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Abstract: Virtual manufacturing (VM) technology emerged in the 1980s as a revolutionary strategy
to optimize and streamline the entire product/service manufacturing lifecycle. However, over the
years, its popularity appears to have waned. Further, the advent of the fourth industrial revolution
(4IR) or Industry 4.0 brings with it other integrated digital technologies, including the Internet
of Things (IoT), Blockchain, and digital twin (DT), among others. DT offers functions like VM
plus other benefits, including intelligent manufacturing, to revolutionize future manufacturing
operations activities and predictive capability using real-time data. This paper employs bibliographic
metadata from publications indexed on SCOPUS to evaluate the recent trends in VM research and
develop predictive models to forecast VM’s future trajectory and relevance in 4IR. The results of
the bibliometric evaluation of VM-related scientific literature publications show a rapidly declining
research productivity and highlight an exponential decline from the mid-2000s. This period of VM
publication decline coincides with the advent of 4IR and DT technology, which are trending. The
results of the predictive analytics using the quadratic regression model created in this study to forecast
the future relevance of VM in the 4IR era suggest that VM publications show a similar conclusion.
VM research output increased until 2009 and then started decreasing exponentially. The quadratic
model implies an exponential decrease in yearly VM publications. Future works can evaluate DT and
VM research trends from the last two decades.

Keywords: digital technologies; virtual manufacturing; fourth industrial revolution; predictive
analytics; Internet of Things; digital twin

1. Introduction

Virtual manufacturing (VM) technology emerged in the 1980s as a revolutionary man-
ufacturing strategy to transform conventional production and operations [1,2]. VM is a
comprehensive, synthetic digital manufacturing environment that enhances all levels of
decision and control of a manufacturing system [3–5]. The growing demand for greater
productivity, lower production costs, and better product quality in the fiercely competitive
global market was the primary impetus for the VM initiative [4,5]. In VM, sophisticated
computer-based models, simulations, and data-driven analytics are created to optimize and
streamline the entire product/service lifecycle by incorporating components of computer-
aided design (CAD), computer-aided manufacturing (CAM), and simulation [5–7]. Various
functions are then performed to boost efficiency, sustainability, and innovation in the man-
ufacturing industry, from original product design and prototyping to process optimization,
resource planning, and quality assurance [8].

Additionally, VM encourages continual improvement by offering insightful infor-
mation about the production process, allowing businesses to quickly adjust to market
needs and keep a competitive advantage [8,9]. VM is anticipated to play an increasingly
important role in determining the future of manufacturing and industry as fourth indus-
trial revolution (4IR) technologies continue to develop [10]. Hence, VM offers significant
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benefits for product and service manufacturing throughout the entire product/service
lifecycle [10,11]. The benefits include design and prototyping through visualization with
the ability to refine techniques before committing to physical production [11]. A VM envi-
ronment proffers process optimization through simulations and modeling with the ability
to analyze different scenarios, identify bottlenecks, and fine-tune parameters to maximize
efficiency, reduce waste, and improve overall productivity [12,13]. Thus, VM aids in the
planning and management of resources effectively.

The emergence of 4IR brought with it a set of integrated technologies capable of revo-
lutionizing the manufacturing industry and other sectors of the economy. As mentioned
earlier, these integrated technologies cut across several fields, including computer tech-
nology and telecommunications, such as the Internet of Things, big data, virtual reality,
simulation, and DT [10,14]. As technology evolves rapidly, 4IR will continue to impact
different manufacturing areas in the coming years. 4IR, or Industry 4.0 (as it is also known),
is characterized by the convergence of digital, physical, and biomedical technologies,
transforming various industries and aspects of society [14]. Its key features include the
widespread use of the Internet, popularly called the Internet of Things (IoT), connecting
mobile devices for seamless communication and data exchange, and the integration of
sensors and intelligent devices into various objects and machines to collect, share, and
analyze data to enable automation, pattern recognition, and prediction capabilities [15–17].
Other characteristics of 4IR include advanced robotics and automation technologies that
transform industries by enhancing productivity and efficiency, 3D printing technology that
enables the creation of complex and customized objects, and augmented reality (AR) and
virtual reality (VR) that provide immersive and interactive experiences [7,15–17]. Embrac-
ing and harnessing its potential while addressing its challenges is essential for ensuring a
sustainable and inclusive future.

However, VM’s popularity appears to have waned with the advent of 4IR or Industry
4.0 in the mid-2000s, especially regarding VM’s research productivity. This study un-
dertakes a bibliometric analysis of VM research in the past three decades and develops
predictive models to forecast the future relevance of VM in the 4IR era. Specifically, this
study addresses the following three research objectives:

i. Evaluate the bibliometric performance of VM-related scientific literature production
(SCP) from 1983 to 2023 (RO1);

ii. Examine the thematic evolution of VM publications over the past four decades
(RO2);

iii. Predict the future research productivity and relevance of VM technology in
4IR (RO3).

RO1 involves an analysis of annual SCP and trends and citation impacts over the
period covered in this study. RO2 examines the evolution of research themes and topics
in VM technology research. For RO3, this paper employs predictive regression analysis
models using the same bibliographic metadata from SCOPUS-indexed publications to
forecast the future trajectory of VM research productivity and relevance in the era of 4IR.

The rest of the present paper is organized as follows: Section 2 presents the literature
framework relating to VM, DT, and 4IR. Section 3 addresses the materials and methods,
including the bibliometric analysis framework, data collection processes and procedures,
and analysis techniques. Section 4 presents and discusses the results. The final part,
Section 5, concludes the paper and identifies the potential future research areas.

2. Theoretical Background
2.1. Virtual Manufacturing (VM) Technology

VM involves creating a digital or computer-based environment that mimics an actual
system and simulating the different aspects of manufacturing operations and processes to
optimize and improve efficiency, quality, and productivity before actual physical production
occurs [2,5,6]. It entails the use of virtual reality or augmented reality and simulation
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technologies to model and evaluate the different components of manufacturing activities
and processes, incorporating product design, digital prototyping, and production processes.
VM also helps to ensure efficient resource utilization and quality control in manufacturing.
Furthermore, VM helps to accelerate time to market by identifying and addressing potential
issues virtually before they become costly problems in the physical world [4].

The development of VM came into existence following the emergence of allied manu-
facturing technologies, including CAD, CAM, simulation, and virtual reality (VR) [6,18].
Thus, VM integrates these technologies to present a virtual environment that enhances op-
timal product development. CAD and CAM are fundamental tools used to create detailed
digital models of products, services, components, and manufacturing processes. CAD
systems use mathematical and geometrical representations to describe the physical aspects
of products or systems. CAM generates instructions for computers and robots to develop
products. Generally, CAM converts CAD models into machine-specific and understandable
code, allowing for automation and precision in the manufacturing process [6]. Mathe-
matical models and simulations are utilized to analyze, predict, and correct the behavior
of manufacturing processes by identifying potential issues, optimizing parameters, and
evaluating different scenarios without the cost of building a physical prototype [18–23].
Today, these benefits of VM in simulating manufacturing processes are also possible in a
digital twin (DT) setting, one of the advanced technologies under 4IR [24]. 4IR is discussed
in further detail in the section below.

2.2. Fourth Industrial Revolution and Associated Technologies

The dramatic advances in computing power (hardware and software), Internet con-
nectivity, and advanced communication technologies have led to the evolution of 4IR and
associated technologies, including DT. A DT is a virtual replica of a physical manufactur-
ing system. This virtual environment captures the manufacturing complex from design
to behavior and real-time performance. Real-time monitoring, analysis, recommenda-
tion, and the physical system’s optimization are made possible using data collected from
the virtual counterpart [24]. Interaction in the virtual environment of the DT is possible
through virtual reality (VR) and augmented reality (AR) technologies. VR and AR enable
virtual walks and work through manufacturing facilities with training simulations and
visualization [14,20,23–25].

4IR is powered by various advances in mathematics and its applications in engineer-
ing, artificial intelligence (AI), data science, and other emerging fields using developments
in computer science technologies [26,27]. Unlike the previous industrial revolution, 4IR
is characterized by the convergence of data, intellectual discoveries, and technological
advances rather than material discoveries [28]. This leads to transformative changes across
industries and society. Information technology (IT) and the Internet of Things (IoT) com-
prise the reliable foundation on which 4IR lies. The rapid advancement of information
technology, including the Internet, cloud computing, and the proliferation of connected
devices, has enabled seamless communication, data sharing, and real-time connectivity
between people, machines, and systems anywhere [29]. The natural consequence is the
IoT. The analytic pillar of 4IR that fuels its running is data collection through sensors and
smart devices implanted into objects and machines exchanging data. This interconnected-
ness and collection of data allow for intelligent data-driven decision making, automation,
and optimization in various manufacturing sectors. The vast amounts of data (big data)
collected require advanced analysis due to their volume, generation velocity, and variety.
Machine learning and artificial intelligence models enable organizations to derive valuable
insights from these data and make data-driven decisions [10,17].

It appears that the period of the advent of DT and the hype that followed it corresponds
with the decline in VM research, hence the rationale for this study.
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3. Methodology
3.1. Database Survey and Data Collection

The data used in this study were obtained from surveying the SCOPUS bibliographic
database. Publications on VM are indexed on several bibliographic databases, including
SCOPUS and Web of Science (WoS), the two most popular citation databases regarding
quality and coverage [30]. We opted for SCOPUS because it holds more sources and
published documents on VM than WoS.

The SCOPUS research citation database offers options for users to search and retrieve
data using a set of ”query string” or search criteria based on predefined keywords. The
researchers developed the query (Table 1). The final data collection occurred on 31 July
2023. The survey generated 13,735 published records, which went through further filtering
and screening. The user interface offers data filtering mechanisms before data extraction.
Over 185 non-research documents (such as errata, editorials, notes, and letters to the editor)
were filtered out (Table 1).

Table 1. Literature survey and data collection process: Search and retrieval, filtering, screening, and
selection criteria of the published documents.

Activities/Focus Criteria
Data Source (s) SCOPUS Bibliographic Database search.

Search Criteria ((“virtual manufactur *”) OR (“virtual *” AND “manufactur *”)) AND PUBYEAR = ALL. The search
generated 13,375 published documents.
Documents Filtering, Screening, and Selection

Filtering Removed 185 Documents (13,375 − 185 = 13,190); Letter (2); Erratum (9); Report (10); Retracted (11);
Editorial (33); Note (50); Book (70) = 185 documents.

Screening Screened out 11,970 Irrelevant Documents as follows: Literature addressing general manufacturing but not
virtual manufacturing: 13,190 − 11,970 = 1220

Final Documents
Selection

1220 publications from SCOPUS published between 1983 and July 31, 2023 (when the final literature survey
was conducted). Documents retrieved in text formats (.txt and .csv files) for analysis.

Further data filtering and screening on SCOPUS helped to remove 11,970 irrelevant
records using subquery, which involved developing SQL queries within the initial out-
put [30]. Thus, 11,970 publications that addressed general manufacturing rather than VM
were discarded, leaving 1220 relevant publications of interest.

The filtered data were collected as a text file and exported to the chosen citation
software (the R-based Bibliometrix application was used in this study and is described
in Section 3.2.1) for processing and analysis [31]. Table 1 presents the search, filtering,
screening, and selection criteria for the published documents.

3.2. Data Analysis Techniques

The analysis of data in this study involved two main aspects. First, we performed
bibliometric performance analysis of VM-related scientific literature production during the
period covered in this study; second, we developed predictive models to forecast VM’s
future trajectory and relevance in 4IR. Both analytics techniques (Sections 3.2.1 and 3.2.2)
utilized the metadata from the published documents retrieved from the SCOPUS research
database (Table 1).

3.2.1. Bibliometric Analysis

Our bibliometric performance analysis employed quantitative techniques to evaluate
publication trends and citation impact analysis and map the thematic evolution of the VM
literature [31,32]. In carrying out the bibliometric performance analysis, this study utilized
the R-based Bibliometrix, a freely available open-source software application embedded in
the R-Studio environment [33,34].
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3.2.2. Regression Analysis

This part of the study employed descriptive analysis to explain the data used and
various cross-sectional regression research designs to forecast VM’s publication trend. The
dependent variable was the number of total published articles. We used different transfor-
mations of the years of publication of VM papers. These included the log transformation
and the squared transformation. Descriptive statistics presented the summary of the distri-
bution of the independent variable (year). In this section, we describe our development of
a predictive model used to forecast the future trajectory of VM given the availability of DT
technology, which performs similar functions. The data featured in this part of the analysis
were processed, transformed, analyzed, and presented using Microsoft Excel software and
the R-based statistical package [35].

Linear regression models were developed to analyze the annual publication (tp)
trend as the dependent variable. There were two linear independent variables (year and
other transformation and normalization of years of publication). Since this study aimed
to forecast publication trends, the total number of publications (Y) was chosen as the
dependent variable. In contrast, the year of publication and/or transformations of the
year of publication variables were the independent variables (X). In general, the linear
regression models had the form of Equation (1):

yi = α+
p

∑
j=1

βjxij + εi, i = 1, . . . , n, (1)

where yi is the dependent variable (number of total publications, tp), “xj” is a vector of the
predictors or independent variables, “p” is the number of predictors, “α” is the intercept,
“βj” represents the regression coefficients to be estimated, “εi” is the standard error of
estimate assumed to be normally distributed, and n is the sample size. The predictions can
be obtained using Equation (2).

ŷi = α̂+
p

∑
j=1

β̂jxij, i = 1, . . . , n, (2)

where the hats represent the estimated value. Replacing the values of the predictor variables
xij returns the fitted or predicted values of yi. To forecast the future total publications, we
used the same fitted value of future years. However, we distinguished between the ex ante
and ex post forecasts. Ex -ante forecasts used only the parameters obtained using available
past and present data and information. For example, ex ante forecasts for future years of
annual publications used the parameters obtained using only the observations obtained
from SCOPUS discussed in Section 3.1. Although we obtained data for the period 1983 to
2023, we used whole-year data from 1990 to 2022 for the predictive analysis for two reasons:
first, the annual publications (tp) for the period (1983–1989) were near zero; second, the
2023 data comprised a half year (January to 31 July 2023). The ex post forecasts were made
using an updated model of new forecast observations.

In R software, multiple linear regression can be implemented using the “lm()” func-
tion [5]. The estimation result output provides, in addition to the estimated parameter
coefficients with their confidence measures, the adjusted R2 and residual standard error.
Three linear models and one quadratic model were used in this study (Table 2).

The performance of the six models SLR1, SLR2, SLR3, SLR4, and QR in predicting the
total number of published VM articles was assessed using several measures including the
residual standard error, R-squared, and adjusted R-squared.



Systems 2023, 11, 524 6 of 17

Table 2. Formulated regression models.

Model Independent Variables Formula

Simple linear regression 1 (SLR1) year total publication = α+ β year
Simple linear regression 2 (SLR2) Log(year) total publication = α+ β log (year)
Simple linear regression 3 (SLR3) year2 total publication = α+ β year2

Quadratic regression (QR) year2, year total publication = α+β1 year+β2 year2

4. Analysis of Results and Discussion
4.1. Summary of Results

The data came from publications retrieved from SCOPUS covering the period from
1983 to 2023 (31 July). As explained earlier, the 1220 screened and selected documents
were downloaded as metadata in text format and exported to ”Bibliometrix”, an R-based
software application, Microsoft Excel, and R-statistics for analyses and visualization. The
documents were published in 559 sources and authored/co-authored by 2735 researchers.
Table 3 presents a data summary.

Table 3. Summary of metadata of VM-related scientific literature publications.

Description Results Description Results

Years of Publications 1983–2023 Other Documents Info:

Sources 559 Document Average Age (Years) * 14.4

Document Information: * Publications in 2023: As of July 31.

Total Publications: Journal article: 466 (38%); Conference papers: 742 (61%); Book chapters: 12 (1%).

Annual Publications growth rate % 7.78 Authors and Collaboration:

Average citations per document 9.82 Authors 2735

Total references 19,250 Authors of single-authored document 135

Documents Contents: Single-authored documents 151

Keywords Plus (ID) 6210 Co-Authors per document 3.05

Author’s Keywords (DE) 2524 International co-authorships percentage 13.44

4.2. Performance Bibliometric Analysis

This section presents a performance bibliometric evaluation relating to the scientific
literature publication trend and the citation impact analysis, which helps to address the
first research objective (RO1).

4.2.1. Scientific Literature Production Trend

The first part of the performance bibliometric analysis examines the publication
trend of VM literature production covering the investigated period (1983–2023). The
time frame signals the evolution of VM up until the present. The metadata extracted from
the published documents consisted of journal articles (466 or 38%), conference proceedings
(742 or 61%), and book chapters (12 or 1%). Thus, most published documents were confer-
ence proceedings. The trend spanned nearly all years comprising the four decades of VM
research with few exceptions, which occurred in 1993, 2006, 2017, and 2019 (Figure 1). The
annual scientific literature production (SCP) was moderate, with an SCP growth rate of
7.78% (Table 3) and a yearly average of 30, the highest number of publications occurring
in 2011, with a total of 68 publications, namely 18 journal articles, 4 book chapters, and
46 conference proceedings (Figure 2). The trend also shows that VM’s SCP maximum
occurred a decade ago when 4IR started gaining momentum [36]. After this year, the
annual total publications on VM declined continuously until the present (Figure 1).
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4.2.2. Citation Impact Analysis of Publications

The summary of the bibliometric analysis results shows an average number of citations
of 9.82 per document and a total of 11,977 over the forty years of VM research (Table 3).
The result was generated using the R-based Bibliometrix application. Figure 2 shows the
relationship between total publications and annual citations. The results show that VM
publications earned the highest single-year citation impact of 1049 in 2003 while achieving
the highest yearly publication count of 61 with a cumulative total of 377 publications, the
highest indices since VM’s inception. Thus, 2003 remains the most impactful year regarding
earned citations throughout VM research history to date.

Despite subsequent increases in the cumulative total of annual publications each year,
the citation impact of VM literature nosedived significantly in 2004 and by 45% in 2019.
However, the years following the evolution of 4IR [36] saw some signs of weak recovery
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between 2010 and 2012 and a momentary upward movement in 2015; publications’ citation
impact grew weaker, returning to the equivalent of that of VM’s early years (e.g., 1998 level)
when VM technology evolved (Figure 2). Considering that the decline in VM’s relevance
coincides with the evolution of Industry 4.0, one can speculate that the development of
DT technology, which coincides with 4IR (Industry 4.0) and performs similar functions,
accounts for the decline in VM’s relevance.

4.2.3. Citation Structure of VM Literature

This section also analyzes the citation structure of VM publications. Table 4 presents
the citation structure of VM literature. The results show that about 67.1% (819) of published
documents earned one or more citations, while 32.9% received none. The 401 non-cited
publications spanned four decades, including those with long citable years published in
the 1990s and recent ones published between 2020–2023.

Table 4. Citation structure of VM publications.

Citation Classification NP NP% Citations Citation%
401+ 1 0.08% 409 3%

301–400 1 0.08% 378 3%
201–300 2 0.16% 454 4%
101–200 12 1.00% 1602 13%
51–100 40 3.28% 2843 24%
11–50 191 15.66% 4255 36%
1–10 572 46.89% 2036 17%

No Citation 401 32.90% - -
NP: Number of Publications

Further, about 46.89% of the cited publications earned between 1 and 10 citations,
while 15.66% of documents received more than 10 but less than 51. Less than 5% earned
51 or more citations. Most VM literature was cited in the earlier years of VM’s launch
(Figure 2; Table 4), especially between 1991 and 2003, while the later years experienced a
continuous decline in earned citations from 2004 to the present. Further analysis showed
that about 32.9% (401) of the publications received no citations. The table below shows the
complete classification and citation structure.

The number of citations reported above is based on SCOPUS bibliographic data. The
Google Scholar (scholar.google.com) citation count can be more than records on SCOPUS.
For example, [37] earned 409 citations as of July 31, 2023, based on SCOPUS data, but over
700 citations on Google Scholar.

4.2.4. Document Citation Impact Analysis

The results of the citation structure showed that 819 (67.1%) of the 1220 publica-
tions surveyed in this study earned at least one citation in the past 40 years (1983–2023).
The results generated from the R-based Bibliometrix application [33] highlight the top
15 most cited publications, areas of focus, total citations (TC), average citations per year,
and normalized TC. The top fifteen publications earned at least 100 citations (TC ≥ 100).
Further analysis showed that all published documents were journal articles except for one
conference paper. The top cited areas of research focus in VM include “virtual reality,”
“manufacturing processes,” “intelligent manufacturing,” “virtual prototyping,” “manufac-
turing simulation,” “computer-aided concurrent design,” and “additive manufacturing
processes” [19–23,37,38]. Table 5 displays the complete list.
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Table 5. Most cited publications and themes.

Reference Area of Focus Sources Published Total Citations
(SCOPUS) TC per Year Normalized TC

[37] Virtual assembly and
virtual reality Computer-aided Design 409 15.15 12.97

[20] Virtual reality application in
manufacturing processes

Journal of materials
processing technology 378 18.9 19.87

[19] Virtual prototyping J. Comput. Inf. Sci. Eng 239 10.86 15.84

[21] Simulation and computer-aided
concurrent design Engineering Computations 215 6.72 6.66

[22] Virtual reality applications in
manufacturing industries Concurrent Engineering 191 21.22 11.85

[23] Intelligent Manufacturing Intl. Journal of Production
Research 173 6.92 9.9

[38] Additive manufacturing
processes

J. of manufacturing science &
Engineering 145 14.5 20.23

[39] VR-enhanced CAD design IEEE Trans on Robotics &
Automation 138 5.52 7.9

[40] Agile manufacturing Computers & Industrial
Engineering 131 4.68 10.61

[18] VM system and factory models CIRP Annals 121 3.9 2.39

[41] Virtual machine tools
Robotics and

computer-integrated
manufacturing

118 9.08 19.86

[42] Modular production systems Journal of intelligent
manufacturing 116 4.3 3.68

[43] Production planning Eng. Applications of Artificial
Intelligence 106 5.05 6.18

[24] Smart manufacturing Intl. J. of Computer Integrated
Manufacturing 102 25.5 13.3

[44] Ergonomics simulations of
manual assembly

Intl. Journal of Industrial
Ergonomics 101 6.73 16.16

4.3. Thematic Evolution of Virtual Manufacturing Literature (1983–2023)

The second research objective (RO2) examines the evolution of VM research themes
over the past forty years. The purpose is to identify the transformation in research focus
during the period. Text analytics of author keywords and science mapping using the
R-based Bibliometrix application highlight the trending themes in each segmented period
(Figure 3).

The trend analysis highlights the origin and evolution of dominant VM research
themes in three strata (1983–2003; 2004–2013; 2014–2023). The first segment covers the
initial twenty years (1983–2003) of VM research. During this period, the total number of
VM publications was 377, hence the rationale for grouping the first two decades. The next
decade (2004–2013) accumulated 486 publications, and 2014–2023 had 357 publications per
the cumulative total publication trend (Figure 2).

Some of the vital research themes in the first segment other than VM include “cel-
lular manufacturing [45,46],” “digital factory [47],” “simulation [3,45],” “manufacturing
systems [3,45],” “virtual machine tools [48],” “CAD/CAM [6,11],” and “virtual prototyp-
ing [47].” In addition to the themes covered in the first segment, new themes addressed in
the second period include “3D simulation [49–51],” “production planning [43,52],” “aug-
mented reality [53],” and “e-manufacturing [54].” Some new themes evolved in the third
segment, including “virtual enterprise [55,56],” “digital design [57],” and “digital manufac-
turing [58].” The result shows the growth and continuous addition of new VM research
terminologies that point to new digital technologies toward improving product and service
manufacturing.

VM plays a significant role in 4IR by leveraging innovative and advanced digital
technologies capable of transforming manufacturing processes [2,8]. As shown in Figure 3,
during 2014–2023, which corresponds to the period of 4IR, we witnessed emerging concepts
such as e-manufacturing, virtual machinery, and virtual enterprise [55,56]. E-manufacturing
(electronic manufacturing) uses advanced digital technologies to optimize and streamline
manufacturing processes. It integrates information technology, automation, data analytics,
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and connectivity to enhance manufacturing operations’ efficiency, flexibility, and produc-
tivity [54]. These digital technologies have revolutionized the manufacturing industry by
improving efficiency, reducing waste, and enabling greater agility in response to changing
market demands and other conditions. It empowers manufacturers to produce high-quality
products at a lower cost while adapting to evolving technologies and customer preferences.
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Figure 3. Thematic evolution of virtual manufacturing (1983 to 2023).

Virtual machinery simulates and mimics physical machinery, processes, or systems in
a virtual or digital environment [41]. It involves using computer software and models to
replicate real-world machinery’s behavior, functionality, and characteristics without the
need for physical hardware. Overall, virtual machinery is a valuable tool in modern engi-
neering and industry, allowing for the efficient development, operation, and maintenance
of complex machinery and systems in a digital environment [41,55].

A virtual enterprise, also known as a virtual organization or networked enterprise, is a
business model or organizational structure in which various geographically dispersed and
independent entities collaborate and work together to achieve common goals, such as the
delivery of products or services [55,59]. Usually, advanced information and communication
technologies, including wireless networks, are tools that enhance business interconnect-
edness in a globalized world. Business objectives include leveraging technology and
collaboration to lower costs and create value costs [56,59]. The use of these technologies
has increased since the 4IR era and accelerated during the global health pandemic when
virtual technologies became more pervasive [59,60].

4.4. Predictive Analysis of Future Trajectory of Virtual Manufacturing
4.4.1. Regression Analysis

This section attempts to predict the future trajectory of VM research productivity,
which helps to address the third research objective (RO3).

Table 6 presents descriptive statistics of the selected VM publications. The average
number of publications obtained is 36, with a standard deviation of 17 and a variance of
299. Hence, there is a significant variation in the total number of yearly VM publications,
with a minimum of 1 and a maximum of 68 a year. The discrepancy between the mean
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and the variance suggests that the Poisson regression (PR) model is not the best fit since
the mean and the variance are unequal. The minimum annual number of publications
occurred in 1990, while the maximum was recorded in 2012. Since then, the number of VM
publications has continued to decrease (Figures 1 and 2).

Table 6. Descriptive statistics of the number of VM publications.

N MEAN SD Median TRIM MEAN MAD MIN MAX RANGE SKEW Kurtosis SE

33 36.27 17.3 36 36.78 14.83 1 68 67 −0.25 −0.54 3.01

Figure 4 shows the scatter plot of the number of VM publications as a function of
the year of publication. In addition, to evaluate the trend, a linear curve (in red) and a
quadratic curve (in blue) have been added to the scatter plot. Visually, the quadratic curve
fits the data best. This is analyzed further in Section 4.4.2.
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4.4.2. Predictive Models

This section presents the computational results of the regression analysis methodology.
The results are obtained from statistical computation in R to produce parameter coefficients
and slope, including R2 and RSE, as well as the performance of prediction models. The
predictive models are utilized to forecast VM’s future publication trajectory.

This study used five predictive models to describe the relationship between the passing
years and the number of VM publications. Table 7 highlights the estimated coefficients
in the equation and the predictive models. The p-values of all the models are statistically
significant (p < 0.005). This ascertains that all the year of publication are significant in
describing the number of publications. However, the models’ R2 and adjusted R2, which
indicate that the percentage of variability in the number of VM publications explained by
the year of publication, vary substantially with the quadratic regression model, explaining a
staggering 72% of the variation. Also, the fitted curves of the models shown in Figure 5a–d
show that only the quadratic model has a good fit. These results showed that the number
of VM publications increased from 1990 to 2012 and, since then, has started decreasing
substantially. For the QR, the number of VM publications is significantly and highly
influenced by the year of publication. In this regard, the quadratic model is used to forecast
the future number of VM publications.
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Table 7. Model estimations and test scores.

Model Formula p-Value RSE R2 Adj R2

SLR1 tp = −1883 + 0.96 year 01.34 × 10−3 14.86 0.29 0.26
SLR2 tp = −14, 603 + 4433 log (year) 01.30 × 10−3 14.84 0.29 0.26
SLR3 tp = −921 + 0.00024 year2 01.40 × 10−3 14.87 0.28 0.26
QR tp = −5.68 × 105 + 5.66 × 102 year− 0.141 year2 0.00 9.23 0.73 0.72
PR tp = e−50.06 + 0.027 year 0.00 8.02 0.35 0.33
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The quadratic regression model is used to produce the equation of the parabola that
best fits the dataset. The model obtained is given below.

tp = −568, 081.25 + 565.48 year − 0.14 year2 (3)

The least-squares estimates of the quadratic model are tabulated in Table 8. As
observed in the table, all the coefficients are significant with 99% confidence. As expected,
the quadratic term contributes negatively while the linear term contributes positively. The
ANOVA table in Table 9 shows that the model is significant with a critical F value of 41.23,
greater than the significant F value of 2.4652 × 10−9.

Table 8. Coefficient estimates, test score, and confidence interval of the Quadratic model (QR).

Coefficients Std Error t Stat p-value Lower 95% Upper 95%

Intercept −568,081.25 79,845.01 −7.12 6.51 × 10−8 −731,146.51 −405,015.98
year 565.48 79.61 7.10 6.71 × 10−8 402.89 728.05
year2 −0.14 0.02 −7.09 6.93 × 10−8 −0.18 −0.10



Systems 2023, 11, 524 13 of 17

Table 9. Quadratic model’s ANOVA Table.

df SS MS F Significant F

Regression 2 7026.29 3513.14 41.23 2.4652 × 10−9

Residual 30 2556.26 85.21
Total 32 9582.55

Even though quadratic regression is a type of multiple linear regression, the individual
coefficients have no direct underlying prediction power since there is a strong correlation
between Year and Year2 (correlation = 0.9999978). Hence, the whole fitted regression is
used as a predictor. The multiple R2 values obtained show that the whole model explains
86% of the variation in the total number of publications and the adjusted R2 of 72%.

The regression analysis performed in this paper aims to predict the future research
productivity and relevance of the VM in 4IR. As a proxy, we used the number of VM
publications in the context that increasing research productivity (the number of published
documents) implies increased relevance. Predictive analytics using regression models have
been used primarily to explain the supposed relationship between predictor variables
and an outcome variable. However, in addition to the goal to understand and explain
the relationship, with the availability of massive data, regression is now widely used to
predict outcomes; thus, we use it as a predictive model. In this case, the item of interest
is represented by fitted values rather than the estimated coefficient. A helpful metric that
explains and measures the usefulness of the model is R2. Of the five models we ran, the
quadratic model (QR) has the highest R2 and, therefore, explains and predicts the relations
between the future and the number of publications better. The quadratic model used to
forecast the future number of publications shows that with a unit increase in time (one year),
there is a −0.14 × year + 565.48 unit change in the number of publications. This model
captures the nonlinear relationships between the number of publications and time, as seen
in Figure 4. Table 4 shows that both the coefficients of the linear and quadratic terms are
significant at 99%.

The overall relationship between the number of VM publications and the year is
quadratic and well captured by the quadratic regression model and associated curve
(Figure 5a–d). The large standard deviation is due to the highly volatile data observed. It
is worth noting that because of the relatively lengthy period of one year, this prediction
is impacted by scalability. However, we point out that there is an exponential decrease in
the production of VM papers in the literature, indicating the potential of VM concepts now
being captured in the DT literature.

The decline in VM research productivity and relevance corresponds to the introduction
of DT, a 4IR technology and framework more potent in capturing the complexities of the real-
world manufacturing environment. DT creates a more accurate and realistic representation
of processes, allowing for better analysis and decision making. Moreover, because DT
enables real-time monitoring of physical systems and processes by integrating sensors
and data from the physical world with their digital counterparts, this capability allows
for better control, optimization, and responsiveness in manufacturing operations. Also,
DT can predict when equipment or machinery is likely to fail based on real-time data and
historical patterns.

The decline in VM research will have academic and industry-level impacts on the field
of manufacturing in several ways. First, academia can benefit by exploring opportunities
for interdisciplinary research in DT and 4IR and developing new academic programs
leading to discoveries and collaboration with industry. Further, this development can lead
to new curricula and courses related to the new manufacturing paradigm.

5. Conclusions

This study has examined a performance bibliometric analysis of VM and predicted its
future research productivity and impact in the 4IR era amidst the hype and popularity of
DT technology, which is currently trending and tends to perform similar functions as VM.
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The results reveal the growth and impacts of VM in the early years (1983–2009). However,
in the subsequent years following the advent of DT, a replica technology like VM that was
introduced alongside 4IR (Industry 4.0) around 2010 [36], coincides with the drastic and
continuous decline in VM research productivity and impacts.

Further, the quadratic regression model provided valuable insights into the rela-
tionship between the year and the number of VM publications. The decreasing trend
and the potential nonlinear behavior have been captured by considering both linear and
quadratic terms. A comparative graphical representation of the various linear models and
the quadratic regression curve further clarified the need for the quadratic component to
explain the curvature in the relationship, demonstrating how the model effectively predicts
the continuous decline in VM research and relevance in the 4IR era. It implies that DT now
captures VM concepts; thus, VM faces the danger of becoming an irrelevant technology
in Industry 4.0. It is essential to acknowledge the limitations of the quadratic regression
model. While it captures nonlinear patterns, it might not be the best fit as more data will
require new models. However, the quadratic regression model has proven to be valuable
in uncovering the complex matters studied in this paper. Its ability to account for nonlinear
effects enriches our understanding of data, offering a comprehensive perspective beyond
traditional linear models.

This paper provides several guiding points to the VM research community and DT
and 4IR or Industry 4.0 practitioners. Technological trends and developments in 4IR
are evolving, while emerging technologies like DT significantly enhance manufacturing
operations. Therefore, we call for openness and adaptation to newer technologies. There is
a need for long-term strategic planning or decision making towards achieving business
strategies. Companies must stay current with technological shifts to remain relevant and
competitive in the globalized world.

Decision makers in the industry should consider investing in new manufacturing
technology research and implementation of virtual enterprise technologies as a strategic
imperative [55,61]. As new technologies rely heavily on data integration and IoT devices,
organizations should prioritize data security and implement robust cybersecurity measures
to protect sensitive information [62,63]. Both academia and industry should encourage
interdisciplinary collaboration to fully realize the potential of integrative technologies
across multiple disciplines in engineering, data science, AI, and business to drive innova-
tion [8,61]. Companies can continue to leverage technology to enhance sustainability by
optimizing resource usage, reducing energy consumption, and minimizing waste to meet
environmental goals [64,65].

We aim to provoke intellectual discourse on restructuring and repositioning VM tech-
nology to remain relevant in the 4IR era. Future studies intend to undertake a comparative
analysis of DT and VM performance bibliometric analyses.
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