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Abstract: To more effectively solve the complex optimization problems that exist in nonlinear, high-
dimensional, large-sample and complex systems, many intelligent optimization methods have been
proposed. Among these algorithms, the particle swarm optimization (PSO) algorithm has attracted
scholars’ attention. However, the traditional PSO can easily become an individual optimal solution,
leading to the transition of the optimization process from global exploration to local development.
To solve this problem, in this paper, we propose a Hybrid Reinforcement Learning Particle Swarm
Algorithm (HRLPSO) based on the theory of reinforcement learning in psychology. First, we used
the reinforcement learning strategy to optimize the initial population in the population initialization
stage; then, chaotic adaptive weights and adaptive learning factors were used to balance the global
exploration and local development process, and the individual optimal solution and the global
optimal solution were obtained using dimension learning. Finally, the improved reinforcement
learning strategy and mutation strategy were applied to the traditional PSO to improve the quality of
the individual optimal solution and the global optimal solution. The HRLPSO algorithm was tested
by optimizing the solution of 12 benchmarks as well as the CEC2013 test suite, and the results show
it can balance the individual learning ability and social learning ability, verifying its effectiveness.

Keywords: particle swarm algorithm; psychological enhancement theory; adaptive; mutation

1. Introduction

In order to more effectively solve problems in many fields in real life, scholars mathe-
matically model them; that is, they establish an optimization model [1]. In the process of
this mathematical modeling, it is found that some problems are difficult to accurately model
or solve. To facilitate the solution of traditional methods, the target usually needs to be
processed, which increases the complexity of the problem [2]. The intelligent optimization
method does not have this limitation and can solve the target model more conveniently [3,4].
Li et al. [5], Dokeroglu et al. [6] and Xue et al. [7] presented some comprehensive surveys
of the state-of-the-art schemes on intelligent optimization for feature selection, which is
helpful for optimization performance. Therefore, intelligent optimization methods have
developed rapidly. Intelligent optimization methods include the genetic algorithm (GA) [8],
the artificial bee colony algorithm (ABC) [9], the simulated annealing algorithm (SA) [10],
the particle swarm optimization (PSO) algorithm [11], etc. Among them, PSO has attracted
scholars’ attention because of its simple structure and easy implementation [12].

PSO was first proposed by Kennedy and Eberhart [12]. The initially proposed opti-
mization effect of PSO was unexceptional. Later, scholars usually attempted to improve
the inertia weight ω with a nonfixed value in the PSO, and the particle renewal formula
was first proposed by Yuhui and Eberhart [13]. Subsequent scholars have carried out a lot
of research regarding how the optimization ability of PSO can be improved. PSO usually
randomly generates various potential solutions in the range of the solution of the opti-
mization problem, which are called “particles”. In reference [14], in order to improve the
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quality of initial particles, Tian et al. replaced the method of generating initial particles via
random mapping in PSO with logical mapping. Chen et al. [15] first used random mapping
to generate initial particles and then combined this method with a reinforcement learning
strategy [16] to generate another batch of reinforcement particles. In this method, after
comparing the fitness values of the particles generated using the two methods, the particles
with good fitness values are left as the initial particles. Gao et al. [17] first initialized parti-
cles via sinusoidal mapping and then used a reinforcement learning strategy to generate a
batch of reinforcement particles. Then, they compared the advantages and disadvantages
of the two batches of particles to leave particles closer to the optimal solution. In this
method, new particles are generated through the two cores of PSO’s updated velocity and
displacement formula. In the velocity formula, the degree to which the velocity of the new
particle is affected by the previous velocity is determined by the inertia weight ω. The
degree of influence of the global optimal solution and the individual optimal solution is
controlled by the acceleration coefficients c1 and c2. Therefore, ω and c1/c2 have great
influence on the final optimization results. To this end, the strategies used to improve ω

include the linear strategy [13], the nonlinear strategy [18], the fuzzy rule [19], the chaotic
strategy [15], etc. With regard to the acceleration coefficient, sometimes variable acceler-
ation coefficients [20], fixed value acceleration coefficients [21], etc., are used. However,
some scholars have improved other values of the updated formula. For example, Xu et al.
proposed a dimension learning strategy to improve the individual optimal solution. In this
method, the value of each dimension of each individual optimal solution is replaced by the
value of each dimension of the global optimal solution one by one. If the effect is positive,
the value of the corresponding dimension of the global optimal solution will be retained,
and if not, the original state will be maintained [3]. Liang et al. proposed a comprehensive
learning strategy to remove the social learning aspect from the speed update formula of
classical PSO so that all the remaining individual optimal solutions have the opportunity
to learn from the historical individual optimal solutions of other particles, which creates
the opportunity for particles to learn from all of the individual optimal solutions [22]. Li
et al. combined the improvement of the comprehensive learning strategy and mutation
strategy to improve the optimization ability of PSO [23]. Mendes et al. established a speed
update strategy in which the particle speed update depends not only on the historical
optimal solution of the particle, but also on the historical optimal solution of all other
particles [24]. Some scholars applied a mutation strategy to the position of particles to
make particles jump out of the local optimal solution. After updating the historical indi-
vidual optimal particles and historical global optimal particles in PSO, Wang et al. used
a mutation strategy to mutate them [25]. This mutation strategy includes Cauchy, Levy,
and Gaussian mutations; then, a roulette selection mechanism is used to select mutation
factors [26]. Li et al. performed a mutation operation on the global optimal solution in the
algorithm when improving PSO. The mutation factor was generated from the difference
between two random particles in the population [23]. This research represents the main
improvements made by scholars regarding the ontology of the PSO algorithm, while some
scholars have combined other algorithms with PSO to form a better algorithm. For example,
in reference [27], PSO and GSA were combined to form a hybrid algorithm. The aim was
to combine the local development performance of the GSA and the global exploration
performance of PSO to form a complementary algorithm. PSO can also be mixed with the
sine cosine algorithm [28], the genetic algorithm [29], etc. However, these modified PSOs
are still likely be categorized as individual optimal solutions, leading to the transition of
the optimization process from global exploration to local development.

In summary, the main challenges of the PSO algorithm are to improve the optimization
ability of both the local exploitation and the global exploration by combining all kinds
of other algorithms. This leads to the transition of the optimization process from global
exploration to local development.
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To improve the optimization performance, in this paper, we propose a Hybrid Rein-
forcement Learning Particle Swarm Algorithm (HRLPSO) based on the theory of reinforce-
ment learning in psychology, which is based on teamwork and runs parallelly.

(1) A Hybrid Reinforcement Learning Particle Swarm Algorithm was proposed. To
enhance the optimization capability of HRLPSO, five strategies were applied to
improve the traditional PSO in this work. (i) An opposition-based learning strategy
was combined with random mapping to generate the initial population; (ii) cubic
mapping and adaptive strategies were combined and applied to the weights; (iii) the ci
parameter was controlled to vary nonlinearly within a certain range; (iv) a dimensional
learning strategy was applied to the optimal solution; (v) Cauchy and Gaussian
mutation strategies were used in the optimal solution to increase the diversity of
the solutions.

(2) The results regarding standard functions show that the proposed HRLPSO strategy
works well in both stand-alone and ensemble applications, and the results regard-
ing the CEC2013 test suite further demonstrate the good optimization capability
of HRLPSO.

(3) Compared with the existing schemes, the main contributions of the proposed HRLPSO
are as follows: (i) The theory of reinforcement learning in psychology is firstly applied
and the opposition-based learning strategy is proposed to generate the initial popu-
lation of the PSO. (ii) Unlike the traditional PSO algorithm, which only uses a few
hybrid methods, the proposed HRLPSO fully considers the improvement measures at
each stage and the five hybrid methods stated above in (1) are applied to improve the
optimization performance.

2. Particle Swarm Optimization Algorithm

The particle swarm optimization algorithm is an evolutionary algorithm. The algo-
rithm first generates a set of “solutions” within the approximate range of the solution
of the optimization problem, that is, “particles” Xi = (xi1, xi2, . . . , xiD). The value of i is
an integer from 1 to N, N is the number of particles, and D is the dimension of particles.
Then, by comparing the corresponding objective function values of these particles in the
optimization problem, the historical individual optimal solution Pbesti = (pbesti1, pbesti2,
. . . , pbestiD) and the historical global optimal solution Gbest = (gbest1, gbest2, . . . , gbestD)
are obtained. The new particles are updated using the following formula:

v(i+1)d = ω ∗ vid + c1rand()(pbestid − xid) + c2rand()(gbestd − xid), (1)

x(i+1)d = xid + vid, (2)

In Equation (1), v represents the velocity of particles, and all the velocity vectors are
represented by Vi = (vi1, vi2, . . . , viD). The values of c1 and c2 are weight factors that control
particles’ individual learning and social learning, and ω is the inertia weight that controls
the influence of the previous particle velocity on the updated particle velocity.

3. Hybrid Reinforcement Learning Particle Swarm Optimization Algorithm
3.1. Initial Population Based on Positive Reinforcement Learning

The initial population reinforcement theory based on positive reinforcement learning
is a theory proposed by Skinner, an American psychologist and behavioral scientist. Skinner
was one of the founders of new behaviorist psychology. He believed that people or animals
will display certain behaviors to act on the environment in order to achieve a certain
purpose. When the consequences of such behavior are beneficial to the individual, such
behavior will repeat in the future; when unfavorable, this behavior weakens or disappears.
People can use this method of positive reinforcement or negative reinforcement to change
the consequences of behavior and modify their behavior. This is reinforcement theory,
also known as behavior modification theory [5]. The convergence speed and accuracy of
the particle swarm optimization algorithm are easily affected by the quality of the initial
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population. In order to improve the quality of the initial population, reinforcement learning
is applied to the process of initializing the population.

In the optimization process of various algorithms, some random individuals are
randomly generated in the range of solutions as potential solutions and then continuously
approach the optimal solution through various iterative mechanisms to produce the optimal
solution. However, these algorithms can be improved by later scholars so as to make
the algorithm approach better and faster and produce the optimal solution. In this study,
reinforcement learning was applied to the algorithm. Reinforcement learning [12] is defined
as follows:

Suppose a real number xrn ∈ [A, B], and the opposite number of xon is defined as follows:

xon = A + B− xrn (3)

The remaining two definitions are based on the definitions above. Apply the defini-
tions above to the position of an algorithm, such as the PSO algorithm, in which particle
Xi

rn = (xi1
rn, xi2

rn, . . . , xiD
rn), and enhanced particle Xi

on = (xi1
on, xi2

on, . . . , xiD
on), where

xrn ∈ [A, B], and
xon

ij = Ai + Bi − xrn
ij (4)

Then, by comparing the fitness values of Xi
rn and Xi

on in the optimized objective
function f (x), the particles with excellent fitness values are left.

3.2. Chaos Adaptive Inertia Weight

The optimization ability of PSO can be effectively improved by reasonably setting the
change in the inertia weight coefficient. It has been proved in [9,26] that a linear decline in
inertia weight within a certain range can effectively enhance the performance of PSO. The
linear decline formula is

ω = ωmax −
(ωmax −ωmin)

max gen
i, (5)

where ω is the value of the inertia weight coefficient under the current number of iterations,
ωmax/ωmin is the maximum/minimum value of the inertia weight coefficient, i is the current
number of iterations, and maxgen is the maximum number of iterations. At present, the
most commonly used ωmax/ωmin values in this formula are 0.9/0.4, respectively. In this
study, cubic mapping was applied to linearly decreasing weight coefficients as follows [27]:

xn+1 = ax3
n + (1− a)xn, (6)

where xn denotes the n-th chaotic state in the range of [−1, 1]; the initial value x0 of xn
cannot take 0; and a is the bifurcation coefficient in the semi-open interval (0, 4]. When the
value of a increases from zero, the fixed points in Figure 1, the bifurcation graph generated
by Equation (6), vary from 1 to 2 and, after that, from 4 to 2n. This variation presents as
unlimited and stable, but when a increases close to 3.598076211, the duration proves to be
infinite, even aperiodic. When a lies in the range of [3.598076211, 4], the chaotic state occurs
and the system presents as unstable when a is bigger than 4, as depicted in Figure 1, where
the different random numbers are displayed in different colors.

After setting the absolute value range of the mapped fluctuation (the range is obtained
through continuous experimental parameter adjustment), the absolute value range of the
fluctuation is as follows:

V(i) = Max− i
max gen

Max, (7)

where V(i) represents the absolute value of the fluctuation of the mapping under the current
number of iterations, and Max is the absolute value of the fluctuation at the first iteration.
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Combined with cubic mapping, a linearly decreasing mixed disturbance is formed. The
combined formula is as follows:

C(i) = x(i) ∗V(i), (8)
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Finally, the chaotic adaptive inertia weight is obtained by adding it to Equation (5).

ω(i) = ω(i) + C(i), (9)

The whole process is shown in Figure 2, where the variables are depicted as the
blue curves

Systems 2023, 11, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 1. The bifurcation graph with 3 ≤ a ≤ 4. 

After setting the absolute value range of the mapped fluctuation (the range is ob-

tained through continuous experimental parameter adjustment), the absolute value range 

of the fluctuation is as follows: 

( )
max

i
V i Max Max

gen
= − , (7) 

where V(i) represents the absolute value of the fluctuation of the mapping under the cur-

rent number of iterations, and Max is the absolute value of the fluctuation at the first iter-

ation. Combined with cubic mapping, a linearly decreasing mixed disturbance is formed. 

The combined formula is as follows: 

( ) ( ) ( )*C i x i V i= , (8) 

Finally, the chaotic adaptive inertia weight is obtained by adding it to Equation (5). 

( ) ( ) ( )i i C i = + , (9) 

The whole process is shown in Figure 2, where the variables are depicted as the blue 

curves 

 

Figure 2. The chaotic adaptive inertia weight coefficient process. 

  

Figure 2. The chaotic adaptive inertia weight coefficient process.

3.3. Adaptive Learning Factor

The research regarding learning factors usually focuses on two aspects. On the one
hand, the learning factor can be set to a fixed constant. The most typical example of this is
the original PSO algorithm. The value of both learning factors is set to 2 in the literature [1].
On the other hand, the learning factor can be set as an adaptive learning factor. Usually,
the value of the learning factor is fixed in a certain range and changes with the number of
iterations. In the typical research literature [11,16,28,29], this value increases or decreases
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linearly or nonlinearly between 0.5 and 2.5 as the number of iterations changes. This
study is based on adaptive learning factors. The formula of the variable learning factor is
as follows:

c1(i) = α×
√

1− (1− (i/max gen))2 + β, (10)

c2(i) = α×
(

1−
√

1− (1− (i/max gen))2
)
+ β, (11)

where α = 2, β = 0.5. The iterative curve of the learning factors is shown in Figure 3.
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3.4. Update Strategy
3.4.1. Dimension Learning

Xu et al. proposed a dimension learning strategy. The principle of this strategy is
to replace the value of each dimension of the historical individual optimal solution with
the value of the corresponding dimension of the historical global optimal solution. If
the objective function value of the optimization problem corresponding to the replaced
historical individual optimal solution is better, the value of the replaced dimension will
be retained [4]. The advantage of this work is that the best solution is selected from the
historical individual optimal solution with the reinforcement learning strategy, and it
is compared with the historical global optimal solution, improving the historical global
optimal solution. The updated formula is as follows:

v(i+1)d = ω ∗ vid + c1rand()(pbestdl
id − xid) + c2rand()(gbestdl

d − xid), (12)

Pbesti
dl and Gbestdl represent the historical individual optimal solution and the histori-

cal global optimal solution of the reinforcement learning strategy, respectively.

3.4.2. Mutation

The PSO algorithm has inherent defects and can be easily categorized as local opti-
mization. Particle mutation is an effective strategy to alleviate this situation. The random
number of Gaussian distribution functions is mainly concentrated near 0, meaning Gaus-
sian mutation is suitable for particle exploration. Compared with the Gaussian distribution
function, the number randomly generated by the Cauchy distribution function is far from
0, meaning that the Cauchy mutation is suitable for particle development. In our work, we
aimed to mutate the particle when the particle of the PSO algorithm was categorized as local
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optimization and simultaneously carried out Gaussian mutation and Cauchy mutation on
the particle. The mutation method that produced better results was adopted. The mutation
formula is as follows:

pdlm
id = pdl

id + mutationd() (13)

pdlm
gd = pdl

gd + mutationd() (14)

where mutationd () is the mutation factor.

4. Experimental Setup

In this study, classical test functions were used to test the performance of the algorithm,
including seven unimodal functions (F1–F7) and five multimodal functions (F8–F12) [30].
When comparing HRLPSO with the other four algorithms, the population size was set
to 30, and each algorithm optimized the test function 20 times. When comparing the
performance of the improved method separately, the number of iterations was 1000, and
when comparing the performance of HRLPSO with the other four algorithms, the number
of iterations was 10,000. The maximum speed limit was consistent with the range of
the test function. In addition, in this study, the average value of the final result of the
algorithm’s optimization of the test function after 20 times is displayed in bold for easy
observation. CIPSO was directly applied to engineering problems in the original text,
and the performance of the algorithm was analyzed based on the results of engineering
problems. In CLPSO and DLPSO, standard test functions are mainly used to assess the
performance of an algorithm. The parameter settings of all the algorithms in this work are
shown in Table 1.

Table 1. Parameter settings.

Algorithm Parameter Reference

PSO the population size is 30,
each algorithm is optimized

20 times,
the number of iterations

is 10,000,
the maximal speed is within

the range of F1~F12

w: 1, c1: 2, c2: 2 [8]

CIPSO w: 0.9~0.4, c1: 3.5~0.5, c2:
0.5~3.5 [31]

CLPSO w: 0.9~0.4, c: 1.5 [18]

DLPSO w: 0.7298, c1: 1.5, c2:
0.5~2.5 [3]

HRLPSO w: 0.9~0.6, c1: 2.5~0.5, c2:
0.5~2.5, a: 4, Max: 0.05 -

In the original literature, the capabilities of CIPSO were evaluated by optimizing the
results for application to engineering problems. In the original literature, two algorithms,
CLPSO and DLPSO, were mainly used to test the algorithm performance with standard
test functions. The parameters of the PSO variants are shown in Table 1.

Figure 4 displays the flow chart of HDLPSO, in which Fit is the fitness value of the
solution. As test functions exist in minimum values, the solution with the smaller fitness
value was taken as the better solution when comparing the fitness values.
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5. Discussion
5.1. Test Results of the PSO Variants under Benchmark

Taking 12 benchmark functions as experimental objects, we compared the optimization
results of HRLPSO and four other algorithms. There were 10,000 iterations. The results of
the comparison of HRLPSO and the four other algorithms are shown in Table 2. For the
other four functions aside from the HRLPSO function in the table, the global optimal value
of 0 could be obtained. It was shown that even the most original PSO could obtain the
global optimal value of 0 on function F4. However, the global optimal results of HRLPSO
on functions F1, F2, F3, F4, F6, F8, and F10 were all 0, and the standard deviation was also 0,
which shows that HRLPSO can obtain the optimal value, 0, of the function every time it is
optimized on these test functions, reflecting its better global optimization ability. Moreover,
HRLPSO ranked first in the 12 test functions and the other 6 functions, as well as in the
average ranking and final ranking. In the table, F represents the function name, D represents
the dimension of the test function, Mean represents the average value of the objective
function, and S.D. represents the standard deviation of the objective function value.
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Table 2. Optimization results of HRLPSO and other algorithms under benchmark.

F D Item PSO CIPSO CLPSO DLPSO HRLPSO

F1 30
Mean 2 × 103 1.72 × 101 4.43 × 10−9 0.00 0.00
S.D. 5.23 × 103 8.42 2.53 × 10−9 0.00 0.00

Rank 4 3 2 1 1

F2 30
Mean 1.50 × 101 5.86 × 10−1 8.66 × 10−8 3.49 × 10−43 0.00
S.D. 8.89 3.02 × 10−1 3.54 × 10−8 1.53 × 10−48 0.00

Rank 5 4 3 2 1

F3 30
Mean 1.15 × 104 4.96 × 102 8.40 × 103 1.07 × 103 0.00
S.D. 1.08 × 104 2.25 × 102 8.92 × 103 2.35 × 103 0.00

Rank 5 2 4 3 1

F4 30
Mean 0.00 4.35 1.28 2.01 × 10−13 0.00
S.D. 0.00 1.06 5.87 × 10−1 8.98 × 10−13 0.00

Rank 1 4 3 2 1

F5 30
Mean 5.70 × 101 6.31 × 102 2.31 × 102 4.91 × 101 1.99 × 10−1

S.D. 1.26 × 102 4.24 × 102 6.75 × 102 4.01 × 101 8.91 × 10−1

Rank 3 5 4 2 1

F6 30
Mean 1.01 × 103 1.80 × 101 6.38 × 10−9 0.00 0.00
S.D. 3.11 × 103 6.69 4.53 × 10−9 0.00 0.00

Rank 4 3 2 1 1

F7 30
Mean 1.34 1.19 × 10−2 9.17 × 10−4 2.16 × 10−2 3.49 × 10−4

S.D. 3.54 5.20 × 10−3 3.78 × 10−4 1.46 × 10−2 3.13 × 10−4

Rank 5 3 2 4 1

F8 30
Mean 6.51 × 101 6.20 × 101 7.06 5.42 0.00
S.D. 4.26 × 101 1.54 × 101 2.58 3.88 0.00

Rank 5 4 3 2 1

F9 30
Mean 7.24 3.11 1.90 × 101 1.25 × 10−1 8.88 × 10−16

S.D. 8.44 4.73 × 10−1 4.70 × 10−1 3.85 × 10−1 0.00
Rank 4 3 5 2 1

F10 30
Mean 9.02 × 101 1.11 1.85 × 10−10 1.41 × 10−2 0.00
S.D. 2.78 × 101 3.84 × 10−2 1.54 × 10−1 2.24 × 10−2 0.00

Rank 5 4 2 3 1

F11 30
Mean 1.49 × 10−1 7.92 × 10−1 4.23 × 10−11 3.63 × 10−2 1.57 × 10−32

S.D. 3.87 × 10−2 3.83 × 10−1 2.78 × 10−11 5.07 × 10−2 2.81 × 10−48

Rank 4 5 2 3 1

F12 30
Mean 2.07 1.93e 4.38 × 10−10 2.69 × 10−2 1.35 × 10−32

S.D. 3.20 1.13 3.05 × 10−10 9.00 × 10−2 2.81 × 10−48

Rank 5 4 2 3 1

Average Rank 4 3.89 2.78 2.44 1

Final Rank 5 4 3 2 1

The average evolution curves under the 12 test functions are shown in Figure 5. In
the 12 evolution curves, the final convergence accuracy of CLPSO on the test functions
F1, F2, F3, F6, F7, F8, and F10 was better than that of PSO, but the convergence accuracy
was worse than that of PSO when the number of iterations was 1000. Although HRLPSO
did not converge when the number of iterations on test functions F1, F2, F3, F4, and F6
was 1000, it also achieved good convergence accuracy. It converged when the number
of iterations on test functions F5, F7, F8, F9, F10, F11, and F12 was 1000. HRLPSO only
converged after 1000 iterations of test functions F5, F6, F7, F11, and F12. Therefore, in
this test function experiment, the number of iterations was set to 10000. Among the 12
evolution curves, HRLPSO had the highest convergence accuracy. Secondly, as shown in
the figures, HRLPSO had the fastest convergence speed on unimodal functions F1, F2, F3,
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and F4 and multimodal functions F8, F9, and F10. By combining these results with the
previous analysis regarding convergence accuracy, it can be concluded that HRLPSO not
only has good convergence accuracy but also has good convergence speed.

1 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Cont.
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(i) (j) 

  
(k) (l) 

 
Figure 5. Average evolution curve of 5 algorithms under 12 test functions. (a) F1, (b) F2, (c) F3, (d) F4,
(e) F5, (f) F6, (g) F7, (h) F8, (i) F9, (j) F10, (k) F11 and (l) F12.

Table 3 presents a quantitative comparison of the performance indicators of the five
algorithms, providing the average computational time and the average rank under 30
running times, achieved under the standard test functions F1~F12. From Table 3, it can
be seen that the average rank of HRLPSO is the first and more advanced than the other
algorithms. Meanwhile, although the average computational time of HRLPSO is shorter
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than that of CLPSO, DLPSO, it approximated that of the standard PSO and CIPSO. These
indicators show that it performs best.

Table 3. Performance indicators of different PSO algorithms.

Indicators PSO CIPSO CLPSO DLPSO HRLPSO

Running times 30 30 30 30 30
Average computational

time (s) 13.57 14.11 14.92 14.89 14.88

Average rank 4 3.89 2.78 2.44 1

5.2. Test Results of the PSO Variants under CEC2013 Test Suite

The superiority-seeking performance of HDLPSO was verified in the previous ex-
periments using 12 benchmark test functions. To make the optimization capability of
HDLPSO more convincing, in this section, the experimental results of HDLPSO and the
other four algorithms under the CEC2013 test suite are provided; see reference [30] for the
specific test suite. The experimental parameters were set as the same values used in the
previous experiments. In order to distinguish them from the previous 12 benchmark test
functions, the 28 functions in the CEC2013 test suite were sequentially sorted by adding 12
to their names.

The optimization results of the five algorithms under the CEC2013 test suite are shown
in Table 4, which show that the combined ranking of the five algorithms differed from
the previous combined ranking under the 12 benchmark test functions. The ranking of
HDLPSO, DLPSO, CLPSO, and PSO remained unchanged; they remained in first, third,
fourth, and last place, respectively. Meanwhile, CIPSO ranked second overall; this reflects
the fact that an algorithm cannot achieve the best results on every optimization problem.
However, when considered together, the optimization results of the five algorithms under
the CEC2013 test suite still showed that HDLPSO has excellent optimization capabilities.

Table 4. Optimization results of HRLPSO and other algorithms under the CEC2013 test suite.

Functions Dimensions Indicators PSO CIPSO CLPSO DLPSO HDLPSO

F13 30
M 1.21 × 104 −1.38 × 103 −1.01 × 103 −1.40 × 103 −1.40 × 103

S 5.90 × 103 7.15 4.79 × 102 3.54 × 10−13 1.88 × 10−13

R 6 2 3 1 1

F14 30
M 1.31 × 108 6.17 × 106 3.96 × 107 6.61 × 106 2.31 × 104

S 8.72 × 107 2.37 × 106 2.76 × 107 3.74 × 106 2.25 × 104

R 7 2 5 3 1

F15 30
M 6.53 × 1013 2.75 × 108 3.31 × 1010 2.36 × 109 3.22 × 108

S 1.91 × 1014 1.44 × 108 1.83 × 1010 2.20 × 109 5.37 × 108

R 7 1 4 3 2

F16 30
M 7.83 × 104 4.19 × 103 1.65 × 104 9.77 × 103 −6.81 × 102

S 5.77 × 104 1.77 × 103 8.83 × 103 3.85 × 103 2.98 × 102

R 7 2 4 3 1

F17 30
M 7.80 × 103 −9.80 × 102 −6.36 × 102 −1.00 × 103 −1.00 × 103

S 5.16 × 103 9.81 5.56 × 102 1.37 × 10−9 1.14 × 10−13

R 6 2 3 1 1

F18 30
M 1.02 × 103 −8.34 × 102 −8.30 × 102 −8.62 × 102 −8.81 × 102

S 1.73 × 103 1.53 × 101 3.18 × 101 1.99 × 101 1.68 × 101

R 7 3 4 2 1
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Table 4. Cont.

Functions Dimensions Indicators PSO CIPSO CLPSO DLPSO HDLPSO

F19 30
M 9.21 × 102 7.73 × 102 −6.88 × 102 −7.06 × 102 −7.27 × 102

S 4.22 × 103 8.66 3.79 × 101 1.66 × 101 1.99 × 101

R 7 1 4 3 2

F20 30
M −6.79 × 102 6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102

S 5.67 × 10−2 5.05 × 10−2 6.81 × 10−2 4.32 × 10−2 6.91 × 10−2

R 1 1 1 1 1

F21 30
M −5.67 × 102 5.80 × 102 −5.62 × 102 −5.70 × 102 −5.78 × 102

S 2.40 2.15 1.24 3.16 3.33
R 5 1 6 3 2

F22 30
M 1.19 × 103 −4.76 × 102 −1.91 × 102 −4.88 × 102 −5.00 × 102

S 9.47 × 102 1.32 × 101 1.79 × 102 1.74 × 101 4.31 × 10−2

R 7 3 5 2 1

F23 30
M 1.74 × 101 −2.94 × 102 −3.54 × 102 −3.82 × 102 −3.64 × 102

S 8.17 × 101 2.13 × 101 2.26 × 101 6.48 9.35
R 7 4 3 1 2

F24 30
M 8.52 × 101 −1.91 × 102 −1.14 × 102 −1.95 × 102 −2.19 × 102

S 9.44 × 101 2.08 × 101 2.32 × 101 3.29 × 101 1.85 × 101

R 7 3 4 2 1

F25 30
M 1.71 × 102 7.48 × 101 -2.15 × 101 −4.37 × 101 −5.41 × 101

S 7.00 × 101 2.08 × 101 1.62 × 101 3.04 × 101 3.26 × 101

R 7 1 4 3 2

F26 30
M 6.50 × 103 4.33 × 103 2.26 × 103 1.47 × 102 1.16 × 103

S 4.74 × 102 5.89 × 102 4.72 × 102 1.88 × 102 3.45 × 102

R 7 6 3 1 2

F27 30
M 7.42 × 103 4.60 × 103 7.20 × 103 5.03 × 103 4.08 × 103

S 3.63 × 102 5.32 × 102 3.28 × 102 6.75 × 102 5.63 × 102

R 7 2 6 3 1

F28 30
M 2.02 × 102 2.02 × 102 2.02 × 102 2.02 × 102 2.01 × 102

S 3.12 × 10−1 2.47 × 10−1 2.74 × 10−1 3.40 × 10−1 2.06 × 10−1

R 2 2 2 2 1

F29 30
M 8.38 × 102 4.61 × 102 3.42 × 102 3.44 × 102 3.42 × 102

S 1.41 × 102 3.09 × 101 2.51 4.72 7.69
R 6 3 1 2 1

F30 30
M 8.66 × 102 5.72 × 102 5.87 × 102 5.52 × 102 4.87 × 102

S 1.27 × 102 1.90 × 101 1.01 × 101 2.72 × 101 1.70 × 101

R 7 3 4 2 1

F31 30
M 1.35 × 105 5.12 × 102 2.23 × 103 5.03 × 102 5.03 × 102

S 2.64 × 105 2.26 2.50 × 103 1.04 1.25
R 6 2 5 1 1

F32 30
M 6.13 × 102 6.11 × 102 6.12 × 102 6.14 × 102 6.12 × 102

S 3.90 × 10−1 1.37 4.38 × 10−1 8.16 × 10−1 9.72 × 10−1

R 3 1 2 4 2

F33 30
M 2.24 × 103 1.10 × 103 1.10 × 103 1.03 × 103 1.02 × 103

S 5.14 × 102 5.13 × 101 1.65 × 102 1.53 × 102 5.91 × 101

R 6 3 3 2 1

F34 30
M 7.96 × 103 5.09 × 103 2.89 × 103 1.38 × 103 2.02 × 103

S 5.85 × 102 5.47 × 102 5.56 × 102 3.83 × 102 3.87 × 102

R 7 4 3 1 2
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Table 4. Cont.

Functions Dimensions Indicators PSO CIPSO CLPSO DLPSO HDLPSO

F35 30
M 8.13 × 103 5.55 × 103 8.14 × 103 6.53 × 103 5.11 × 103

S 4.65 × 102 7.54 × 102 2.75 × 102 6.16 × 102 8.07 × 102

R 6 2 7 4 1

F36 30
M 1.30 × 103 1.26 × 103 1.28 × 103 1.28 × 103 1.27 × 103

S 7.28 6.62 5.07 1.03 × 101 7.17
R 5 1 3 3 2

F37 30
M 1.42 × 103 1.38 × 103 1.39 × 103 1.39 × 103 1.38 × 103

S 1.45 × 101 1.07 × 101 9.56 7.53 8.22
R 5 1 2 2 1

F38 30
M 1.56 × 103 1.47 × 103 1.50 × 103 1.40 × 103 1.40 × 103

S 7.22 × 101 7.39 × 101 9.29 × 101 4.01 × 10−1 1.30 × 10−3

R 5 2 3 1 1

F39 30
M 2.57 × 103 2.08 × 103 2.51 × 103 2.39 × 103 2.25 × 103

S 1.16 × 102 7.64 × 101 9.04 × 101 8.60 × 101 9.18 × 101

R 7 1 6 3 2

F40 30
M 4.69 × 103 1.87 × 103 3.18 × 103 2.08 × 103 1.76 × 103

S 6.74 × 102 6.70 × 101 3.92 × 102 5.11 × 102 2.59 × 102

R 7 2 4 3 1

Average R 5.96 2.18 3.71 2.21 1.36

Final R 7 2 4 3 1

6. Discussion

In order to improve the optimization ability of PSO, five improvement strategies were
applied to the PSO algorithm. The reinforcement learning strategy in psychology was
applied to the random generation of the initial population to leave better particles. The
combination of cubic mapping and an adaptive strategy was applied to ω. This has the
advantages of chaotic mapping and being adaptive at the same time. The adaptive strategy
was used to adjust c1 and c2 to balance the individual learning ability and social learning
ability of the algorithm. The dimension learning strategy was applied to improve the
convergence speed and accuracy of the algorithm. Finally, Cauchy mutation and Gaussian
mutation strategies were applied to the historical individual optimal solution and the
historical global optimal solution, leaving better solutions to jump out of the local optimal
solution. Using 12 benchmark functions, the algorithm and existing strategies were verified.
The experimental results show that the proposed strategy has a good effect and prove the
effectiveness and good optimization ability of the proposed strategy.

The future work is to further refine the HRLPSO algorithm as well as its parameters
so that it can be applied to complex economic models.
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