and rehearsals, contingency mechanisms and leadership. The status
of each node and the corresponding performance measure are shown in Table 3. Note
that earthquake history is also the parent node of technology and organization. To avoid
duplication, it is not reflected in the table.

Earthquake history. Learning and optimizing daily operation and organization and
deployment in the history of earthquakes and accumulating experience and countermea-
sures in the process is a positive and appropriate choice that people can make in the face of
earthquake disasters.

Training drills and rehearsals. The practice of routine emergency drills between various
infrastructure systems provides assurance for the orderly carrying out of post-earthquake
rescue and relief work [17,24,45]. If there is at least one emergency drill in a year, the status
of this node is yes, otherwise it is no.

Contingency mechanisms are the key channels for emergency rescue and disaster relief.
A smooth contingency mechanism can quickly and efficiently transmit disaster informa-
tion to relevant departments and corresponding decision-making agencies and provide a
strong guarantee for allocating appropriate resources to effectively reduce infrastructure
system losses and quickly restore corresponding services [17,24,45]. If there is a matching
emergency mechanism or the original emergency mechanism is updated after the last
earthquake, the state of the node is yes, otherwise it is no.

Leadership is a key factor for effectively integrating various stakeholders, deploy-
ing the work of all parties, and making good use of existing resources to seek social
assistance [17,45–47]. If there is no obvious error in the daily drills and deployments, the
status of the node is yes, otherwise it is no.

3.2.4. Economic Variables

Sufficient economic reserves and multichannel funding sources are important provi-
sions for the orderly operation of relevant mechanisms and the enrichment of required
resources. Economic variables have four parent nodes, namely: operation and maintenance
funds, government investment decisions, financial reserves and local economic develop-
ment. The status of each node and the corresponding performance measure are listed in
Table 4.

Operation and maintenance funds refer to the funds required to ensure the normal
operation of the infrastructure system in ordinary times [23,41,49,50]. Sufficient operation
and maintenance funds enable the infrastructure system to provide stable services. Suffi-
cient and stable financial guarantees will demonstrate stronger resistance to earthquake
disasters and stronger recovery capabilities in the post-earthquake period. If the operation
and maintenance funds can meet the daily operation and maintenance needs, the status of
the node is yes, otherwise it is no.

Government investment decisions refers to whether higher-level government has
set up special allocations to improve the resilience of the infrastructure system in the
assessed area [5,24,51]. If there are government investment decisions, the status of the node
is yes, otherwise it is no. Special appropriation from higher-level government is one of
the sources of funding for updating the existing infrastructure system and improving its
overall robustness.
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Financial reserves refer to the financial situation of the local government [23,24,41,49,52,53].
A local government with a fiscal surplus can better organize emergency drills and provide
funds for emergency rescue, disaster relief and post-earthquake recovery. The node status
corresponding to fiscal surplus, balance and deficit is good, medium and bad, respectively.

Local economic development situation refers to the level of local economic develop-
ment [52,54]. Regions with rapid economic development can provide abundant funds to
support the normal operation of infrastructure systems and are better positioned to obtain
more relief supplies and effect faster recovery speeds. It may be lower than, equal to, or
higher than the average value of national income in the province, and the corresponding
node states are low, medium, and high.

3.2.5. Social

Support and assistance from the social groups is a prerequisite for the normal operation
of an infrastructure system. It is also a reliable source of a large number of resources needed
for post-earthquake recovery. The social node has two parent nodes, relevant information
and public awareness. Public awareness has two parent nodes, social information sharing
and the level of residents’ culture. We list these nodes in the Table 5.

There are various means of social information sharing, such as producing short videos
and brochures to publicize earthquake-related information, along with forming community
study groups and seminars, etc., explaining relevant self-rescue methods and promoting
the necessity of actively participating in post-disaster construction and rapid recovery. If
similar work has been done, the status of the node is yes, otherwise it is no.

The level of residents’ culture. Generally speaking, the higher the level of education and
awareness of residents, the more willing they are to devote themselves to public issues. If
the education level of the residents is lower than, equal to or higher than the average level
of the province, the status of the node is low, medium, high, respectively.

Public awareness [24,52]. We have assigned three states to public awareness, which,
respectively, represent residents’ willingness to participate in emergency rescue and relief
work. High is used to express strong willingness; medium is used to express average; and
low is used to express unwillingness.

Relevant information indicates the degree of information sharing among stakeholders,
which is a powerful manifestation of effective communication between stakeholders and a
strong guarantee for optimizing the arrangement of emergency rescue and relief work and
shortening the recovery time [24,56]. If the stakeholder communicates sufficiently, the node
status is high; if communication is average but not sufficient, the node status is medium; if
the stakeholder hardly communicates, the node status is low.

3.3. Interdependent Infrastructure

Rinaldi et al. define the interdependence of two infrastructure systems as a bidi-
rectional relationship between them (a bidirectional relationship), where the state of one
infrastructure system is related to the state of another infrastructure system. It divides the
interdependence between infrastructure system networks into four types: functional (phys-
ical), informational (cyber), geographical, and logical [5]. This understanding has been
recognized by many scholars. For example, when analyzing critical infrastructure systems,
functional dependence and geographical dependence should be considered together. This
joint effect determines the severity of consequences for critical infrastructure systems when
they are under external pressure [4]. Since infrastructure systems are highly interrelated,
it is crucial to consider their interdependencies in order to analyze the resilience of criti-
cal infrastructure systems [14]. The complexity and dynamic interaction of connections
between various subsystems and components poses challenges to the optimal service or
performance of infrastructure systems and may cause substantial economic losses [31].

On analyzing the current literature, it is clear that the research on the interaction
between infrastructure systems falls approximately into two categories. First, there is a high
likelihood of interdependence related disruption occurring propagated via either functional
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and/or geographical interdependencies, while the poor resistance of the infrastructure
system leads to a large-scale outage of services. The second is to analyze the functional and
geographical relationship between infrastructure systems in the post-earthquake recovery
stage in order to explore recovery priorities, formulate recovery strategies, shorten the
recovery time, and return services to normal as soon as possible. In our research, the
relationship between infrastructure systems is introduced into the resistance and recovery
capabilities, and on this basis, system simulation is applied and the simulation results
are corrected in combination with historical data. However, in the context of the topic of
adaptability discussed in this paper, infrastructure systems can be considered to cooperate
well when there are no outages of service in daily operations. For this reason, in this
study, when evaluating the adaptability of infrastructure systems, orderly emergency drills,
planned exchanges, and effective operation between infrastructure systems are taken as the
foundation of good infrastructure systems.

4. Conditional Probabilities

Another component of the Bayesian network is the structural parameter, which is
the conditional probability between nodes, the quantification of the causal relationship
between nodes, and the expression of local dependence [30].

4.1. Unconditional Probabilities

In the Bayesian network structure, there are 17 root nodes, 6 intermediate nodes and 1
leaf node. For the 17 root nodes, we uniformly use the Unconditional Probability Table and
assume that the probability of each state of the root node is the same. That is, if the node has
n states, the probability of each state is 1/n. One of the advantages of the Bayesian network
is that as the evidence is updated, the probability is updated, with the result that more
accurate prediction results are obtained due to the new evidence. Economic variables are
offered as an example to demonstrate the unconditional probability, as shown in Table 6.

Table 6. A four-node with Unconditional probability table.

Node State Probability

Operation and maintenance funds

No 1/2
Yes 1/2

Government investment decisions

No 1/2
Yes 1/2

Financial reserves

Bad 1/3
Medium 1/3

Good 1/3

Local economic development situation

Low 1/3
Medium 1/3

High 1/3

4.2. Conditional Probabilities

A conditional probability table is used to represent six intermediate nodes and one
leaf node. In addition to the earthquake intensity and public awareness described above,
the rest of the intermediate nodes, technology, organization, economic and social, and leaf
node adaptive capacity are each assigned three states, namely low, medium, and high.
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By assigning values to each state of the parent node, it is possible to calculate the global
relative value of the child node under each conditional state combination and combine the
membership function to obtain the conditional probability table of the child node [24].

s = ∑n
i=1 pi

∑n
i=1 maxi

=
∑n

i=1 pi

n×max
(9)

In the equation, s is the global relative value of child nodes, n is the number of parent
nodes, pi is the value of the ith parent node, maxi is the maximum value that parent node i
can take.

We also take economic variables as an example to generate the conditional probability
table. Using the method given above, we calculate a total of 108 (2 × 2 × 3 × 3 × 3)
conditional probabilities related to economic variables, shown listed in Table 7.

Table 7. Conditional probability Table for the economic variable.

Father Nodes s Son Node: Economic

Operation and
Maintenance

Funds

Government
Investment
Decisions

Financial
Reserves

Local Economic
Development

Situation
s = ∑n

i=1 pi
n×max

High
s2

Medium
2s(1 − s)

Low
(1 − s)2

1 1 2 2 1.0000 1.0000 0.0000 0.0000
1 1 2 1 0.8333 0.6944 0.2778 0.0278
1 1 2 0 0.6667 0.4444 0.4444 0.1111
0 0 1 1 0.3333 0.1111 0.4444 0.4444
0 0 1 0 0.1667 0.0278 0.2778 0.6944
0 1 2 0 0.5000 0.2500 0.5000 0.2500

. . . . . . . . . . . . . . . . . . . . . . . .

5. Case Study and Inference

Gongxian County is located to the south of Yibin City, Sichuan Province, China,
between 104◦38′–105◦02′ E, 27◦53′–28◦31′ N, with an area of 1149.5 km2. Gongxian County
is an earthquake-prone area. According to statistics, from 16 April 2012 to 20 September
2022, there were 124 earthquakes in Gongxian County, including 12 earthquakes above
magnitude 4, of which 4 earthquakes were above magnitude 5. The latest earthquake
above magnitude 5 occurred on 4 July 2019, with a magnitude of 5.6. It is important
to understand the seismic resilience of this region. Good adaptability can help such
earthquake-prone regions reduce the level of service loss rate of infrastructure systems
as a result of earthquakes while quickly restoring production activities. The adaptability
assessment of Gongxian County in a post-earthquake period is hereby taken as a case study
to verify the applicability of the Bayesian network constructed in this paper.

The relevant parameters and data of the adaptability assessment model come from
field surveys, expert interviews, and historical data review. This study provides suggestions
for improving the adaptability of infrastructure systems by assessing the adaptability of
resilience and by identifying sensitive factors for improving that capacity.

GeNIe software [57] is used to input and visualize the Bayesian network structure and
the 1146 conditional probability values, etc. The calculation results are shown in Figure 4.
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Figure 4. BN analysis and adaptability results of the Gongxian County.

The final output of adaptability presents a range of uncertainty (12% high, 40%
medium and 49% low. Note also that sum is 101 instead of 100, as the values have
been rounded to the nearest whole number). The calculation results show that Gongxian
County has the highest probability of low adaptability at 49%. The Bayesian network can
apply forward propagation analysis, as discussed above, and make probabilistic infer-
ences about possible results under given survey results and scenarios. It can also apply
backward propagation under a certain fixed result to identify the pathway to that result.
The backward propagation approach is more helpful in improving the adaptability of the
infrastructure system.

Of the three states of adaptive capacity, we are most concerned about the sensitivity
of infrastructure systems in the low state, so we only perform backward propagation
analysis for the low state. The color of the bar, as shown in the analysis in Figure 5,
indicates the change in direction of the target state; red indicates negative change, and
green indicates positive change. The top ten factors and states, critical influencing factors
and their impact on adaptability, are clearly displayed. By analyzing the critical influencing
factors of the adaptability target node in the target state, in the low state, the top three
critical influencing factors are earthquake history (no), relevant information (low), and
contingency mechanisms (no).

In order to further explore the quantitative impact of critical influencing factors on
adaptability, we designed five different scenarios based on the current level and compared
the changes in adaptability under the five scenarios, as shown in Table 8. In the first four
scenarios, only one critical influencing factor is adjusted at a time, and in the fifth scenario,
three critical influencing factors are changed simultaneously in order to reduce adaptability.
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Table 8. Comparative scenarios among different adaptability.

Scenario
Earthquake

History
Relevant

Information
Contingency
Mechanisms

Adaptability (%)

Low Medium High

Base Case yes low yes 49 40 12
1 no low yes 63 30 7
2 yes medium yes 42 42 16
3 yes high yes 35 45 20
4 yes low no 59 32 9
5 no low no 75 21 4

Scenario 1 adjusts the status of earthquake history from yes to no, and the status of
low for adaptability increases from 49% to 63%. That is, the possibility of adaptability
being low increases by 14%. Scenario 2 adjusts the status of relevant information from low
to medium, and the status of low for adaptability is reduced from 49% to 42%. That is,
the possibility of adaptability being low is reduced by 7%. Scenario 3 adjusts the state of
relevant information from low to high, and the state of low for adaptability is reduced from
49% to 35%. That is, the possibility of adaptability being low is reduced by 14%. Scenario
4 adjusts the state of contingency mechanisms from yes to no, and the state of low for
adaptability increases from 49% to 59%. That is, the possibility of adaptability being low
increases by 10%. Scenario 5 adjusts the three most sensitive factors to a state that is most
unfavorable to adaptability, with earthquake history at no, the relevant information at low,
and contingency mechanisms at no. In this state, the low state of adaptability has increased
from 49% to 75%. That is, the possibility of adaptability being low has increased by 26%.

Finally, we compare Scenario 3 and Scenario 5, which are the changes in adaptability
of the three most sensitive factors between the most favorable and the most unfavorable
states. The low state of adaptability is 35% and 75%, with a difference of 40%. The high state
of adaptability is 20% and 4%, with a difference of 16%. The acceptable state of adaptability
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is high and medium. The sum of the probabilities is 65% and 25%, respectively, with a
difference of 40%.

The above analysis numerically gives the degree of influence of earthquake history,
relevant information and contingency mechanisms on adaptability in different states.
However, applying the model to find out the key influencing factors is only the preliminary
work of improving the adaptability. Our goal is to refine the improvement measures
through the key influencing factors found so as to effectively improve the adaptability of
the infrastructure system.

Among the three key influencing factors found, earthquake history depends on the
objective fact of whether there have been earthquakes in the area. It is not a specific
object of adaptability improvement measures, but it essentially represents whether the
infrastructure system has experience in responding to earthquake disasters and, to a certain
extent, determines the ability to respond to earthquake disasters.

Relevant information is the second most important factor affecting the adaptability of
infrastructure systems. We give the following ideas to improve the degree of information
sharing among stakeholders. When the infrastructure system is newly built or expanded, it
is necessary to fully investigate the needs of stakeholders, coordinate the opinions of the
personnel of each subsystem, integrate the existing antiseismic experience, effectively use
the advantages of the terrain, coordinate the planning issues between individual infrastruc-
ture systems, and improve the infrastructure system. For the existing infrastructure system,
it is recommended to set up an infrastructure system management committee or a special
department of the local government. The committee or functional department organizes
the necessary information sharing on important nodes and forms documents to increase
the information exchange between individual infrastructure systems. At the same time, it
also provides support for the management of possible earthquake disasters.

Contingency mechanisms are the third factor affecting the adaptability of infrastruc-
ture systems. Different countries and regions have different contingency mechanisms for
different earthquake levels. It is recommended that when formulating contingency mech-
anisms, not only should corresponding coordinating departments be set up for different
levels of earthquakes, but also for specific individuals in the emergency plan of the last
administrative region. It is necessary to have a clear feedback path and emergency plan to
effectively implement the emergency mechanism.

Regarding the specific improvement measures for relevant information and con-
tingency mechanisms, due to the large differences in the ownership and management
methods of infrastructure in different countries, this article only gives ideas, and the spe-
cific implementation should be appropriate in combination with different countries and
earthquake levels.

6. Conclusions

Infrastructure system resilience is quantified by the comprehensive performance of the
three factors of resistibility, recoverability, and adaptability. Responding to the weak status
of extant resilience research on adaptability in infrastructure systems, this study explores
adaptability of resilience in response to seismic disasters. The main factors affecting infras-
tructure systems are identified and parsed into five groups. A Bayesian network structure
is constructed by applying expert knowledge, after which Bayesian network parameters are
created by applying a method of global relative value and membership function. Finally,
the feasibility of the constructed Bayesian network is verified by examining the specific
performance of infrastructure in an earthquake-prone area in China. Sensitivity analysis is
carried out to extract features for improving the adaptability of the infrastructure system in
the post-earthquake recovery period in order to improve infrastructure resilience under
conditions of subsequent earthquake disasters.

On the basis of the collation of existing literature, this paper clusters and refines
the influence mechanism of each influencing factor on adaptability and further sorts the
influence degree of factors on adaptability through the Bayesian network. The research
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has deepened the application of Bayesian networks in resilience research, identified key
factors affecting adaptability, given specific ideas and suggestions for improving adapt-
ability for the top three influencing factors, and contributed to improving the resilience of
infrastructure systems.

Future research is anticipated to explore the relationship between earthquake resistibil-
ity, recoverability, and adaptability of infrastructure systems. Since there is a complex
relationship between the three capacities, the simple method of adding the three together
insufficiently describes the capability for resilience. This next step will pursue two aspects:
one is to build a resilient Bayesian network based on the three major capabilities, fully
discuss the relationship between the three major capabilities, and further improve the
earthquake resilience of infrastructure systems; the other is to refine the interdependence
between infrastructure systems, emphasizing the impact of functional and geographical
dependencies between infrastructure systems on earthquake resilience.

Finally, the Bayesian network can be used to find out the key influencing factors
and provide resilience improvement measures according to the characteristics of specific
countries and infrastructure systems. Combined with heat maps or Bayesian neural net-
works [58], the changes in resilience before and after the implementation of corresponding
measures can be visualized to intuitively reflect the effectiveness of the measures.
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