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Abstract: With the cyclical development of emerging technologies, in reality, the evolution dynamics
of their innovation networks will inevitably show obvious time attributes. Numerous network
analyses of real complex systems usually focus on static networks; however, it is difficult to describe
that most real networks undergo topological evolutions over time. Temporal networks, which incor-
porate time attributes into traditional static network models, can more accurately depict the temporal
features of network evolution. Here, we introduced the time attribute of the life cycle of emerging
technology into the evolution dynamics of its innovation network, constructed an emerging technol-
ogy temporal innovation network from a temporal network perspective, and established its evolution
model in combination with the life cycle and key attributes of emerging technology. Based on this
model, we took 5G technology as an example to conduct network evolution simulation, verified
the rationality of the above model building, and analyzed the cyclical evolution dynamics of this
network in various topological structures. The results show that the life cycle of emerging technology,
as well as multiple knowledge attributes based on the key attributes of emerging technology, are
important factors that affect network evolution by acting on node behaviors. Within this study, we
provide a more realistic framework to describe the internal mechanism of the cyclical evolution of
emerging technology innovation network, which can extend the research on innovation network
evolution from the single topological dynamics to the topological–temporal dynamics containing time
attributes and enrich the research dimensions of innovation network evolution from the perspective
of temporal evolution.

Keywords: emerging technology; temporal network; innovation network; cyclical evolution

1. Introduction

The rapid changes in technology development in the context of a new technological
revolution have brought much attention to the R&D innovation and strategic layout of
a series of emerging technologies represented by 5G, big data, cloud computing, artificial
intelligence, etc. Due to the high knowledge intensity of emerging technologies, their R&D
innovation is a highly complex systemic process, and it is difficult for innovation subjects
to meet their R&D innovation needs only through their knowledge reserves; thus, they
usually absorb knowledge resources from other subjects to help their R&D innovation
activities [1]. In this process, both active knowledge absorption and passive knowledge
diffusion will promote knowledge interactions between innovation subjects, which, in turn,
leads to the formation and evolution of innovation networks of multi-object collaborative
interactions [2–4]. As an organic system and cultivation carrier for emerging technology
innovations, innovation networks have received considerable attention from and been
discussed by scholars in recent years. Some studies have modeled emerging technology
innovation networks from different perspectives, such as new energy vehicle innovation
networks [5,6], artificial intelligence innovation networks [7,8], AR and VR innovation
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networks [9], etc., and have carried out research on the evolution, evaluation, effects, and
other issues relating to these networks.

Although emerging technology has become a hot topic in research, there is no unified
standard for defining the concept of emerging technology. In this regard, Rotolo [10] clari-
fied the core elements involved in the concept of emerging technology through a literature
review, i.e., the key attributes which qualify a technology as emerging, including radical
novelty, coherence, relatively fast growth, prominent impact, uncertainty, and ambiguity.
This provides a comprehensive conceptual framework of emerging technology that has
been recognized and applied by other scholars in related fields [11–15]. On this basis,
this paper will also draw on some key attributes of emerging technology proposed by
Rotolo for subsequent research. Considering that the acquisition of knowledge resources
by individuals often depends on technology attributes [16], this paper argues that rele-
vant innovation subjects will search and absorb knowledge resources according to the
performance of key attributes of emerging technology at the knowledge level, thereby
helping their R&D innovation activities of emerging technology. Among them, in addition
to knowledge uncertainty, four other knowledge attributes, such as knowledge novelty,
knowledge coherence, knowledge growth, and knowledge influence, may promote knowl-
edge interactions among innovation subjects. Therefore, this study focuses on the first
four key attributes of emerging technology, analyzes the impact of multiple knowledge
attributes of innovation subjects on the establishment of network edges, and then explores
the evolution mechanism of emerging technology innovation network.

In addition, the time attribute of technology development should be introduced when
discussing the evolution dynamics of emerging technology innovation networks. Espe-
cially with the advancement of the new round of technological revolution, the innovation
iterations of emerging technology are gradually accelerating. If enterprises and even
countries want to occupy a dominant position in the scientific and technological compe-
tition, they must grasp the cyclical development law of emerging technology and seize
the new opportunities brought by each technological iteration in order to stand out in the
increasingly fierce competitive environment. In this context, scholars have made a series
of assessments and predictions on development trends in emerging technology using the
life cycle theory [17–20]. From the perspective of network analysis, because the life cycle
of emerging technology covers the time attribute, traditional static network research has
had difficulties in fully depicting the cyclical evolution dynamics of emerging technology
innovation networks; however, the temporal network theory, which has emerged in recent
years, provides a new perspective to solve this problem. The discussion on temporal
networks mainly focuses on time-irreversible processes, such as relationship building and
system evolution [21–25], which can further extend the research dimension on network
evolution from a single topological dynamic to a topological–temporal dynamic containing
time attributes.

Most research on temporal networks have been conducted at a theoretical level and
concentrate on certain aspects, such as system modeling, topology structure, and the spread-
ing dynamics of temporal networks. For example, Perra [26] proposed an activity-driven
network model, which is the most well-studied temporal network model. Several studies
have been carried out to extend the model and propose modified models of temporal
networks, such as the activity–security–trust-driven model [27], the activity-driven model
with memory [28], the competition-driven model [29], etc. Some scholars have discussed
the topology structures of the temporal network and focused on key nodes [30,31], temporal
motifs [32–34], community structure [35,36], and other topology structures, such as degree,
correlation, path length, clustering coefficient, and entropy [37–40]. Other studies have ex-
plored spreading dynamics in the temporal network, such as information spreading [41,42],
knowledge diffusion [43,44], and disease transmission [45,46]. In addition, some studies
have applied temporal network analysis to various fields in real-life settings, specifically
analyzing temporal networks in financial markets [47,48], the fiscal domain [49], air traf-
fic [50], patent opposition and collaboration [33], etc. It can be seen that temporal networks
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have received extensive attention and research, providing a more applicable analysis tool
for studying most real networks with time attributes.

Based on the above discussion, the study aims to introduce the time attribute of the
life cycle of emerging technology into the evolution dynamics of its innovation network,
construct an emerging technology temporal innovation network (hereafter, ET-TIN) from
a temporal network perspective, and explore the evolution mechanism of ET-TIN and
its cyclical evolution dynamics in combination with the life cycle and key attributes of
emerging technology. This study makes a marginal contribution to the current literature
from three perspectives. First, by introducing the life cycle and key attributes of emerging
technology, we can truly reflect the behavior mechanism of emerging technology innovation
subjects and the time attributes of their behaviors and then better describe the temporal
feature and internal mechanism of innovation network evolution during the cyclical devel-
opment of emerging technology. Second, we constructed the ET-TIN based on the temporal
network model and researched its cyclical evolution mechanism and dynamics, which
can extend the research dimension on innovation network evolution from the previous
focus on single topological dynamics to the topological–temporal dynamics containing time
attributes and enrich the research dimension of innovation network evolution from the
perspective of temporal evolution. Third, by simulating the cyclical evolution dynamics of
ET-TIN in the complete life cycle of emerging technology development, we can clarify the
whole process of the network evolution and predict its future development trend, which is
of great practical significance for policy formulation toward network structure optimization
and emerging technology development.

The remainder of this paper is structured as follows. Section 2 introduces the con-
struction of ET-TIN and its structure measurement. Section 3 analyzes the innovation
subjects’ behaviors and the network evolution mechanism in combination with the life
cycle and key attributes of emerging technology and proposes the system framework of
ET-TIN evolution. Section 4 presents the simulation design of network evolution with 5G
technology as an example. Section 5 describes the simulation results and discusses the
cyclical evolution dynamics of the network in various topology characteristics. Finally, the
main conclusions are given in Section 6.

2. ET-TIN Construction and Measurement
2.1. ET-TIN Construction

The high complexity and uncertainty of R&D innovation in emerging technology
results in heterogeneous innovation subjects being closely related to each other, thus
forming an organization structure of innovation network. As shown in Figure 1, in the
internal composition of ET-TIN, the network nodes represent core innovation subjects, such
as enterprises, universities, and research institutes. According to the innovation prospects
at each stage of the life cycle of emerging technology, as well as multiple knowledge
attributes based on the key attributes of emerging technology, these innovation subjects will
selectively acquire knowledge resources and carry out R&D innovation through knowledge
interaction activities, such as patent citation, thus promoting the formation of network
edges and the evolution of network structure.

In many actual networks, the edges between nodes have obvious time attributes, such
as user communication [51], social interaction [52], and knowledge transfer [53], and are
dynamic processes rather than static. In the cyclical development of emerging technologies
discussed in this paper, the knowledge interaction among innovation subjects also changes
with time. The changes in behavior decisions, such as node joining, exiting, and preferential
attachment in each instantaneous network, leads to the intermittent disconnection or
reconnection of edges between nodes, making the network edges show discontinuous
features in the time dimension. Therefore, during the life cycle of emerging technology,
the instantaneous networks generated at each time will constitute the traditional temporal
network [54], as shown in Figure 2a. The numbers on the edges of this figure represent
the time of knowledge interactions between two nodes. Taking node A as an example, it
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absorbs the knowledge resources of node B and node D at time t = 1, 3, 5, 7 and then
diffuses its knowledge resources to node B at time t = 2, 6, 9.
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However, according to Perra’s classic study on the modeling of the temporal net-
work [26], at each time, the instantaneous network is a simple random graph with low
average connectivity. For this reason, the above model enables a simple analytical treatment,
mainly using the union of all the instantaneous networks obtained at each previous time
to effectively observe the topology structures of the temporal network. Therefore, further
adjustments were made based on the traditional temporal network, and the instantaneous
networks were merged at each time during the cyclical development of emerging tech-
nology to form a set of integrated networks, thus constituting the ET-TIN, as shown in
Figure 2b. This figure reflects the snapshots of integrated networks at time t = 1, 3, 5, 10,
formed by merging the instantaneous networks obtained in each previous time.

Based on the above analysis, we can refer to the classic temporal network models [26,54]
and define the ET-TIN as follows:

Definition 1: The ET-TIN refers to a set of integrated networks formed by merging the instan-
taneous networks at each time in an orderly fashion during the cyclical development of emerging
technology. The ET-TIN is recorded as G,G =

{
Gt

∣∣∣Gt = Uk=t
k=1gk, gk ⊂ g, t = 1, 2, ···, T

}
, where

T represents the number of time windows divided according to the life cycle of emerging technology,
gt and Gt represent the instantaneous networks and integrated networks under each time window,
g = (v, e) is the set of instantaneous networks, v = {v1, v2, ···, vn} is the set of network nodes,
e = {e1, e2, ···, em} is the set of network edges, and the elements in the edge set can use a triad(
vi, vj, t

)
to represent the knowledge interaction between node vi and node vj at time t.



Systems 2023, 11, 82 5 of 23

2.2. ET-TIN Measurement

Based on the above concept of ET-TIN, the relevant measurement indicators of net-
work structure can be used to quantitatively analyze the evolution dynamics of its topology.
In this regard, this study mainly used the network graph, number of nodes and edges,
degree distribution, small-world quotient, and timeliness and quality of the network to de-
scribe the evolution process of the scale, scale-free characteristic, small-world characteristic,
and self-organizing characteristic of the ET-TIN.

2.2.1. Network Scale

On the one hand, network graphs can directly reflect the evolution dynamics of
network scale. On the other hand, the number of nodes and edges are important indicators
for the quantitative analysis of network scale, which can be measured by counting the
number of innovation subjects involved in the integrated network at each time, such as
enterprises, universities, and research institutions, as well as the number of connections
between innovation subjects. With the increase in network scale, innovation subjects
are more likely to acquire a large number of external knowledge resources to help with
R&D innovation activities, which is conducive to the improvement of network innovation
efficiency and further promotes the innovation development of emerging technology.

2.2.2. Scale-Free Characteristic of Network

The scale-free characteristic of a complex network is mainly characterized by the
phenomenon that the node degree obeys the power law distribution, where the node
degree, ki, refers to the number of edges directly owned by a node i and the degree
distribution, P(k), describes the probability that a node is randomly selected in the network
with degree k. If the ET-TIN has the scale-free characteristic, it shows that only a few nodes
in the network have larger degrees, hold rich knowledge resources, and are in the core
position in the network, whereas most of the nodes have smaller degrees and are in the
edge position in the network; thus, the whole network presents obvious non-equilibrium
in topology structure.

2.2.3. Small-World Characteristic of Network

Small-world networks usually show characteristics of high aggregation and short path,
which can be described by the clustering coefficient and average path length, respectively.
However, because these two indicators are independent of each other, this study further
applied the small-world quotient (recorded as SWQ) [55,56] which can combine these
two indicators to quantitatively analyze the small-world characteristic of ET-TIN. The
formula is:

SWQ =

{
SWQt

∣∣∣∣SWQt =
Cratio,t

Lratio,t
=

Ct/Cr,t

Lt/Lr,t
, t = 1, 2, ···, T

}
(1)

Here, SWQ is the small-world quotient of ET-TIN, which is mainly composed of the
small-world quotient, SWQt, of the integrated network at each time. When SWQt > 1
is satisfied, it indicates that the network at time t is a small-world network with a large
clustering coefficient and short average path length, and the larger the indicator value, the
more significant the small-world characteristic of the network. Cratio,t and Lratio,t represent
the clustering coefficient ratio, Ct/Cr,t, and the average path length ratio, Lt/Lr,t, of the
integrated network to the random network with the same scale at time t, respectively; for
example, the clustering coefficient, Ct, and the average path length, Lt, of the integrated
network at time t can be expressed as:

Ct =
1

Nt

Nt

∑
i=1

mi,t

ki,t(ki,t − 1)
(2)
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Lt =
∑Nt

i 6=j dij,t

Nt(Nt − 1)
(3)

Here, Nt is the number of nodes in the network, ki,t and mi,t are the degree of node i
and the actual number of edges between its neighbors, and dij,t is the shortest path length
from node i to node j.

2.2.4. Self-Organizing Characteristic of Network

As a complex adaptive system with a self-organizing characteristic, the evolution
process of a complex network is essentially the formation process of the orderly structure
of the network. In general, timeliness entropy and quality entropy can be used to measure
the degree of uncertainty in the timeliness and accuracy of information flow in the system,
to quantitatively describe the order degree of system structure. On this basis, this study
further applied the two indicators of timeliness and quality [57,58] to directly measure the
order degree of ET-TIN structure from two perspectives, timeliness and the accuracy of
knowledge flow, and then examined the self-organizing characteristic of this network. The
formula is:

R1 =

{
R1

t

∣∣∣∣∣R1
t = 1− H1

t
H1m

t
, t = 1, 2, ···, T

}
(4)

R2 =

{
R2

t

∣∣∣∣R2
t = 1− H2

t
H2m

t
, t = 1, 2, ···, T

}
(5)

Here, R1 and R2 are the timeliness and the quality of ET-TIN, respectively, composed
of the timeliness, R1

t , and quality, R2
t , of the integrated network at each time. Higher R1

t or
R2

t values indicate the higher-order degree of the network structure at time t in terms of
the timeliness or accuracy of knowledge flow, and the faster or more accurate transfer of
knowledge resources among nodes. H1

t , H1m
t , H2

t , and H2m
t represent the total timeliness

entropy, maximum timeliness entropy, total quality entropy, and maximum quality entropy
of the integrated network at time t, which can be expressed as follows (where Nt, dij,t, and
ki,t have the same meaning as above):

H1
t =

Nt

∑
i=1

Nt

∑
j=1

[
−

dij,t

∑i ∑j dij,t
× ln

(
dij,t

∑i ∑j dij,t

)]
(6)

H1m
t = ln

(
∑i∑jdij,t

)
(7)

H2
t =

Nt

∑
i=1

[
− ki,t

∑i ki,t
× ln

(
ki,t

∑i ki,t

)]
(8)

H2m
t = ln(∑iki,t) (9)

3. The Modeling of ET-TIN Evolution

An innovation network is a typical complex adaptive system, in which the adaptive
behavior of micro-individuals under the stimulation of internal and external environment is
the root of the emergence and evolution of system structural characteristics. Therefore, this
study mainly analyzed the adaptive behaviors of network nodes, such as joining, retaining,
exiting, and preferential attachments under the influence of the life cycle and key attributes
of emerging technologies; proposed the evolution mechanism of nodes and edges; and
constructed a system framework of network evolution to analyze the whole process of
ET-TIN evolution in detail.

3.1. Network Nodes Evolution Mechanism

Nodes changes during the ET-TIN evolution mainly include the joining behavior
of new nodes combined with the development prospect of emerging technologies and
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the retaining and exiting behavior of old nodes based on their knowledge state changes,
as shown in Figure 3. Based on this, this paper mainly discusses the network nodes
evolution mechanism from two aspects: nodes joining mechanism and nodes retaining and
exiting mechanism.
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3.1.1. Nodes Joining Mechanism

Nodes joining mechanism is the basic dynamic mechanism for ET-TIN evolution. To
obtain knowledge resources of R&D innovation, innovation subjects of emerging technolo-
gies pour into the innovation network, which will constantly break the network boundary
and its original structure and promote the continuous evolution of network topology. In
this process, the number of new nodes added will be affected by the dynamic development
prospects of emerging technologies and their market environment and will show a multi-
stage, non-linear trend. The development process of emerging technology conforms to the
logistic growth principle; therefore, it will experience multiple stages, such as technology
germination, growth, maturity, and recession, showing an S-shaped growth trend; thus, the
number of new nodes added will also experience low growth, accelerated growth, deceler-
ated growth, and zero growth. Therefore, the number of new nodes added in the network
evolution process should follow the cyclical development law of emerging technologies
and also conform to the logistic growth model [59], namely:

M(t) =
a

1 + e−θ(t−b)
(10)

where M(t) represents the cumulative number of new nodes added in the instantaneous
network of each phase to the time t; then, the number of new nodes added in the instanta-
neous network of time t is M(t)−M(t− 1) and a, b, and θ are the basic parameters in the
logistic growth model and can be fitted according to actual data.

3.1.2. Nodes Retaining and Exiting Mechanism

When new nodes join the network to obtain knowledge resources for R&D innovation,
the original nodes in the network also exchange and complement knowledge resources
through knowledge absorption and diffusion, accordingly changing their knowledge states.
Among them, the knowledge states of nodes that absorb enough knowledge inwards or
diffuse enough knowledge outwards will grow rapidly, and they can better adapt to the
competitive innovation environment with the advantages of knowledge resources, which
can be retained in the network. However, the nodes that neither absorb enough knowledge
inward nor diffuse enough knowledge outward will exit the network due to the slow
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growth of knowledge states, insufficient innovation development potential, and inability
to overcome the competitive pressure of technology innovation.

On this basis, considering that the in-degree shows how many neighbors from which
a node can absorb knowledge, the out-degree indicates how many agents can absorb
knowledge from it [60,61]; thus, we used the in-degree kin

i (t) and out-degree kout
i (t) to

represent the amount of knowledge that node i absorbs inward and diffuses outward in
the instantaneous network at time t. The average in-degree and out-degree values of all
nodes in the network can represent the average amount of knowledge that nodes absorb
inward and diffuse outward; however, this cannot reflect whether the average amount
of knowledge is sufficient to support them to adapt to the competitive environment of
technological innovation and stay in the innovation network. Thus, this paper further
introduced a threshold parameter, α (the value of α can be adjusted according to the actual
data), for the average amount of knowledge absorbed or diffused by nodes to determine
whether node i has absorbed or diffused sufficient knowledge, based on which the critical
knowledge state of its retention or withdrawal from the network can be quantitatively
characterized. Therefore, when node i in the instantaneous network at time t satisfies the
conditions shown in Formula (11) (where N(t) is the number of nodes in the instantaneous
network at time t), it can be retained in the instantaneous network at time t + 1 and
participate in a new round of R&D innovation activities. In contrast, when the node
satisfies the conditions shown in Formula (12), it will exit the network at the end of the
current period.

kin
i (t) ≥ α

∑i kin
i (t)

N(t)
∨ kout

i (t) ≥ α
∑i kout

i (t)
N(t)

(11)

kin
i (t) < α

∑i kin
i (t)

N(t)
∧ kout

i (t) < α
∑i kout

i (t)
N(t)

(12)

3.2. Network Edges Evolution Mechanism

According to the performance of the four key attributes of emerging technology [10]
at the knowledge level, edge changes during the ET-TIN evolution are mainly driven by
the preferential attachment between nodes based on the novelty, coherence, growth, and
influence of knowledge, as shown in Figure 4. Therefore, based on the above four preferen-
tial attachment mechanisms with a single knowledge attribute, this paper further proposes
a preferential attachment mechanism with multiple knowledge attributes to analyze the
edge evolution mechanism of ET-TIN.
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3.2.1. Preferential Attachment Mechanism Based on Knowledge Novelty

To adapt to the novelty attribute of emerging technology and the increasingly updated
knowledge environment, network nodes usually select other nodes with the high novelty
of knowledge to establish an edge and help their R&D innovation by absorbing the novel
knowledge from these nodes. For this reason, suppose that node i first appears in the
instantaneous network at time ti, if it absorbs knowledge resources inward in the current
period (where the in-degree is greater than zero), and then generates new knowledge out-
comes through R&D innovation; thus, its knowledge novelty in the current period is set as

ci(ti) = 1, otherwise ci(ti) = 0, from which the indicator function ci(ti) =

{
1, kin

i (ti) > 0
0, kin

i (ti) = 0
,

indicating the knowledge novelty of node i at time ti. However, the knowledge novelty
of each period will decrease with time; therefore, it is further assumed that the knowl-
edge novelty of node i at time ti will decline to ci(ti)

t−ti+1 by the time t. Based on this, we
can measure the average level of node i’s knowledge novelty from time ti to time t by
summing up the decay value of node i’s knowledge novelty from time ti to time t, and
then calculating the average value. Therefore, the probability, P1

i (t + 1), of node i being
connected preferentially by other nodes at the beginning of the instantaneous network at
time t + 1 will be determined by its average level of knowledge novelty at the end of the
instantaneous network at the previous time t, namely:

P1
i (t + 1) =

∑t
ti
[ci(ti)/(t− ti + 1)]

t− ti + 1
(13)

3.2.2. Preferential Attachment Mechanism Based on Knowledge Coherence

Knowledge coherence is the internal condition for preferential attachment between
nodes in the ET-TIN, as well as the leading factor for the convergence of previously
separated research streams and convergence in technologies in the process of emerging
technology development, thus producing the coherence attribute of emerging technology.
During the evolution of this network, nodes with high knowledge coherence usually more
easily overcome the resistance to knowledge absorption caused by knowledge exclusivity
and understand the hidden knowledge contained therein based on similar knowledge
structures and technical experiences, so that knowledge exchange and technology innova-
tion can be carried out more effectively; thus, it is often easier to establish edges between
such nodes. On this basis, the method proposed by Jaffe [62], which has been adopted in
many studies [63–65], can be used to measure the level of knowledge coherence between
the two nodes in terms of the included angle between their knowledge structure vectors.
Therefore, the probability, P2

i (t + 1), that node i is preferentially connected by other nodes
(node j is taken as an example) at the beginning of the instantaneous network at time t + 1
will be determined by the level of knowledge coherence between the two nodes at the end
of the instantaneous network at the previous time t, namely:

P2
i (t + 1) =

fi(t) f ′j (t){[
fi(t) f ′i (t)

][
f j(t) f ′j (t)

]}1/2 (14)

where fi(t) and f j(t) represent the knowledge structure vector formed by the innovation
outputs of node i and node j in different knowledge domains up to time t, respectively,
since they joined the network; fi(t) = (p1, p2, ···, pn) and pn denotes the innovation outputs
of node i in the nth knowledge domain.

3.2.3. Preferential Attachment Mechanism Based on Knowledge Growth

Emerging technologies exhibit significant growth, which is reflected in the rapid
growth of knowledge outputs, mainly driven by the active R&D innovation behavior of
a large number of innovation subjects. In this process, as the key link of R&D innovation,
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knowledge absorption plays an important role in accelerating innovation outputs. In
the ET-TIN, the stronger the knowledge absorption ability of nodes, the more external
knowledge resources can be absorbed and utilized to make up for knowledge weaknesses
and break through innovation bottlenecks, thus speeding up the R&D innovation and
knowledge outputs. Such nodes are more likely to attract other nodes to connect with
under more knowledge resources and innovation achievements accumulated through
active knowledge absorption and technology innovation. Therefore, the node’s knowledge
absorption ability is expressed with its in-degree, and if the in-degree of a node accounts
for a higher proportion of the total in-degree of all nodes in the network, this indicates
that the more knowledge resources the node absorb inward, the stronger its knowledge
absorption ability is. Therefore, the probability, P3

i (t + 1), of node i being preferentially
connected by other nodes at the beginning of the instantaneous network at time t + 1 will
be determined by the ratio of its in-degree to the total in-degree of all nodes at the end of
the instantaneous network at the previous time t, namely:

P3
i (t + 1) =

kin
i (t)

∑i kin
i (t)

(15)

3.2.4. Preferential Attachment Mechanism Based on Knowledge Influence

Emerging technologies have a prominent influence on many aspects, among which the
influence shown by emerging technologies through knowledge output requires extensive
knowledge diffusion to be truly realized, and the formation of an innovation network pro-
vides an important carrier for the effective diffusion of knowledge achievements. However,
the knowledge level of each node in the network is different, and the diffusion ability of
its internal knowledge is also different. Generally, the stronger the knowledge diffusion
ability of a node, the more knowledge resources it diffuses outward, which indicates that
the greater the knowledge influence of the node in the network, the more attention its
high-quality knowledge outputs receive from more nodes; thus, it is easier to attract other
nodes to connect with it. Based on this, the node’s knowledge diffusion ability is expressed
with its out-degree, and if the out-degree of a node accounts for a higher proportion of the
total out-degree of all nodes in the network, it indicates that the more knowledge resources
the node diffuse outward, the stronger its knowledge diffusion ability and the greater
its knowledge influence. Therefore, the probability, P4

i (t + 1), of node i being connected
preferentially by other nodes at the beginning of the instantaneous network at time t + 1
will be determined by the ratio of its out-degree to the total out-degree of all nodes at the
end of the instantaneous network at the previous time t, namely:

P4
i (t + 1) =

kout
i (t)

∑i kout
i (t)

(16)

3.2.5. Preferential Attachment Mechanism Based on Multiple Knowledge Attributes

Based on the above four preferential attachment mechanisms with a single knowledge
attribute, we can further propose a preferential attachment mechanism based on multiple
knowledge attributes to comprehensively describe the possibility of establishing the edge
between two nodes during the process of network evolution. However, while focusing on
the above four knowledge attributes, it is also necessary to further consider the possible
impacts of the other attributes of nodes and their upper limit of edges on the establishment
of edges among the nodes. On the one hand, to solve the problem of random interference
caused by other intrinsic attributes of nodes except for knowledge attributes, we can use
the fitness model for reference [66,67], apply fitness to describe other intrinsic attributes of
nodes, and expand the single preferential attachment condition based on node degree in
this model to four preferential attachment conditions based on node knowledge attributes.
On the other hand, in the process of network evolution, nodes do not absorb knowledge
resources infinitely inwards, but there are upper limits of knowledge absorption influenced
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by various aspects; therefore, it is necessary to further introduce the parameter representing
the upper limit of the knowledge absorption of each node to determine the limit value of the
number of edges that can be established by each node. In summary, in each instantaneous
network, the probability, Πij, of node i being connected preferentially by node j should
satisfy the following formula:

Πij = mj
ηiP1

i P2
i P3

i P4
i

∑ ηiP1
i P2

i P3
i P4

i
(17)

Considering that Formula (17) is composed of the above four formulas and involves
many notations; therefore, the notations involved in calculating this formula can be sum-
marized and divided into three levels, as shown in Table 1.

Table 1. Notations table.

Notations Description

Level I
Πij The probability of node i being connected preferentially based on its multiple knowledge attributes.

Level II
P1

i The probability of node i being connected preferentially based on its knowledge novelty.
P2

i The probability of node i being connected preferentially based on its knowledge coherence.
P3

i The probability of node i being connected preferentially based on its knowledge growth.
P4

i The probability of node i being connected preferentially based on its knowledge influence.

ηi
The fitness of node i, and there is no unified standard for the probability distribution of node fitness, which
should be determined according to the real network data.

mj
The upper limit of knowledge absorption of node j, which can be set to obey the power law distribution
according to the in-degree distribution of nodes in most real networks.

Level III
ci(ti) The knowledge novelty of node i at time ti, which is used to calculate P1

i .

fi(t)
The knowledge structure vector formed by the innovation outputs of node i in different knowledge
domains up to time t since they joined the network, which is used to calculate P2

i .
kin

i (t) The in-degree of node i at time t, which can reflect its knowledge absorption and be used to calculate P3
i .

kout
i (t) The out-degree of node i at time t, which can reflect its knowledge diffusion and be used to calculate P4

i .

3.3. System Framework of Network Evolution

The nodes and edges evolution mechanisms of ET-TIN have been detailed, based on
which the system framework shown in Figure 5 can be further proposed to describe the
dynamic evolution process of the network in detail. It can be seen from Figure 5 that the
evolution process of ET-TIN can be broken down into four sub-processes: node evolution,
edge evolution, instantaneous networks evolution, and integrated networks evolution.
According to the life cycle of emerging technologies, T time windows can be divided,
and thus, the timeline of network evolution can be established. Based on this, we can
further clarify the whole evolution process of ET-TIN by analyzing the integrated networks
structures formed by the instantaneous networks composed of constantly changing nodes
and edges in each time window.

A specific example of ET-TIN evolution is given in Figure 5, detailing the changes in
nodes and edges under the first three-time windows, as well as the structure evolution of
the corresponding instantaneous networks and integrated networks. When t = 1, given
the initial network with a fixed distribution of nodes and edges, the current instantaneous
network has the same structure as the integrated network. At the end of the instantaneous
network at t = 1, the nodes that satisfy the conditions shown in Formula (11) can be
retained in the instantaneous network at t = 2, while the nodes that satisfy the conditions
shown in Formula (12) will exit the network. At the same time, according to Formula (10),
a certain number of new nodes will join the network, which, together with the old retained
nodes, will form the nodes of the instantaneous network at t = 2 and new edges will be
established through knowledge interactions.
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indicates that the new nodes added and the old nodes retained are
connected preferentially according to Formula (17); ⊕ indicates that the instantaneous networks
under each time window are merged to form the integrated networks structures.

With the addition, retention, and exit of nodes, the edges in the network will also
be disconnected and reconnected. To observe the edge reconnection process under differ-
ent time windows, we can refer to the temporal network evolution model proposed by
Perra [26], where all network edges are deleted at the end of each phase of the instanta-
neous network; then the disconnected nodes will be reconnected based on the probability
of Formula (17) in the next phase. In the meantime, the flow and transfer of knowledge
resources among nodes changes the knowledge state of nodes, which leads to a new round
of node changes. Of these, nodes with a rapidly growing knowledge states can remain in
the instantaneous network at t = 3; otherwise, they will exit the network. In addition, the
reconnection of the edges between nodes in the instantaneous network at t = 2 will change
the knowledge attributes of nodes, which will affect the preferential attachment between
nodes in the instantaneous network at t = 3 and bring about a new round of changes in the
network structure.

According to the above analysis, the changes in nodes’ knowledge states and knowl-
edge attributes caused by edge reconnections in each phase will have an impact on the
retention and exit of nodes, as well as the disconnection and reconnection of edges. Anal-
ogously, in each time window, the new nodes added and the old nodes retained from
previous phase, as well as the edges reconnected between nodes based on the multiple
knowledge attributes obtained in the previous phase, will jointly form an instantaneous
network structure of the new phase, and the instantaneous network of each phase will be
merged in turn to form the integrated network structure under different time windows.
Thus, the complete evolution process of ET-TIN can be revealed by observing the integrated
network structure under each successive time window based on the timeline of emerging
technology cyclical development.
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4. The Simulation Design of ET-TIN Evolution
4.1. Data Sources

Among many emerging technologies, 5G technology is expected to become the key
element and important fulcrum to promote a new round of technological revolution with its
epoch-making technical capabilities, broad application prospects, and driving role on other
technologies and will effectively support the high-quality development of economy and
society. In this context, this paper took 5G technology as an example, retrieved 5G patents
using the Derwent Innovations Index, and constructed a 5G technology temporal innova-
tion network (hereafter 5G-TIN) based on 5G patent data and their citation information as
the sample network for this study.

In mobile communications, 5G technology is the concentrated embodiment of decades
of innovation accumulation; therefore, it is necessary to increase the period when conduct-
ing 5G patent retrieval. Additionally, considering the time lag between patent application
and approval, the retrieval period in this study was set to be before 31 December 2018.
On this basis, 15,397 data were retrieved based on the 5G key technologies identified in
the 5G Concept White Paper issued by the IMT-2020 (5G) Promotion Group, the multiple
expressions of the term 5G, and the IPC classification number in the field of telecommuni-
cation technology, i.e., category H04. By deleting the patent data in which the patentees
are natural persons and those that do not contain citation information, we finally obtained
9827 5G patent data from 1978 to 2018, and their corresponding patent citation relationships
among 2226 innovation subjects.

Before the simulation of network evolution, it is necessary to predict the life cycle of
5G technology to determine the simulation time and then simulate the evolution dynamics
of 5G-TIN during the full cycle. In this regard, the software LogletLab 4 could be used to fit
the changing trends in the cumulative amount of 5G patent applications and, according to
the fitting results, the life cycle of 5G technology can be divided into four stages, namely, the
germination period, from 1978 to 2012 (Phases 1–35); the growth period, from 2013 to 2021
(Phases 36–44); the maturity period, from 2022 to 2029 (Phases 45–52); and the recession
period, after 2030 (after Phase 53). Although 5G technology is projected to enter a recession
period after the 53rd phase, in order to simulate the complete evolution dynamics of the
network, this study set the simulation iterations as T = 80.

4.2. Simulation Steps

Based on the ET-TIN evolution model built above and the values of simulation pa-
rameters determined by the relevant statistics of the real network, the following specific
simulation parameters and steps can be set in MATLAB to simulate the evolution process
of ET-TIN; its simulation flow chart is shown in Figure 6.

Step 1 (setting basic parameters): Through numerical estimations based on actual
data and multiple optimizations of simulation results, the basic parameters in the above
formulas can be set as a = 5793, b = 45, θ = 0.111, and α = 0.8; fi is contained in F, i.e.,
a 2226× 11 knowledge structure vector matrix, F, obtained by counting the IPC distribution
of 2226 innovation subjects’ patent applications; ηi obeys the normal distribution N

(
0.5, 32);

and mj obeys the power law distribution mj
−2.2.

Step 2 (setting the initial network): Taking the real network in 1978 as the initial
instantaneous network, g1, at t = 1, which contained six nodes and four directed edges.
Then, the cumulative number of new nodes in this instantaneous network can be regarded
as M(t) = 6, and the integrated network has the same structure as the instantaneous
network, that is, G1 = g1. Based on the initial network, the iterative evolution is carried
out with time t (t = 1, 2, . . . , T).

Step 3 (nodes retaining and exiting): Calculating the in-degree, kin
i (t), and out-degree,

kout
i (t), of each node in the instantaneous network, gt, and judging whether it can be

retained for the next instantaneous network, gt+1, according to the conditions shown in
Formulas (11) and (12). At the end of time t, record the four knowledge attributes of
the retained nodes in the current phase, and delete the edges between these nodes. At
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the next time step, t + 1, all nodes will establish new edges based on the preferential
attachment mechanism.
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Step 4 (new nodes joining): M(t + 1) is calculated according to the Formula (10), then
M(t + 1)−M(t) new nodes will be added to the instantaneous network at time t + 1 and
the knowledge structure vector of each new node is taken randomly from the knowledge
structure vector matrix F.

Step 5 (preferential attachment between nodes): The old nodes are retained and the
new nodes are added together to form nodes in the instantaneous network, gt+1, and
further calculate the probability, Πij, of node i being connected preferentially by node j
based on the Formula (17), thereby the nodes will establish new edges. Based on this, the
instantaneous network, gt+1, is formed and the integrated network, Gt+1 = Uk=t+1

k=1 gk, can
be obtained accordingly. Save gt+1 and output Gt+1.

Step 6 (repeat steps): Let t = t + 1, return to Step 3, and the new iteration is restarted
until the simulation iterations T = 80 are reached.

5. Results and Discussion

Based on the above simulation steps, this study simulated the cyclical evolution dy-
namic of 5G-TIN, calculated the changing trend of various topology indicators of the
simulation networks, and compared them with corresponding indicators of the real net-
works to verify the rationality of the ET-TIN evolution model built above.

5.1. Analysis of Network Scale

First, the 5G-TIN was sliced on an annual basis and simulation network snapshots
under 80-time windows and real network snapshots under 41-time windows were obtained.
It is difficult to display all network snapshots in a limited space; therefore, this study
selected some slices of this network and used the network mapping function of the social
network analysis software Gephi to draw the simulation network graphs of the 11th, 21st,
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31st, and 41st phases, and the real network graphs of 1988, 1998, 2008, and 2018, as shown
in Figure 7. Moreover, we also used the community division function in Gephi to identify
different communities in the network with different colors, which can further reflect the
community structure evolution of simulation networks and real networks.
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As shown in Figure 7, the graph evolution trends of the simulation networks and the
real networks are similar, with the network scale continuously expanding and the number
of nodes and edges increasing. At the same time, both networks gradually exhibit obvious
non-equilibrium in topology structure, and there is a significant core–periphery structure,
which commonly exists in many innovation networks [68–70]. Moreover, Figure 7 shows
that the community size and structure of the simulation networks and the real networks
also show similar evolution trends. From the figure, it can be identified that both networks
gradually form three major communities, namely, green–cyan–blue and red–yellow–orange,
and the corresponding size and distribution of each community in both networks are
basically the same.

In addition, to quantitatively analyze the evolution of network scale, the number
of nodes and edges of the simulation network and the real network under each time
window can be calculated, and their evolution trends can be drawn as shown in Figure 8.
The simulation networks in periods 1–41 are highly consistent with the real networks in
1978–2018 in terms of the evolution trends of the above two indicators. On this basis,
the complete evolution dynamics of the 5G-TIN scale can be revealed by analyzing the
changing process of nodes and edges in the 80-phase simulation networks.

In Figure 8, the nodes and edges in the network show an S-shaped growth trend
with the cyclical development of 5G technology; the S-shaped growth of other network
scales was also observed by Hu and Wang [71], as well as Yang and Chen [72]. In the
germination period of 5G technology, the unclear technology development prospect and
the complexity and high cost of initial R&D restricted the participation of innovation
subjects and the development of R&D activities; thus, the growth rates of both nodes and
edges were slow. Since entering the 5G technology growth period, the positive technology
development prospects and active R&D environments have attracted a large number of
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innovation subjects, significantly accelerating the knowledge flow and innovation output
and accelerating the growth of nodes and edges. However, with the development of 5G
technology entering the maturity period, the technological innovation market has gradually
saturated; thus, the number of new nodes will decrease and the growth rate of nodes will
slow down. However, due to the knowledge interactions and technology innovations
between a large number of original nodes, the network edges will still show an accelerated
growth trend. Until entering the 5G technology recession period, it would no longer be
able to attract the participation of innovation subjects or the development of R&D activities,
and the growth rate of network nodes and edges would gradually decline to zero.

Systems 2023, 11, 82 16 of 24 
 

 

(b) Real networks. 

    
1988 1998 2008 2018 

Figure 7. Simulation and empirical results of network graph evolution. Here, the colors of nodes 

and edges represent the communities to which they belong and different colors represent different 

communities in the network. 

As shown in Figure 7, the graph evolution trends of the simulation networks and the 

real networks are similar, with the network scale continuously expanding and the number 

of nodes and edges increasing. At the same time, both networks gradually exhibit obvious 

non-equilibrium in topology structure, and there is a significant core–periphery structure, 

which commonly exists in many innovation networks [68–70]. Moreover, Figure 7 shows 

that the community size and structure of the simulation networks and the real networks 

also show similar evolution trends. From the figure, it can be identified that both networks 

gradually form three major communities, namely, green–cyan–blue and red–yellow–or-

ange, and the corresponding size and distribution of each community in both networks 

are basically the same. 

In addition, to quantitatively analyze the evolution of network scale, the number of 

nodes and edges of the simulation network and the real network under each time window 

can be calculated, and their evolution trends can be drawn as shown in Figure 8. The sim-

ulation networks in periods 1–41 are highly consistent with the real networks in 1978–

2018 in terms of the evolution trends of the above two indicators. On this basis, the com-

plete evolution dynamics of the 5G-TIN scale can be revealed by analyzing the changing 

process of nodes and edges in the 80-phase simulation networks. 

  

Figure 8. Simulation and empirical results of nodes and edges evolution. 

In Figure 8, the nodes and edges in the network show an S-shaped growth trend with 

the cyclical development of 5G technology; the S-shaped growth of other network scales 

was also observed by Hu and Wang [71], as well as Yang and Chen [72]. In the germina-

tion period of 5G technology, the unclear technology development prospect and the com-

plexity and high cost of initial R&D restricted the participation of innovation subjects and 

the development of R&D activities; thus, the growth rates of both nodes and edges were 

slow. Since entering the 5G technology growth period, the positive technology develop-

ment prospects and active R&D environments have attracted a large number of 

Figure 8. Simulation and empirical results of nodes and edges evolution.

5.2. Analysis of Scale-Free Characteristic of Network

To verify whether the simulation network has the same scale-free characteristic as
the real network, i.e., whether its node degree obeys the power law distribution, the node
degree data of the 41st simulation network and the real network in 2018 can be extracted to
plot the degree distribution of both networks, as shown in Figure 9.
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As shown in Figure 9, the degree distributions of the simulation network and the real
network both conform to the power law distribution and the long tails of both networks
roughly match, indicating that the simulation network can reflect the scale-free character-
istic of the real network to a certain extent. From Figure 9, it can be seen that only a few
hub nodes in the network have larger degrees, while most nodes have smaller degrees.
This phenomenon is mainly because in the long-term network evolution process, a few
nodes with outstanding performance in knowledge attributes attract the attention and
attachment of a large number of nodes and obtain more resources; thus, their network
status keeps rising under their cumulative advantages until they become hub nodes with
lager degrees. However, most nodes do not have a significant cumulative advantage in
this process, and thus, they have fewer edges and smaller degrees. It is the uneven dis-
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tribution of the edges between nodes which increasingly intensifies the non-equilibrium
in the network and finally evolves into a scale-free network structure where the degree
distribution obeys the power law distribution, which is also a common topology structure
in many real social networks, such as technology innovation networks [8,73], technology
adoption networks [74], etc.

5.3. Analysis of Small-World Characteristic of Network

To observe the evolution dynamics of the small-world characteristic of 5G-TIN, the
small-world quotient of the simulation network and the real network in each time window
were calculated and their evolution trends were derived, as shown in Figure 10.

Systems 2023, 11, 82 18 of 24 
 

 

 
Figure 10. Simulation and empirical results of small-world quotient evolution. 

Figure 10 shows that the evolution trends in the small-world quotients of the simu-
lation networks and the real networks in the first 41 phases are roughly the same. On this 
basis, we can further analyze the change process of the small-world quotients of the 80-
phase simulation networks to reveal the complete evolution dynamics of the small-world 
characteristics of the real networks in the full cycle. First, the small-world quotient shows 
a significant upward trend before entering the 5G technology recession, which indicates 
that the small-world characteristic of the network is becoming more prominent. This is 
because, in the first three periods, the frequent knowledge interactions and active R&D 
activities between innovation subjects promote the nodes to be connected and clustered, 
which enlarges the clustering coefficient and shortens the average path length, constantly 
enhancing the network cohesion. However, when the 5G technology development enters 
a recession period, with the network scale no longer increasing, the scale of groups formed 
by nodes will also no longer expand; thus, the clustering coefficient will gradually become 
stable. However, the frequency of knowledge interactions between innovation subjects is 
significantly reduced, which increases the average path length of the network; therefore, 
the small-world quotient exhibits a downward trend. In general, the network always has 
a small-world quotient greater than 1 during its long-term evolution, which is consistent 
with the research results of Zhao et al. [75] and Fang et al. [76] on the small-world quotient 
of innovation networks, indicating that the network will always exhibit a significant 
small-world characteristic. 

5.4. Analysis of Self-Organizing Characteristic of Network 
Timeliness and quality are important indicators for measuring the order degree of 

the network structure and reflecting its self-organizing characteristic [77]. These two indi-
cators of the simulation network and the real network in each time window can be calcu-
lated and their evolution trends can be drawn, as shown in Figure 11. Figure 11 indicates 
that the evolution trends of timeliness and quality of the simulation networks are con-
sistent with those of the real networks in the first 41 phases. Thus, we can investigate the 
complete evolution of the self-organizing characteristic of the real networks by analyzing 
the change processes of the above two indicators in the 80-phase simulation networks. 

Figure 10. Simulation and empirical results of small-world quotient evolution.

Figure 10 shows that the evolution trends in the small-world quotients of the sim-
ulation networks and the real networks in the first 41 phases are roughly the same. On
this basis, we can further analyze the change process of the small-world quotients of the
80-phase simulation networks to reveal the complete evolution dynamics of the small-
world characteristics of the real networks in the full cycle. First, the small-world quotient
shows a significant upward trend before entering the 5G technology recession, which indi-
cates that the small-world characteristic of the network is becoming more prominent. This
is because, in the first three periods, the frequent knowledge interactions and active R&D
activities between innovation subjects promote the nodes to be connected and clustered,
which enlarges the clustering coefficient and shortens the average path length, constantly
enhancing the network cohesion. However, when the 5G technology development enters
a recession period, with the network scale no longer increasing, the scale of groups formed
by nodes will also no longer expand; thus, the clustering coefficient will gradually become
stable. However, the frequency of knowledge interactions between innovation subjects is
significantly reduced, which increases the average path length of the network; therefore,
the small-world quotient exhibits a downward trend. In general, the network always has
a small-world quotient greater than 1 during its long-term evolution, which is consistent
with the research results of Zhao et al. [75] and Fang et al. [76] on the small-world quo-
tient of innovation networks, indicating that the network will always exhibit a significant
small-world characteristic.

5.4. Analysis of Self-Organizing Characteristic of Network

Timeliness and quality are important indicators for measuring the order degree of the
network structure and reflecting its self-organizing characteristic [77]. These two indicators
of the simulation network and the real network in each time window can be calculated
and their evolution trends can be drawn, as shown in Figure 11. Figure 11 indicates that
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the evolution trends of timeliness and quality of the simulation networks are consistent
with those of the real networks in the first 41 phases. Thus, we can investigate the complete
evolution of the self-organizing characteristic of the real networks by analyzing the change
processes of the above two indicators in the 80-phase simulation networks.
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From the simulation results of network timeliness, it can be seen that the indicator
decreases rapidly in the early period of 5G technology development and then decreases at
a slower rate until it gradually stabilizes after entering the recession period of 5G technology.
This is due to the small number of nodes and edges in the initial network, which makes the
average path length of the network shorter; thus, the knowledge resources can flow rapidly
between nodes, resulting in high timeliness of the initial network. However, with the
addition of new nodes and the development of R&D activities, the increases in nodes and
edges in the network rapidly break the order state of the initial network, slow down the flow
of knowledge resources, and rapidly decrease the timeliness of network structure in a short
time. Since then, due to the continuous increases in nodes and edges, knowledge flow
paths increase with a growth of the network’s hierarchy and the distances of knowledge
interactions between nodes continue to lengthen, so that the network timeliness still exhibits
a downward trend [78]; however, the rate of decline tends to slow down significantly. Until
entering the 5G technology recession period, as the network scale gradually tends to zero
growth, the timeliness of the network structure will also gradually become stable.

From the simulation results of network quality, it can be seen that the indicator in-
creases rapidly in the early period of 5G technology germination and then slowly increases
to a certain value. However, since the later period of 5G technology germination, it has
shown a trend of fluctuating downward and it will gradually become stable until entering
the recession period. This is because there are fewer hierarchies and larger spans involved
in knowledge flows in the initial network, which result in low quality of the initial network.
However, as network edges start to increase, informational divarication decreases with
a growth of the network’s hierarchy and a drop of the network’s span, which significantly
improves the accuracy of knowledge transfer, leading to the rapid increase in network qual-
ity in a short time and then maintaining a slowly rising trend [78]. However, by the later
period of 5G technology germination, the growing network scale and increasingly complex
network structure causes the knowledge flow to pass through more branches, which re-
duces the accuracy of knowledge transfer, but each node also continuously optimizes its
knowledge acquisition path in this process; thus, the quality of network structure shows
a trend of fluctuating downward. Until entering the 5G technology recession period, the
network scale and structure will gradually stabilize and the knowledge flow path no longer
changes, so the network quality, as well as the network timeliness, will gradually stabilize.
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6. Conclusions
6.1. Summary

Numerous real-world systems, such as those in nature, society, and technology, can be
modeled as networks [54,79]. To date, most network studies have concentrated on static
networks, while ignoring that many real networks undergo topological evolutions over
time [79,80]. In particular, the topological evolution of emerging technology innovation
networks, in reality, has obvious time attributes and will display temporal features with
the cyclical development of emerging technology. Driven by this observation, the ET-
TIN was constructed from a temporal network perspective, its evolution model was built
in combination with the life cycle and key attributes of emerging technology, and 5G
technology was taken as an example to simulate the cyclical evolution dynamics of 5G-TIN.
Based on the above results, we can draw the following conclusions.

By comparing and analyzing the similarities between the simulation network and the
real network in terms of various topological evolution dynamics, we verified the rationality
of the ET-TIN evolution model built in this study. This model reveals that the life cycle of
emerging technology, as well as multiple knowledge attributes based on the key attributes
of emerging technology, such as knowledge novelty, knowledge coherence, knowledge
growth, and knowledge influence, are important factors that affect the evolution process of
ET-TIN. These influencing factors will promote the macro-evolution of network topologies
by acting on the micro-behaviors of network nodes, such as joining, retaining, exiting, and
preferential attachment.

In addition, the ET-TIN evolution model proposed in this paper can effectively simu-
late the whole process of innovation network evolution during the complete life cycle of
emerging technology. By simulating the cyclical evolution dynamics of 5G-TIN, we can see
that the network nodes and edges show an S-shaped growth trend with the impact of the
cyclical development of 5G technology. Moreover, the 5G-TIN exhibits significant scale-free
and small-world characteristics, where the small-world characteristic of the network will be
constantly highlighted before the 5G technology recession, indicating a gradual improve-
ment in network cohesion. Additionally, during the self-organizing evolution of 5G-TIN,
the timeliness and quality of the network structure show a monotonous downward trend
and an upward–downward trend, respectively, indicating that the growing network scale
and increasingly complex network structure will lead to a gradual decline in the timeliness
and accuracy of knowledge transfer among network nodes.

In summary, this study has provided a more realistic framework to describe the in-
ternal mechanism and time attribute of the cyclical evolution of emerging technology
innovation network in reality, which could extend the research dimension on innova-
tion network evolution from the previous focus on single topological dynamics to the
topological–temporal dynamics containing time attributes and contribute to the existing
relevant literature from the perspective of temporal evolution. Moreover, on a practical
level, this study clarifies the whole process of the network topology evolution by simulating
the cyclical evolution dynamics of ET-TIN, based on which it can also provide theoretical
references for optimizing the network evolution path, thus accelerating the innovation
development of emerging technology.

6.2. Suggestions

Based on the cyclical evolution law of 5G-TIN summarized in this paper, we can
further propose corresponding suggestions to optimize the network structure and promote
the technology development.

First, before 5G technology enters the recession period, the network scale will con-
tinue to expand, which means that the innovation output of the network will remain at
a high level. Therefore, in reality, the R&D activities and innovation output of enterprises,
universities, and research institutions should continue to be guaranteed, so as to provide
basic technical support for the commercial application and development of 5G technology.
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Second, the network shows a significant small-world characteristic, indicating that
the local agglomeration phenomenon in the network is becoming more and more obvi-
ous. Accordingly, in reality, we should also actively strengthen the endogenous power
of innovation agglomeration among innovation subjects, strive to expand the innovation
clusters already formed in the network, and vigorously exert their potential agglomeration
effects and radiation effects, thus forming a 5G innovation development pattern from point
to area.

Third, the scale-free characteristic of the network shows that the non-equilibrium
within the network will gradually be highlighted and that there are a few core nodes
and many peripheral nodes in the network. In this regard, we should give full play to
the leading role of core innovation subjects and promote the establishment of knowledge
interactions between them and peripheral innovation subjects, so as to further explore the
unused innovation interaction space within the network.

Finally, considering that the timeliness and quality of the network structure will grad-
ually show a downward trend, the dynamic tracking and timely interchange of knowledge
resources should be realized through actively building resource-sharing platforms and in-
formation management systems, which can improve the efficiency and reduce the obstacles
of knowledge transfer, thus improving the timeliness and accuracy of knowledge transfer
within the network.

6.3. Limitations and Future Research Directions

However, this study also has some limitations that need to be improved in future
research. First, the knowledge intensity and R&D complexity of emerging technology make
knowledge interaction between innovation subjects a complex process, and by mainly
focusing on the impact of multiple knowledge attributes based on the key attributes of
emerging technology on knowledge interaction between nodes, we simplify other potential
factors, such as knowledge stickiness, knowledge transfer willingness, and knowledge
transfer channels. Therefore, further research is needed to construct the ET-TIN evolution
model containing more key factors. Second, as a complex system in reality, emerging
technology innovation is not only influenced by the endogenous mechanism discussed in
this paper, such as the nodes and edges evolution mechanism but also may be affected
by various external factors, such as R&D markets and government policies, which could
be further discussed in the future. Finally, we only used 5G technology as an example
to conduct network evolution simulation; future research on the evolution of ET-TIN
could also be carried out on the basis of multi-case analysis, which will help us to further
understand the cyclical evolution dynamics of innovation networks for different types of
emerging technologies.
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