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Abstract: Artificial intelligence (AI) has significantly impacted thyroid cancer diagnosis in recent
years, offering advanced tools and methodologies that promise to revolutionize patient outcomes.
This review provides an exhaustive overview of the contemporary frameworks employed in the
field, focusing on the objective of AI-driven analysis and dissecting methodologies across supervised,
unsupervised, and ensemble learning. Specifically, we delve into techniques such as deep learning,
artificial neural networks, traditional classification, and probabilistic models (PMs) under supervised
learning. With its prowess in clustering and dimensionality reduction, unsupervised learning (USL)
is explored alongside ensemble methods, including bagging and potent boosting algorithms. The
thyroid cancer datasets (TCDs) are integral to our discussion, shedding light on vital features and
elucidating feature selection and extraction techniques critical for AI-driven diagnostic systems.
We lay out the standard assessment criteria across classification, regression, statistical, computer
vision, and ranking metrics, punctuating the discourse with a real-world example of thyroid cancer
detection using AI. Additionally, this study culminates in a critical analysis, elucidating current
limitations and delineating the path forward by highlighting open challenges and prospective
research avenues. Through this comprehensive exploration, we aim to offer readers a panoramic
view of AI’s transformative role in thyroid cancer diagnosis, underscoring its potential and pointing
toward an optimistic future.

Keywords: thyroid carcinoma detection; thyroid cancer segmentation; machine learning; deep learning;
convolutional neural networks

1. Introduction
1.1. Background

The adoption of AI in healthcare has become a pivotal development, profoundly
reshaping the landscape of medical diagnosis, treatment, and patient care. AI’s exceptional
capabilities, including pattern recognition, predictive analytics, and decision-making skills,
enable the development of systems that can analyze complex medical data at a scale and
precision beyond human capacity [1]. This, in turn, augments early disease detection,
facilitates accurate diagnoses, and aids personalized treatment planning. Moreover, AI-
driven predictive models can forecast disease outbreaks, enhance the efficiency of hospital
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operations, and significantly improve patient outcomes [2]. Additionally, AI has the
potential to democratize healthcare by bridging the gap between rural and urban health
services and making high-quality care more accessible. Hence, the importance of AI in
healthcare is profound and will continue to grow as technology advances, leading to
more sophisticated applications and better health outcomes for patients worldwide [3,4].
However, the trust serves as a mediator, influencing the impact of AI-specific factors on
user acceptance. Researchers have investigated how security, risk, and trust impact the
adoption of AI-powered assistance [5]. They have conducted empirical tests on their
proposed research framework and found that trust plays a pivotal role in determining
user acceptance.

Cancer, a leading cause of death, affects various body parts, as depicted in Figure 1a.
Among different types, thyroid carcinoma is one of the most common endocrine cancers
globally [6,7]. Concerns are mounting over the escalating incidence of thyroid cancer and
associated mortality. Research indicates that thyroid cancer incidence is higher in women
aged 15–49 (ranked fifth globally) than in men aged 50–69 years [8–10].
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Figure 1. (a) Some of the common types of cancer and (b) thyroid cancer detection methods.

According to existing global epidemiological data, the rapid growth of abnormal thy-
roid nodules is driven by an accelerated increase in genetic cell activity, where the normal
functioning and activity of cells in an organism are heightened or intensified. This condition
can be categorized into four primary subtypes: papillary carcinoma (PTC) [11], follicular
thyroid carcinoma (FTC) [12], anaplastic thyroid carcinoma (ATC) [13], and medullary thy-
roid carcinoma (MTC) [14]. Influential factors such as high radiation exposure, Hashimoto’s
thyroiditis, psychological and genetic predispositions, and advancements in detection
technology can contribute to the onset of these cancer types. These conditions might subse-
quently lead to chronic health issues, including diabetes, irregular heart rhythms, and blood
pressure fluctuations [15–17]. Although the quantity of cancer cells is a significant indicator
for assessing both invasiveness and poor prognosis in thyroid carcinoma, obtaining results
is often time-consuming due to the requirement to observe cell appearance. Therefore,
the detection and quantification of cell nuclei are considered alternative biomarkers for
assessing cancer cell proliferation.
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The utilization of computer-aided diagnosis (CAD) systems for analyzing thyroid cancer
images has seen a significant increase in popularity in recent years. These systems, renowned
for enhancing diagnostic accuracy and reducing interpretation time, have become an invalu-
able tool in the field. Among these technologies, radionics, when used in conjunction with
ultrasonography imaging, has become widely accepted as a cost-effective, safe, simple, and
practical diagnostic method in clinical practice. Endocrinologists frequently conduct US scans
in the 7–15 MHz range to identify thyroid cancer and evaluate its anatomical characteristics.
The American College of Radiology has formulated a Thyroid Imaging, Reporting, and Data
System (TI-RADS) that classifies thyroid nodules into six categories based on attributes such
as composition, echogenicity, shape, size, margins, and echogenic foci. These classifications
range from normal (Thyroid Imaging, Reporting, and Data System (TIRADS)-1) to malignant
(TIRADS-6) [18–20]. Several open-source applications are available for assessing these thyroid
cancer features [21,22]. However, the identification and differentiation of nodules continue to
present a challenge, largely reliant on radiologists’ personal experience and cognitive abilities.
This is due to the subjective nature of human eye-based image recognition, the poor quality of
captured images, and the similarities among US images of benign thyroid nodules, malignant
thyroid nodules, and lymph nodes.

Moreover, ultrasonography imaging is often a time-intensive and stressful procedure,
which can result in inaccurate diagnoses. Misclassifications among normal, benign, malig-
nant, and indeterminate cases are typical [23–28]. A fine-needle aspiration biopsy (FNAB) is
typically conducted for a more precise diagnosis. However, FNAB can be an uncomfortable
experience for patients, and a specialist’s lack of knowledge can potentially convert benign
nodules into malignant ones, not to mention the additional financial burden [29,30] (refer
to Figure 1b). Selecting their characteristics is the primary challenge in distinguishing
between benign and malignant nodules. Numerous studies have explored the characteri-
zation of conventional US imaging for various types of cancers, including retina [31,32],
breast cancer [33–37], blood cancer [38,39], and thyroid cancer [40,41]. However, these
methods remain insufficiently accurate for the reliable classification of thyroid nodules.

The incorporation of AI technology plays a pivotal role in reducing subjectivity and
enhancing the accuracy of pathological diagnoses for various intractable diseases, includ-
ing those affecting the thyroid gland [42,43]. This enhancement is achieved through an
improved interpretation of ultrasonography images and faster processing times. Machine
learning (ML) and deep learning (DL) have surfaced as potential solutions for automating
the classification of thyroid nodules in applications such as US, fine-needle aspiration (FNA),
and thyroid surgery [44,45]. This potential has been underscored in numerous studies, such
as [43,46–50]. Furthermore, there are ongoing studies examining the use of this innovative
technology for cancer detection, where its effectiveness hinges on the volume of data and
the precision of the classification process.

The motivation to write a review on “AI in thyroid cancer diagnosis” stems from the
increasing prevalence of thyroid cancer, a significant endocrine malignancy where early
and accurate detection is pivotal for patient outcomes. As technological advancements in
AI and machine learning burgeon, their integration into medical diagnostics—spanning
imaging, pathology, and genomics—offers potential improvements in detection accuracy
and efficiency. Traditional thyroid carcinoma diagnostic methods, such as fine-needle
aspiration biopsies, sometimes present inconclusive results; AI promises less-invasive
alternatives with possibly superior precision. This review amalgamates insights from the
intersection of computer science, radiology, pathology, and endocrinology, propelling mul-
tidisciplinary collaboration. It also spotlights AI’s clinical implications, guiding clinicians
in leveraging its capabilities for patient care, while delineating future research directions.
Furthermore, this review underscores the economic and healthcare benefits, from cost
savings to reduced waiting times. At the same time, it is imperative to address AI’s inher-
ent challenges, including data privacy and ethical considerations, ensuring its balanced
integration into healthcare. In essence, the review offers a comprehensive panorama of AI’s
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current and potential role in thyroid carcinoma detection, benefiting both researchers and
medical practitioners.

1.2. Our Contribution

This review provides a comprehensive examination of the application of AI methods in
detecting thyroid cancer. The objective of AI-based analysis in the medical field is increas-
ingly shifting towards enhancing diagnostic accuracy, and this review aims to illustrate this
trend, particularly in thyroid cancer detection. We first provide an overview of the existing
frameworks and delve into the specifics of various AI techniques. These include supervised
learning methods, such as DL, artificial neural networks, traditional classification, and PMs,
as well as USL methods, such as clustering and dimensionality reduction. We also explore
ensemble methods, including bagging and boosting. Recognizing the importance of quality
datasets in AI applications, we scrutinize several TCDs, addressing their features, as well
as feature selection and extraction methods used in various studies. We then outline the
standard assessment criteria used to evaluate the performance of AI-based thyroid cancer
detection methods. These range from classification and regression metrics to statistical metrics,
machine vision metrics, and ranking metrics. Finally, we discuss future research directions,
emphasizing areas that require more attention to overcome existing barriers and improve
the use and deployment of thyroid cancer detection solutions. In conclusion, we underscore
the potential of AI in advancing thyroid cancer detection while also noting the need for a
continuous critical evaluation to ensure its responsible and effective use.
Accordingly, the principal contributions of our paper are as follows:

• An overview of existing frameworks and specifics of various AI techniques, including
supervised learning (DL, artificial neural networks, traditional classification, and PMs)
and USL (clustering and dimensionality reduction) methods, as well as ensemble
methods (bagging and boosting).

• An examination of multiple TCDs, exploring the characteristics of these datasets,
as well as the methods employed for selecting and extracting features in different
research studies.

• An outline of standard assessment criteria used to evaluate the performance of AI-
based thyroid cancer detection methods, encompassing classification and regression
metrics, statistical metrics, computer vision metrics, and ranking metrics.

• A critical analysis and discussion highlighting limitations, hurdles, current trends,
and open challenges in the field.

• A discussion of future research directions, emphasizing areas requiring more attention
to overcome existing barriers and improve thyroid cancer detection solutions.

• An emphasis on the potential of AI in advancing thyroid cancer detection while
advocating a continuous critical evaluation for responsible and effective use.

Additionally, the principal contributions of the proposed review compared to other existing
surveys are summarized in Table 1.

Table 1. The significant contributions of the proposed review on thyroid cancer classification in
comparison with other related studies.

Ref Year PPY TCDS AIA
Open Challenges Future Directions

TCDA RDLA PP XAI EFC-AI RL PS IoMIT RS

[51] 2021 3 3 7 7 7 7 7 7 7 7 7 7
[52] 2021 3 3 7 7 7 7 7 7 7 7 7 7
[53] 2021 3 3 7 7 7 7 7 7 7 7 7 7
[54] 2021 3 3 7 7 7 7 7 7 7 7 7 7
[55] 2021 3 3 7 7 7 7 7 7 7 7 7 7
[56] 2022 3 3 7 7 7 7 7 7 7 7 7 7
[57] 2022 3 3 7 7 7 7 7 7 7 7 7 7
[58] 2022 3 3 7 7 7 7 7 7 7 7 7 7
[59] 2022 3 3 7 7 7 7 7 7 7 7 7 7
Ours - 3 3 3 3 3 3 3 3 3 3 3 3

Abbreviations: edge, fog, and cloud networks based on AI (EFC-AI).
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1.3. Road Map

The rest of this paper is organized as follows. Section 2 follows, providing an overview
of existing frameworks utilized in this field, and discussing their respective advantages
and limitations. Section 3 presents various TCDs used in AI-based analyses, explaining
their relevance and uniqueness. In Section 4, the paper delves into the vital aspect of
“Features”, discussing feature extraction and selection methods in AI models used for
thyroid cancer detection. Section 5 outlines the standard assessment criteria used to
evaluate the performance of these models. An actual instance of AI-based thyroid cancer
detection is presented in Section 6 to provide a real-world context to the theoretical aspects
discussed earlier. The paper then proceeds to a critical analysis and discussion in Section 7,
where challenges, limitations, and areas for improvement in the current approaches are
discussed. In Section 8, potential future research directions are proposed, highlighting areas
where further exploration and innovation can lead to advancements in AI-based thyroid
cancer detection. The paper concludes with Section 9, summarizing the main findings and
discussions, thereby providing a comprehensive conclusion to the discussions presented in
the earlier sections.

2. Overview of Existing Frameworks

This section showcases the various AI-based methods utilized for diagnosing thyroid
gland (TG) cancers. In the illustration, Figure 2 presents a proposed categorization of the
thyroid cancer diagnosis techniques relying on AI.
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Figure 2. Taxonomy of the thyroid cancer detection schemes based in AI.

2.1. Objective of AI-Based Analysis (O)

This article focuses on the application of AI in thyroid cancer detection. In order to
better understand the purpose behind each framework, it is crucial to identify the objective
of each approach.
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O1. Classification: Thyroid carcinoma classification refers to the categorization of thyroid
cancers based on their histopathological features, clinical behavior, and prognosis. There
are several types of thyroid carcinomas, each of which has distinct characteristics. The
primary categories include: (i) PTC: The most common type, accounting for about 80% of
all thyroid cancers. PTC tends to grow very slowly, but it often spreads to lymph nodes
in the neck. Despite this, it is usually curable with treatment; (ii) FTC: the second most
common type, FTC can invade blood vessels and spread to distant parts of the body, but
it is less likely to spread to lymph nodes; (iii) MTC: This type of thyroid cancer starts in
the thyroid’s parafollicular cells, also called C cells, which produce the hormone calcitonin.
Elevated levels of calcitonin in the blood can indicate MTC; (iv) ATC: A very aggressive
and rare form of thyroid cancer, ATC often spreads quickly to other parts of the neck and
body. It is difficult to treat.

The classification of thyroid carcinomas is crucial in determining the most effective
course of treatment for each patient. Various factors such as tumor size, location, and the
patient’s age and overall health are also taken into consideration when forming a treatment
plan. Advances in AI and machine learning are helping to automate and improve the accu-
racy of thyroid carcinoma classification, with many models trained to classify tumors based
on medical images or genetic data. Liu et al. [60] report on incorporating a support vector
machine (SVM) for cancer detection. Similarly, Zhang et al. [61,62] propose deep neural
network (DNN)-based strategies for segregating and categorizing benign and malignant
thyroid nodules in ultrasound imagery. Furthermore, the bidirectional LSTM (Bi-LSTM)
model, as presented by Chen et al. [63], demonstrates a notable accuracy in classifying
thyroid nodules. These classification systems constitute structured hierarchies instrumental
in organizing knowledge and workflows in the specific domain of thyroid cancer.

O2. Segmentation: The segmentation of thyroid carcinoma refers to the process of iden-
tifying and delineating the region of an image that corresponds to a thyroid tumor. The
goal of segmentation is to separate the areas of interest, in this case, the thyroid tumor,
from the surrounding tissues in medical images. This can be done manually by an expert
radiologist, or it can be automated using machine learning algorithms [64,65]. Segmenta-
tion is a crucial step in medical image analysis because it helps to accurately determine the
location, size, and shape of the tumor, which are vital parameters for diagnosis, treatment
planning, and prognosis prediction. A variety of methods can be used to perform image
segmentation, including thresholding, edge detection, region-growing methods, and more
complex machine learning and DL techniques.

In the case of thyroid carcinoma, the segmentation can be challenging due to the high
variability in the appearance and shape of the tumors, their proximity to other structures in the
neck, and the presence of noise or artifacts in the images. Therefore, robust and reliable segmen-
tation algorithms are needed to ensure accurate and consistent results. AI methods, including
convolutional neural networks (CNNs) and the U-Net architecture, are being increasingly used
for thyroid carcinoma segmentation because of their ability to learn and generalize from large
quantities of data, thus improving the accuracy and reliability of the segmentation process.

O3. Prediction: The prediction of thyroid carcinoma involves the use of various diagnostic
tools, tests, and techniques—often employing machine learning models—to anticipate the
probability of a patient developing thyroid cancer. This predictive analysis can be based
on several factors, including but not limited to (i) genetic predisposition: individuals with
a family history of thyroid cancer are at a higher risk; (ii) gender and age: thyroid cancer
is more common in women and people aged between 25 and 65; (iii) radiation exposure:
exposure to high levels of radiation, especially during childhood, increases the risk of
developing thyroid cancer; (iv) diet and lifestyle: a lack of iodine in the diet and certain
lifestyle factors may contribute to an increased risk. In a medical context, prediction does
not necessarily mean a certain future outcome, but rather it points to an increased risk or
likelihood based on current data and predictive models. For thyroid carcinoma, predictive
tools and tests are typically used in conjunction with each other to achieve more accurate
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results. For instance, machine learning algorithms can be trained on historical medical data
to predict the likelihood of a nodule being benign or malignant, aiding in early detection
and more effective treatment planning. Various studies have been proposed to predict
thyroid cancer. For instance, in [66], the authors employed the use of an artificial neural
network (ANN) and a logistic regression (LR) to make predictions. Another study [67]
detailed the creation of a predictive machine using a CNN to analyze 10,068 microscopic
thyroid cancer images from South Asian populations. The thyroid cancer images were a
part of pharmacogenomic datasets, encompassing genomics and a variation analysis of
individual differences associated with the predisposition to the disease.

2.2. Preprocessing

Dimensionality reduction (DR) is a technique used in the field of ML, particularly
in the preprocessing and feature engineering phases, that transforms data from a high-
dimensional space into a lower-dimensional space. This technique is popular for classifi-
cation due to its cost-effectiveness and ability to eliminate unnecessary data patterns and
minimize redundancy. For instance, DR was used to diagnose thyroid disease (TD) using
cytological images [68].

Principal component analysis (PCA) is a multivariate statistical preprocessing method
that transforms variables into a reduced set of uncorrelated variables. This approach
reduces the number of variables and minimizes redundant information while preserving
the relationships among the data as much as possible. PCA has been widely used in cancer
detection and classification of benign and malignant thyroid cells. For example, in [69],
PCA was utilized to select the optimal set of wavelet coefficients from the application of the
double-tree complex wavelet transform (DTCW) on noisy thyroid images, which were then
classified using a random forest (RF). In [70], PCA was applied to data from 399 patients
with three types of thyroid carcinoma (papillary, follicular, and undifferentiated) in Morocco,
enabling a classification based on factors such as sex, age, type of carcinoma, and region.

2.3. Supervised Learning (SL)

SL is a method of machine learning where an algorithm is trained to classify or predict
the condition based on labeled data, which, in this case, are medical data related to thyroid
cancer. The aim of supervised learning is to differentiate between the different forms of
thyroid cancer through the use of annotated data and examples. For example, these data
can include ultrasound images, radiomic features, genetic markers, patient demographics,
or any other information that may be relevant to the diagnosis or prognosis of thyroid
cancer. The labeled data may indicate whether each instance corresponds to a case of
thyroid cancer or not, or it may provide more detailed labels such as the stage of the cancer
or the type of thyroid carcinoma.

In a classification setting, the supervised learning algorithm could be trained to dis-
tinguish between benign and malignant thyroid nodules based on certain characteristics
extracted from medical imaging data. The labels in the training data would specify whether
each nodule is benign or malignant. After training, the algorithm can then be used to clas-
sify new, unlabeled nodules. Similarly, a regression-based supervised learning algorithm
might be trained to predict the progression or the prognosis of thyroid cancer based on var-
ious patient-specific features. The labels here would correspond to a continuous outcome
variable, such as the survival time of the patient or a measure of disease progression. It
is important to note that the performance of these methods heavily relies on the quality
and quantity of the available data. The more accurate and comprehensive the data, the
better the algorithm will perform in predicting or classifying new instances. Additionally,
supervised learning models in healthcare, including thyroid carcinoma detection, need
to be validated on separate test datasets and in real-world clinical settings to ensure their
robustness and reliability [71,72].
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Traditional Classification (TCL)

TCL employs a range of methods to address data-related challenges, and it is important
to note that there is no universally applicable algorithm that suits every situation. The
choice of the right algorithm depends on several factors, including the particular problem
at hand, the number of variables involved, the most suitable model for the task, and other
pertinent factors. Below is a brief summary of some of the most commonly used machine
learning algorithms.

T1. K-nearest neighbors (KNN): The KNN algorithm is a type of nonparametric su-
pervised machine learning method used for regression and classification. The method
relies on the utilization of K training samples for predictions. In a study conducted by
Chandel et al. in [73], the KNN method was applied to classify thyroid disease based on
TSH, T4, and goiter parameters. Liu et al. [74] also employed the fuzzy KNN approach
to differentiate between hyperthyroidism, hypothyroidism, and normal cases. There is a
growing interest in larger datasets for future research, as noted in [75].

T2. Support vector machine (SVM): An SVM is a machine learning method used for
classification and regression tasks. In a study published in [76], an SVM approach was
proposed for differentiating benign from malignant thyroid nodules by utilizing 98 thyroid
nodule (TN) samples (82 benign and 16 malignant). Another study in [77] employed
six SVMs to classify nodular thyroid lesions by selecting the most important textural
characteristics. The authors reported that the proposed method achieved the correct
classification. In [78], a generalized discriminant analysis and wavelet carrier vector
machine system (GDA-WSVM) was introduced for diagnosing TN, consisting of feature
extraction, classification, and testing phases.

T3. Decision trees (DT): DT learning is a method for data mining that uses a predictive
model for decision-making, where the output values are represented by the leaves and the
input variables are represented by branches. This approach has been applied to uncover
underlying thyroid diseases as demonstrated in various studies such as [79–82].

T4. Logistic regression (LR): In [83], the LR model was used to determine the specific
characteristics of thyroid microcarcinoma in 63 patients, based on the combination of
contrast-enhanced ultrasound (CEUS) and conventional US values. Another study, con-
ducted in northern Iran and reported in [84], applied LR to analyze 33,530 cases of thyroid
cancer. LR is a widely used binomial regression model in machine learning.

2.4. Unsupervised Learning (USL)

In AI and computer science, USL involves analyzing data without pre-existing labels
or annotations. It aims to uncover the underlying structures in the unlabeled data. Unlike
supervised learning, which uses labeled data to calculate a success score, USL lacks this
labeling, making it difficult to assess the accuracy of the results. While USL algorithms can
perform more complex tasks compared to supervised ones, they can also be more unpre-
dictable, adding unintended categories and introducing noise instead of structure. Despite
these challenges, USL remains a valuable tool for exploring AI, as it enables the discovery of
patterns and relationships in data that might not be immediately apparent [85,86].

Clustering (C)

The purpose of this method is to segment a set of thyroid cancer data into various
homogeneous groups that possess similar characteristics, making it easier to classify the un-
labeled datasets into benign and malignant. This detection approach has gained significant
attention in various medical studies for its simplicity, including in the detection of DNA
copy number changes [87], breast cancer recognition [88], cancer gene detection [89], skin
cancer diagnosis [90], and brain tumor detection [91]. Additionally, clustering can also help
identify cancer without precise definitions [92]. The clustering technique was used in [93]
to identify factors that impact the normal functioning of TG, and DBSCAN and PCA were
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applied to manage the clusters and reduce dimensionality. An automated clustering system
for thyroid diagnosis was developed in [94] to prescribe the appropriate drug datasets
for hyperthyroid, hypothyroid, and normal cases. The efficiency of fuzzy clustering for
thyroid and liver datasets from the UCI repository was analyzed in [95], where the FPCM
and PFCM algorithms were applied and compared.

C1. K-means (KM): The K-means (KM) method is a technique for data partitioning and a
combinatorial optimization challenge. It is commonly utilized in USL, in which observa-
tions are separated into K groups. In [96], the authors explore the utilization of an ANN
and improvised K-means method for normalizing raw data. The study used thyroid data
from the UCI dataset containing 215 instances.

C2. Entropy-based (EB): In [97], a parameter-free calculation framework named DeMine
was developed to predict microRNA regulatory modules (MRMs). DeMine is a three-step
method based on information entropy. Firstly, the miRNA regulation network is trans-
formed into a synergistic miRNA–miRNA network. Then, miRNA clusters are detected by
maximizing the entropy density of the target cluster. Finally, the coregulated miRNAs are
integrated into the corresponding clusters to form the final MRMs. The proposed method
not only provides improved accuracy but also identifies more miRNAs as potential tumor
markers for tumor diagnosis.

2.5. Deep Learning (DL)

DL is a subset of ML and AI that is based on ANNs with representation learning.
ANNs are defined as a class of information processing systems comprised of interconnected
nonlinear elements known as neurons. These networks have proven to be effective in ad-
dressing complex issues since they can store and retrieve information. An ANN with many
hidden layers is commonly referred to as a DNN. The depth of the network allows it to
capture increasingly abstract and high-level features as you progress through the layers.
It can automatically learn, generate, and improve representations of data by employing
large neural networks with many layers, hence the term “deep” learning. In thyroid cancer,
DL has been deployed to perform different tasks, including: (i) Image classification—DL
algorithms such as CNNs can be trained to classify thyroid ultrasound images. For instance,
they can differentiate between benign and malignant nodules based on their shape, texture,
and other characteristics [98–100]. This approach can significantly reduce the time and
effort required for manual interpretation, thus aiding in the early detection and treatment of
thyroid cancer. (ii) Pathological analysis—DL can also be utilized to analyze histopathologi-
cal or cytopathological slide images, helping in the detection and classification of cancerous
cells. (iii) Genomic data analysis—with the advent of genomic medicine, DL models can be
employed to analyze genetic variations that may predispose individuals to thyroid cancer.
(iv) Radiomics—DL models can be used to extract high-dimensional data from radiographic
images, allowing for more precise and personalized treatment planning. (v) Predictive
analysis—using electronic health records and other patient data, DL models can be used to
predict the likelihood of a patient developing thyroid carcinoma, allowing for preventive
measures to be taken if necessary. Figure 3 illustrates the different classifications of thyroid
cancer using DL.

2.5.1. Extreme Learning Machine (ELM)

The ELM model features a layer of hidden nodes with a randomized weight distribu-
tion. The weights between the hidden node inputs and outputs are learned in a single step,
resulting in a more efficient learning process compared to other models. The ELM has been
proven to be an effective method in the diagnosis of TD, as evidenced in several studies
such as [101–104].
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Figure 3. General DL system for thyroid cancer detection and classification.

2.5.2. Multilayer Perceptron (MLP)

MLP represents a category of feedforward networks where data are processed from
the input layer through to the output layer. Each layer in this network comprises a varying
number of neurons. Rao et al. [105] introduced an innovative approach for thyroid nodule
classification, utilizing an MLP with a backpropagation learning algorithm. In their model,
the MLP included four neurons in the input layer, three neurons in each of the ten hidden
layers, and a single neuron in the output layer. Hosseinzadeh et al. [106] conducted a
separate study with the objective of improving the accuracy of TD diagnosis through MLP
networks. The research compared their findings with the existing literature on thyroid
cancer classification and found MLP networks to be superior. Isa et al. [107] delved into the
exploration of activation functions within MLP networks. Their goal was to identify the
optimal activation function for the accurate classification of incurable diseases such as TD
and breast cancer. The study evaluated multiple activation functions, including logarithmic,
sigmoid, neural, sinusoidal, hyperbolic tangent, and exponential functions. The research
found the hyperbolic tangent function to be the most effective for TD classification, using the
backpropagation algorithm as the training algorithm. This result was further corroborated
by Mourad et al. [108].

2.5.3. Radial Basis Function (RBF)

In [109], ML is applied to the classification of TN, where the MLP and RBF activation
functions are utilized. The RBF activation function is found to outperform the MLP in terms
of the structural classification of thyroid nodules. This approach highlights the effectiveness
of activation functions in approximating functions, classifying, and predicting time series
data, especially in the diagnosis of thyroid cancer.

2.5.4. Denoising Autoencoder (DAE)

DAEs can be beneficial for thyroid carcinoma classification by effectively learning repre-
sentations from ultrasound or histopathological images. A DAE is a specific type of artificial
neural network trained to reconstruct input data, often used for the purposes of dimension-
ality reduction or feature learning. The process for utilizing DAEs for thyroid carcinoma
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classification generally follows these steps (i) preprocessing, (ii) noisy input creation, (iii) DAE
training, (iv) feature extraction, and (v) classification. In [110], the authors implemented six
autoencoder algorithms in the training process for PTC classification, including fixing weights
and fine-tuning the network. The encoding layers and the complete autoencoder were used
to embed the network. Another study [111] employed DAEs and stacked DAEs to extract
features and identify informative genes in thyroid cancer.

2.5.5. Convolutional Neural Network (CNN)

CNNs are a class of DL models that have shown extraordinary performance in var-
ious image processing and analysis tasks, including the classification of medical images.
CNNs are especially adept at processing gridlike data, such as an image, where spatial
relationships between the pixels are crucial to understanding the image content. The past
few years have seen considerable effort invested in developing CNN-based methodologies
for detecting thyroid cancer, especially for the automated identification and classification
of nodules in ultrasound imagery [112]. The ConvNet model, a widely adopted framework
within the neural network realm, emphasizes the use of convolution operations over ma-
trix multiplications [113]. Various CNN architectures such as LeNet [114], AlexNet [115],
VGG [100], ResNet [116], GoogLeNet [117], Squeeze Net [118], and DenseNet [119] are
distinguished by their incorporation of key components including convolutional, pooling,
and fully connected layers.

In a study conducted by [120], the potential of CNN models to prognosticate thyroid
cancer was explored using 131,731 ultrasound images taken from 17,627 thyroid cancer
patients. Another research effort [121] employed VGG16, Inception, and Inception-Resnet
models to differentiate malignant tissues within a set of 451 thyroid images from the DDTI
dataset. To mitigate the challenge of data scarcity, the images were augmented before
classification. A comparison of DCNN diagnostic performance with expert radiologists
in distinguishing thyroid nodules within ultrasound images was carried out by [122],
involving a test set of 15,375 TN ultrasound images. They utilized CNNE1 and CNNE2
models, derived from deep convolutional neural network (DCNN), for differentiating
between malignant and benign TN. The study [123] proposed a CNN-based DL technique
for detecting and classifying TN and breast nodules, with the results contrasted against
those from ultrasound imaging. Table 2 presents a summary of recent CNN-based thyroid
cancer classification contributions.

Table 2. Summary of CNN research conducted in the diagnosis of thyroid cancer. Accuracy, sensitivity,
and specificity are provided in percentages (%) for better comparison.

Ref. Year Country NP NM NF NN NBN NMN TP TN FP FN ACC Sens. Spec.

[124] 2021 China 102 00 102 104 57 47 38 07 07 50 44.12 43.18 50.00
[125] 2021 China 102 25 77 103 73 33 27 12 06 61 36.79 30.68 66.67
[126] 2021 Koria 325 61 264 325 257 68 48 52 20 205 30.77 18.97 72.22
[127] 2021 China 2775 726 2049 2775 2472 303 271 363 32 2109 22.85 11.39 91.90
[127] 2021 China 163 48 115 175 67 108 86 09 22 58 54.29 59.72 29.03
[128] 2020 China 2489 614 1875 2489 1021 1468 1280 258 188 763 61.79 62.65 57.85
[129] 2020 USA 571 234 337 651 500 151 133 214 18 287 53.22 31.67 92.24
[130] 2020 China 166 46 100 209 109 100 87 16 13 93 49.28 48.33 55.17
[122] 2020 Korea 200 49 151 200 102 98 90 41 08 61 65.50 59.60 83.67
[131] 2020 Korea 340 79 261 348 252 96 31 25 65 227 16.09 12.02 27.78
[132] 2019 Korea 106 29 77 2018 132 86 69 23 17 109 42.20 38.76 57.50
[133] 2019 China 171 32 139 180 85 95 86 50 09 35 75.56 71.07 84.75

Abbreviations: number of patients (NP); number of males (NM); number of females (NF); number of nodules (NN);
number of benign nodules (NBN); number of malignant nodules (NMN); true negative (TN); true positive (TP);
false negative (FN); false positive (FP).
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2.5.6. Recurrent Neural Network (RNN)

RNNs are a class of artificial neural networks where connections between nodes
form a directed graph along a sequence, thus enabling them to use their internal state
(memory) to process variable-length sequences of inputs. This unique feature makes RNN
particularly suitable for tasks where temporal dependencies are essential, such as time-
series analysis, language translation, and speech recognition. In the context of thyroid
carcinoma classification, RNNs can be utilized to analyze sequential or time-dependent
data, such as the development of a patient’s clinical signs over time, the evolution of a
tumor seen in a series of medical images, or changes in the gene expression related to the
progression of thyroid cancer. For instance, in the study by Chen et al. (2017) [134], the
authors propose a hierarchical RNN approach for classifying thyroid nodules based on
historical ultrasound reports. This hierarchical RNN is composed of three layers, with each
layer incorporating an individually trained long short-term memory (LSTM) network. The
study’s findings indicate that the hierarchical RNN model surpasses basic models in terms
of computational efficiency, control accuracy, and robustness, making it an effective tool for
diagnosing TN. These advantageous attributes stem from the inherent memory mechanisms
of RNNs, which allow them to remember previous states through feedback loops. This
memory capability renders RNNs a popular choice for applications in cancer detection.

2.5.7. Restricted Boltzmann Machine (RBM)

An RBM is a type of artificial neural network and a generative stochastic model. It was
first introduced by Paul Smolensky [135] in 1986 under the name “Harmonium,” but the
concept of a “restricted” Boltzmann machine was developed by Geoffrey Hinton and his
students in the mid-2000s. RBMs have a layer of visible units and a layer of hidden units,
but no connections within layers—this is the restriction in their name. Each node in the layer
is connected to every node in the other layer. The lack of intralayer connections simplifies
the learning process. The work by Vairale et al. [136] presents an application of RBMs to
develop a personalized fitness recommendation system tailored for individuals diagnosed
with thyroid conditions. RBMs are a particular class of generative artificial neural networks
characterized by a bidirectional architecture, which operates in an unsupervised manner.
This structure comprises a visible layer containing binary variables and a hidden layer,
also populated with interconnected binary variables. The learning process within RBMs is
primarily conducted through a statistical analysis.

2.5.8. Generative Adversarial Network (GAN)

This type of ML network is composed of two distinct models: a generator and a
discriminator. The generator maps a random input vector to an output in the data space,
while the discriminator serves as a binary classifier that evaluates both input data from the
training set and output data from the generator. GANs have gained widespread use in the
diagnosis of diseases, including thyroid nodules [137,138].

2.5.9. Probabilistic Models (PM)

PMs, including Bayesian networks (BNs), are foundational concepts in computer sci-
ence and statistics. These models represent uncertainty and dependencies among variables.
In computer science, PMs are used for tasks such as ML, where they aid decision-making by
quantifying uncertainty and modeling complex relationships. A BN, a specific type of PM,
uses directed acyclic graphs to represent dependencies between variables. They are valuable
for reasoning under uncertainty, making predictions, and handling incomplete information.
In statistics, these models facilitate data analysis by incorporating probabilistic reasoning
to draw meaningful inferences and estimate parameters, enhancing our understanding of
complex systems. BNs have proven effective in the identification of various diseases. For
instance, they have been employed to differentiate between benign and malignant thyroid
nodules [139,140], as well as in the diagnosis of thyroid cancer, hepatitis, and breast can-
cer [141].
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2.6. Ensemble Methods (EMs)

To address the complexity of cancer data and achieve higher accuracy in detection, the
use of ensemble methods is commonly employed in the field. An ensemble method involves
dividing the data into subgroups and applying multiple machine learning techniques to
each subgroup simultaneously, then synthesizing the results to make a final diagnosis. By
combining multiple models, the ensemble method aims to produce an optimal predictive
model for thyroid cancer detection. This approach has been shown to be effective in various
studies, such as [142], where the authors emphasize the importance of ensemble methods
in achieving a more comprehensive understanding of the data and improving the accuracy
of the diagnosis.

2.6.1. Bagging (B)

In the realm of thyroid cancer screening, bagging is an ensemble learning technique
utilized to improve the accuracy and stability of ML algorithms. This algorithm operates
by reducing variance and avoiding overfitting and can be applied to a variety of methods,
particularly decision trees. The purpose of bagging is to enhance the performance of weak
classifiers in the field of thyroid cancer screening applications.

B1. Bootstrap aggregation (BA): The bootstrap aggregating technique is a widely utilized
ensemble method aimed at improving the accuracy of machine learning algorithms, partic-
ularly for the purposes of classification, regression, and variance reduction. In [143], this
approach was employed for diagnosing thyroid abnormalities.

B2. Feature bagging (FB): In [144], FB is introduced as a method of ensemble learning with
the goal of minimizing the correlation between the individual models in the ensemble. FB
achieves this by training the models on a randomly selected subset of features, instead of
all features in the dataset. The method was applied to distinguish between benign and
malignant thyroid cancer cases [145].

2.6.2. Boosting (O)

Meta-algorithms are often used in USL to mitigate the variance and enhance the
performance of weak classifiers by transforming them into strong classifiers.

O1. AdaBoost In the study by Pan et al. [146], a new method called AdaBoost was utilized
to diagnose thyroid nodules using the standard UCI dataset. The RF and PCA techniques
were employed for classification purposes and to maintain data variability, respectively.

O2. Gradient tree boosting (XGBoost): In [147], the XGBoost algorithm was introduced as
a fast and efficient implementation of gradient-boosted decision trees. Since its introduction,
the XGBoost algorithm has been applied to a range of research topics, including civil
engineering [148], time-series classification [149], sport and health monitoring [150], and
ischemic stroke readmission [151].

For thyroid cancer detection, the authors in [152] used XGBoost to diagnose benign and
malignant thyroid nodules, as a solution to the challenge of obtaining accurate diagnoses
with DL models when a large-scale dataset is unavailable.

Table 3 provides a summary of research frameworks for the detection of benign and
malignant thyroid cancers, including the category, classifier, detected disease, dataset,
objective, and used quantifiable metrics. This table helps to categorize AI methods used for
thyroid cancer detection and highlights the current key applications.
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Table 3. Summary of research frameworks conducted in the detection of benign and malignant
thyroid cancer.

Ref. Category Classifier DD Dataset O SV APP

[110] DL DAE PTC TCGA O1 18,985 features US
[111] DL DAE PTC TCGA O1 510 samples Omics
[67] DL CNN TC PD O1 10,068 images Omics

[153] DL CNN TC PD O1 482 images Omics
[154] DL CNN PTC, FTC NA NA NA FNAB
[155] DL CNN PTC PD O1 370 microphotographs FNAB
[156] DL CNN PTC PD O3 469 patients FNAB
[157] DL CNN TC DDTI O1 298 patients US
[158] DL CNN TC PD O1 1037 images US
[159] DL CNN TN PD O2 80 patients US
[160] DL CNN TN PD O2 300 images US
[161] DL CNN TC PD O1 459 labeled US
[162] DL CNN TD ImageNet O1 2888 samples US
[120] DL CNN TC PD O1 17,627 patients US
[121] DL CNN TC PD O1 1110 images US
[123] DL CNN TN PD O1, S1 537 images US
[134] DL RNN TN PD O1 13,592 patients US
[136] DL DBM TD PD O1 94 users Fitness
[138] DL GAN TC PD O3 109 images Surgery
[163] DL NA TC NA NA NA US
[164] DL NA TC PD O1 1358 images US
[165] AI NA TC PD O1 50 patients Surgery
[166] AI NA TC PD O1 89 patients US
[101] ANN ELM TD UCI O1 215 patients US
[102] ANN ELM TD UCI O1 215 patients US
[103] ANN ELM TD PD O1 187 patients US
[105] ANN MLP TD PD O1 7200 samples US
[106] ANN MLP TD UCI O1 7200 patients US
[109] ANN RBF TD PD O1 487 patients US
[167] ANN RBF TD PD O1 447 patients Cytopathological
[168] ANN NA FTC PD O1 57 smears FNAB
[169] ANN NA FTC NA NA NA FNAB
[170] ANN NA TC TCGA O3 482 samples Histopathological
[171] ANN NA TC PD O1 1264 patients FNAB
[172] ANN NA TN PD O1 276 patients US
[73] TCL KNN TD PD O1 7200 instances US

[173] TCL KNN FTC PD O1, O2 94 patients Histopathological
[174] TCL SVM FTC PD O1 43 nuclei Histopathological
[175] TCL SVM TN PD O1 467 TN US
[76] TCL SVM TC PD O1 92 subjects US

[176] TCL SVM PTC TCGA O1 500 patients Omics
[177] DL DL PTC TCGA O3 115 slides Omics
[178] ML ML TN PD O1 121 patients Omics
[79] TCL DT TC UCI O1 3739 patients US
[81] TCL DT TC NA O1 NA US
[82] TCL DT TC UCI O1 499 patients US
[83] TCL LR TC PD O1 63 patients US
[84] TCL LR TN PD O1 33,530 patients US

[139] PM BN TD UCI O1 93 adult patients US
[140] PM BN TC NA O1 37 patients US
[96] C KM TC UCI O1 215 instances US
[97] C EB TC Private data O1 734 cases US
[70] DR PCA TC PD O1 NA NA

[144] B FB TN PD O1 1480 patients US

Abbreviation: application (APP), detected disease (DD), objective (O), thyroid cancer (TC), subjects for valida-
tion (SV), private data (PD).

3. Thyroid Cancer Datasets

In the field of thyroid carcinoma research, a number of datasets have been developed
to facilitate the validation of ML algorithms and models. This is especially important
because the creation of such datasets is a major challenge in the area of endocrine ML. In
this section, we present an overview of the most significant thyroid databases, which offer
a set of standards for evaluating the performance of learning methods and assist in the
diagnosis and monitoring of complicated diseases.
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• ThyroidOmics: This is a dataset developed by the Thyroid Working Group of the
CHARGE Consortium that aims to examine the underlying factors and consequences
of TD using various omics techniques such as genomics, epigenomics, transcriptomics,
proteomics, and metabolomics. The dataset consists of the results of the discovery
stage of the genomewide association analysis (GWAS) meta-analysis for thyrotropin
(TSH), free thyroxine (FT4), increased TSH (hypothyroidism), and decreased TSH
(hyperthyroidism) as reported in [179,180].

• Thyroid Disease Data Set (TDDS): The dataset utilized for classifying using ANN
is referred to as the Thyroid database and features 3772 training instances and 3428
testing instances, with a combination of 15 categorical and 6 real attributes. The three
defined classes in this dataset include normal (not hypothyroid), hyperfunctioning,
and subnormal functioning [181].

• KEEL Thyroid Dataset: The KEEL dataset provides a set of benchmarks to evaluate
the effectiveness of various learning methods. This dataset includes several types
of classification, such as standard, multi-instance, imbalanced data, semi-supervised
classification, regression, time series, and USL, which can be used as reference points
for a performance analysis [182].

• TNM8 Dataset: A dataset was created for the purpose of reporting pathologies of
thyroid resection specimens associated with carcinoma. The data do not include core
needle biopsy specimens or metastasis to the thyroid gland. The dataset also does
not encompass noninvasive follicular thyroid neoplasm with papillary-like nuclear
features (NIFTP), tumors of uncertain malignancy, thyroid carcinomas originating
from struma ovarii, carcinomas originating in thyroglossal duct cysts, sarcomas,
or lymphomas.

• Gene Expression Omnibus (GEO): The GEO database is a genomics repository that
follows the guidelines of the minimum information about a microarray experiment.
This database is designed to store gene expression datasets, arrays, and sequences
and provides researchers with access to a vast collection of experiment results, gene
profiles, and platform records in GEO [183].

• Surveillance, Epidemiology, and End Results (SEER): The creators of this dataset
aim to supply a collection of clinical characteristics from thyroid carcinoma patients,
which includes 34 details such as age, gender, lymph nodes, and others.

• Digital Database Thyroid Image (DDTI): The DDTI dataset serves as a valuable
resource for researchers and new radiologists looking to develop algorithm-based
CAD systems for thyroid nodule analysis. The dataset comprises 99 cases and
134 images, with each patient’s data stored in an XML file format [184]. Figure 4
provides an illustration of six samples from each of the thyroid carcinoma tissue types
in the DDTI dataset.

• Cancer Genome Atlas (TCGA): The TCGA is a comprehensive collection of data
gathered from 11,000 patients diagnosed with various types of cancer over a period
of 12 years. The data consist of detailed genomic, epigenomic, transcriptomic, and
proteomic information, amounting to a total of 2.5 petabytes. This extensive dataset
has been instrumental in advancing the research, diagnosis, and treatment of cancer.

• National Cancer Data Repository (NCDR): The NCDR serves as a resource for health-
care and research with the goal of capturing all recorded cases of cancer in England.
These data are sourced from the office for national statistics [185].

• Prostate, Lung, Colorectal, and Ovarian (PLCO) dataset The National Cancer Insti-
tute supports the PLCO cancer screening trial, aimed at examining the direct factors
that contribute to cancer in both men and women. The trial has records of 155,000 par-
ticipants, and all studies regarding thyroid cancer incidence and mortality can be
found within it [186].

In Table 4, we present examples of public and private TCDs used in thyroid cancer de-
tection.
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Table 4. Examples of public and private TCDs used in thyroid cancer detection.

Ref Year TCD IT IF Instance M/F DA

[44] 2018 BMU Sonographic PNG 1077 4309 Public
[172] 2019 TCCC US PNG 370 370 Public
[187] 2019 Clinical US JPEG 117 2108 Public
[188] 2019 Hospital US JPEG 62 12/60 Public
[189] 2020 TIRADS US JPEG 5278 NA Public
[190] 2018 Peking Union US JPEG 4309 1179 Private
[120] 2019 Medical Center US PNG 1425 2064 Private
[191] 2020 PubMed CT scans JPEG 2108 54/253 Private
[156] 2021 ACR DICOM DICOM 1629 83/289 Private
[126] 2021 Clinical US PNG 40 407 Private

Abbreviations: image types (IT); image format (IF); dataset access (DA); male (M); female (F).

Cases of TIRADS 2
(Benign)

Cases of TIRADS 3
(Benign)

Cases of TIRADS 4a
(Malign)

Cases of TIRADS 4b
(Malign)

Cases of TIRADS 4c
(Malign)

Cases of TIRADS 5
(Malign)

Image:2,
 age:24, sex:M

Image:10, 
age:65, sex:M

Image:41, 
age:76, sex:F

Image:85, 
age:48, sex:F

Image:8, 
age:70, sex:M

Image:5, 
age:23, sex:F

Image:40, 
age:82, sex:F

Image:26, 
age:44, sex:F

Image:7, 
age:24, sex:F

Image:44, 
age:71, sex:F

Image:48, 
age:54, sex:F

Image:51,
 age:58, sex:F

Image:11, 
age:62, sex:M

Image:14, 
age:78, sex:F

Image:28, 
age:55, sex:F

Image:99, 
age:29, sex:M

Image:33, 
age:74, sex:F

Image:34, 
age:54, sex:F

Image:35,
 age:78, sex:F

Image:87, 
age:40, sex:F

Image:13, 
age:80, sex:F

Image:54, 
age:43, sex:F

Image:78,
 age:50, sex:F

Image:90, 
age:65, sex:F

Figure 4. Example of six samples for each class from the DDTI datasets.
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The strengths and weaknesses of AI-based thyroid cancer detection techniques are
summarized in Table 5.

Table 5. A summary of thyroid cancer detection techniques AI-based, including their strengths
and weaknesses.

Ref. AI Meth. Achieve. (%) Advantages Drawbacks

[192] DAE ACC = 92.9 No need for labels for thyroid cancer Insufficient training data and need relevant data
[193] CNN AUC = 85.0 High thyroid cancer detection Insufficient labels for thyroid cancer and weak in interpretability
[194] RNN ACC = 98.2 No need for labels for thyroid cancer Slow computation and difficulty in training
[195] MLP ACC = 95.0 Adaptive learning for thyroid cancer Limited in its results
[196] KNN P = 93.0 High sensitivity to thyroid cancer detection Insufficient labels for thyroid cancer
[197] SVM ACC = 97.0 High sensitivity to thyroid cancer detection Weak in interpretability and long training time
[198] DT AUC = 73.10 Does not require scaling and normalization of data Unstable
[199] LR – Low-cost training and easier implementation Difficulty to label data
[200] B ACC = 94.88 High detection of thyroid cancer Loss of interpretability and high computational cost

Abbreviations: area under curve (AUC).

4. Features

In this section, the focus is on showcasing the crucial techniques utilized in the classifi-
cation process for characteristic extraction and selection. This primarily involves identifying
a subset of relevant features that positively impact the classification accuracy and eliminat-
ing irrelevant variables.

4.1. Feature Selection Methods (FS)

FS1. Information gain (IG): Information gain (IG) is a straightforward method for classi-
fying thyroid cancer features. This method evaluates the likelihood of having cancer by
comparing the entropy before and after the examination. Typically, a higher gain value
corresponds to a lower entropy. IG has been used extensively in several applications
for the diagnosis of cancerous diseases, such as in filtering informative genes for precise
cancer classification [201], selecting breast cancer treatment factors based on the entropy
formula [202], analyzing and classifying medical data of breast cancer [203], reducing the
dimensionality of genes in multiclass cancer microarray gene expression datasets [204],
and filtering irrelevant and redundant genes of cancer [201]. In [205], IG is utilized as a
feature selection technique to eliminate redundant and irrelevant symptoms in datasets
related to diabetes, breast cancer, and heart disease. Additionally, the IG-SVM approach,
combining IG and SVM, has been employed and its results served as input for the LIBSVM
classifier [201].

FS2. Correlation-based feature selection (CFS): CFS is a technique frequently used for
evaluating the correlation between different cancer features. In various studies, the CFS
algorithm has been integrated into attribute selection methods for improved classification,
such as in [206], where it was applied to thyroid, hepatitis, and breast cancer data from the
UCI ML repository. In [141], the authors proposed a hybrid method that combined learning
algorithm tools and feature selection techniques for disease diagnosis. The CFS was utilized
in [207] for feature selection in microarray datasets to minimize the data’s dimensionality
and identify discriminatory genes. A hybrid model incorporating the CFS and a binary
particle swarm optimization (BPSO) was proposed in [208] to classify cancer types and
was applied to 11 benchmark microarray datasets. The CSVM-RFE, which involves a CFS,
was used in [209] to reduce the number of cancer features and eliminate irrelevant ones.
In [176], the authors utilized CFS techniques to identify key RNA expression features.

FS3. Relief (R): The relief algorithm, commonly known as RA, is an effective method used
in selecting important features by assessing their differentiation quality by assigning scores.
This technique calculates the weight of various features based on the correlation between
cancer attributes. In a study published in [210], a feature selection method based on the
relief algorithm was proposed as a means of improving efficiency.

FS4. Consistency-based subset evaluation (CSE): The study in [211] presents a hybrid
classification model for breast cancer, which is based on dividing cancer data into single-
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class subsets. The effectiveness of the model is evaluated using the Wisconsin Breast Cancer
Dataset (WBCD).

4.2. Feature Extraction Methods (FE)

FE1. Principal components analysis (PCA): The use of PCA has been highlighted in
several studies as a method to reduce the dimensionality of data and decorrelate the
attributes of cancer features. For instance, in [69], PCA was applied to the dual-tree
complex wavelet (DTCW) transform to select the optimum features of thyroid cancer.
In [70], PCA was proposed as a tool for classifying different thyroid cancer subtypes
such as papillary, follicular, and undifferentiated. The implementation of PCA and linear
discriminant analysis was also explored in [212] for classifying Raman spectra of different
thyroid cancer subtypes. Finally, in [213], the authors utilized PCA on cDNA microarray
data to uncover the biological basis of breast cancers.

FE2. Texture description: Texture analysis is a commonly used method for extracting relevant
information in the classification, segmentation, and prediction of thyroid cancer. There are
numerous texture analysis techniques in the literature, including wavelet transform, binary
descriptors, and statistical descriptors. The discrete wavelet transform (DWT), in particular,
has received significant attention for its ability to perfectly decorrelate data. Many studies
have utilized wavelets for thyroid cancer detection, such as in [214], where wavelet techniques
were employed to identify cancer regions in thyroid, breast, ovarian, and prostate tumors.
In [215], texture information was used to diagnose TN malignancy through a two-level 2D
wavelet transform. Other works exploring this area can be found in [216,217].

FE3. Active contour (AC): The active contour (AC), first introduced by Kass and Witkin
in 1987, is a dynamic structure primarily used in image processing. There are several
approaches for solving the problem of contour segmentation using a deformable curve
model, which has seen numerous applications in the field of detection of thyroid cancer, as
demonstrated in [218–220].

FE4. Local binary patterns (LBP): The LBP are features employed in computer vision to
recognize textures or objects in digital images. LBP have been utilized to detect thyroid
cancer in [216]. The combination of LBP and DL has also been proposed to classify benign
and malignant thyroid nodules in [221,222].

FE5. Gray-level co-occurrence matrix (GLCM): The GLCM is a matrix that represents the
distribution of values of pixels that occur together at a specified offset in an image. In [223],
GLCM was used to extract features to differentiate between different types of thyroid cancer.
In [224], the differences between an individual with Hashimoto’s thyroiditis-associated PTC
and one with Hashimoto’s thyroiditis alone were investigated based on GLCM comparison.

FE6. Independent component analysis (ICA): In an ICA, information is gathered into a
set of contributing features for the purpose of feature extraction. ICA is utilized to separate
multivariate signals into their individual components. In [225], ICA is used to extract
29 attributes as independent and useful features for classifying data into either hypothyroid
or hyperthyroid using an SVM.

A summary of feature selection and extraction methods based on DL conducted in the
diagnosis of thyroid cancer are illustrated in Table 6.
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Table 6. Summary of feature selection and extraction methods based on DL conducted in the diagnosis
of thyroid cancer.

Ref. Year Classifier Features Contributions

[226] 2017 KNN FC/IG - Avoids data redundancy and reduces computation time. The KNN algorithm deals with the missing
data, and the ANFIS algorithm is provided with the resultant data as input.

[227] 2017 SVM FC/CFS - Extracts the geometric and moment features while some kernels of the SVM classifier classify the
extracted features.

[108] 2020 CNN FC/R - Combines ML and feature selection algorithms (namely, Fisher’s discriminant ratio, Kruskal–Wallis’
analysis, and Relief-F) to analyze the SEER database.

[228] 2022 CNN FE/PCA
- The influence of unbalanced serum Raman data on the prediction results was minimized by using an
oversampling algorithm in this study. PCA was used to reduce the data dimension before classifying
the data using RF and adaptive boosting.

[229] 2012 O FE/TD - Combines CAD and DWT and texture feature extraction. The AdaBoost classifier uses the extracted
features to classify images into benign or malignant thyroid images.

[230] 2021 CNN FE/AC
- Image enhancement, segmentation, and multifeature extraction, encompassing both geometric
and texture features. Each characteristic is then classified using an MLP and SVM, resulting in a
determination of either benign or malignant.

[189] 2020 SVM FE/LBP
- Deep features are extracted by a CNN and are combined with handcrafted features, including a
histogram of oriented gradient (HOG), and scale-invariant feature transform to create fused features.
These fused features are then used for classification by an SVM.

[231] 2019 SVM FE/GLCM
- Uses a median filter to reduce noise and delineates the contours before extracting features from
thyroid regions, including GLCM texture features. SVM, RF, and bootstrap aggregating (bagging) are
then used to identify the benign and malignant nodules.

[225] 2019 SVM FE/ICA - A multikernel-based SVM is used as a classifier to distinguish the thyroid disease.

5. Standard Assessment Criteria

In this section, we examine the most commonly utilized standard parameters for
evaluating the identification of TD. These criteria serve as a measure of the effectiveness of
the methods used. Selecting the right metric is crucial when evaluating the performance
of machine learning models. Numerous metrics have been proposed to evaluate machine
learning models in various applications. Here, we present a summary of popular metrics
that are considered suitable for assessing the performance of AI algorithms applied in the
detection of thyroid cancer (See Tables 7–9).

Classification and Regression Metrics

Table 7. Summary of classification and regression metrics used in evaluating AI-based thyroid cancer
detection schemes.

Metric Mathematical Formula Description

Accuracy (ACC) TP+TN
TP+FP+TN+FN

100% Gives the correct percent of the total number of positive and negative predictions.

Specificity TN
TN+FP

100% It is the ratio of correctly predicted negative samples to the total negative samples.

Sensitivity TP
TP+FN

100%
It is a quantifiable measure metric of real positive cases that were predicted as true positive
cases.

Precision (P) TP
TP+FP

100%
Measures the proportion of true positive predictions made by the model, out of all the
positive predictions made by the model.

F1 score (F1) 2× Precision×Recall
Precision+Recall It is the harmonic mean of precision and sensitivity of the classification.

Error rate (ER) FN+FP
TP+FN+FP+TN

100% It is equivalent to one minus accuracy.

Root-mean-square error (RMSE)
(√

1− (ER)2
)
× SD

It is the standard deviation of the predicted error between the training and testing dataset,
its lower value means that the classifier is an excellent one.

The negative predictive value (NPV) TN
TN+FN

It is the proportion of negative results in diagnostic tests; a higher value means the accu-
racy of the diagnosis.

Jaccard similarity index (JSI) |A∩B|
|A∪B| =

TP
TP+FP+FN

It has been proposed by Paul Jaccard to gauge the similarity and variety in samples.

Fallout or false positive rate (FPR) FP
FP+TN

= 1− SP
Measures the proportion of negative samples that are incorrectly classified as positive by
the model.

Volumetric overlap error (VOE) FP+FN
TP+FP+FN

Evaluates the similarity between the segmented region and the ground-truth region. VOE
measures the amount of overlap between the two regions and is defined as the ratio of the
volume of the union of the segmented region and the ground-truth region to the volume
of their intersection.

Mean absolute error (MAE) 1
N

N
∑

i=1
|ai − pi | It is the average of the difference between the original values and the predicted values.

Mean squared error (MSE) 1
N ∑N

i=1(yi − ri)
2 It is the average of the square of the difference between the original values and the pre-

dicted values.
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Statistical Metrics
Table 8. Summary of statistical metrics used in assessing AI-based thyroid cancer detection schemes.

Metric Mathematical Formula Description

Standard deviation (SD)
√

∑(x− µ)2/N
It is a measure of the amount of variation or disper-
sion in a set of data.

Correlation (Corr)
(∑((x − µx) · (y − µy)))/(

√
(∑(x− µx)2) ·√

(∑(y− µy)2))

It describes the degree of association or relationship
between two or more variables.

Kappa de Cohen k =
Pr(a)−Pr(e)

1−Pr(e)
It measures the degree of concordance between two
evaluators, relative to chance.

Computer Vision Metrics

Table 9. Summary of computer vision metrics used in assessing AI-based thyroid cancer
detection schemes.

Metric Mathematical Formula Description

Peak signal-to-noise ratio (PSNR) 10 · log10((MAX2
I )/MSE)

It measures the ratio of the maximum possible power of a
signal to the power of the noise that affects the fidelity of
its representation.

Structural similarity index (SSIM) MSSIM(x, y) = 1
L ∑L

i=1 SSIM(xi , yi)
It evaluates the similarity between two images or videos by
comparing their luminance, contrast, and structural information.

Visual information fidelity (VIF) ∑j I(Cj ;Fj/sj)

∑j I(Cj ;Ej/sj)

It evaluates the quality of a reconstructed or compressed im-
age or video compared to the original signal. It measures
the amount of visual information preserved in the processed
image or video, taking into account the spatial and frequency
characteristics of the image.

Normalized cross-correlation (NCC) ∑M
i=1 ∑N

i=1(I(i,j)−R(i,j))2

∑M
i=1 ∑N

i=1 I(i,j)2

Measures the similarity between two images (or videos) by
subtracting the mean value of each signal from the signal itself.
Then, the signals are normalized by dividing them by their
standard deviation. Finally, the cross-correlation between the
two normalized signals is calculated.

Structural content (SC) ∑M
i=1 ∑N

j=1 I(i,j)2

∑M
i=1 ∑N

j=1 R(i,j)2

A higher value of structural content shows that the image is
of poor quality.

Weight PSNR 10 log
(

(2n−1)2

NVF×MSE

)
It takes into account the image texture [232].

Noise visibility function (NVF) Normalization
{

1
1+δ2

bloc

} It estimates the texture content in the image. δbloc is the
luminance variance.

Visual signal-to-noise ratio (VSNR) 10 log10

(
C2(I)
(VD)2

) It is based on the specified thresholds of distortions in the
image based on the computing of contrast thresholds and
a wavelet transform. If the distortions are lower than the
threshold, the VSNR is perfect. C(I) is the RMS contrast of
the original image I, and VD is the visual distortion [233].

Weighted signal-to-noise ratio (WSNR) 10 log10

(
∑M−1

u=0 ∑N−1
v=0 |A(u,v)C(u,v)|2

∑M−1
u=0 ∑N−1

v=0 |A(u,v)−B(u,v)C(u,v)|2

) It is based on the contrast sensitivity function (CSF). A(u, v),
B(u, v), and C(u, v) represent discrete Fourier transforms (2D
TFD) [234].

Normalized absolute error (NAE): ∑M
i=1 ∑N

j=1 |I(i,j)−R(i,j)|

∑M
i=1 ∑N

j=1 |I(i,j)|

It evaluates the accuracy of an ML model’s predictions.
It measures the difference between the predicted values
and the actual values, as a proportion of the range of the
actual values.

Laplacian mean squared error (LMSE) ∑M
i=1 ∑N

j=1 [L(I(i,j))−L(R(i,j))]2

∑M
i=1 ∑N

j=1 [L(I(i,j))]2

It is a variant of the mean squared error ()! ()!) that uses the
Laplacian distribution instead of the Gaussian distribution.
L(I(i, j)) is the Laplacian operator.

Ranking Metrics

M1. Mean reciprocal rank (MRR): The MRR is a statistic measure for evaluating the mean
reciprocal rank of results for a sample of queries [235].

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(1)

where ranki refers to the rank position of the first relevant document for the ith query.
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M2. The discounted cumulative gain (DCG): the DCG is used to measure the rank-
ing quality [236].

6. Example of Thyroid Cancer Detection Using AI

To explain how thyroid cancer has been considered in the literature and how AI
can be used to detect types of cancers, in the following, we present a simple example of
TD classification. It has been known that pattern recognition is the process of training a
neural network to assign the correct target classes to a set of input patterns. Once trained,
the network can be used to classify patterns. In this section, we present an example of
thyroid cancer classification as benign, malignant, and normal based on a set of features
specified according to the TIRADS. In this example, the dataset (7200 samples) was selected
from the UCI Machine Learning Repository [237]. This dataset can be used to create a
neural network that classifies patients referred to a clinic as normal, hyperfunctioning, or
subnormal functioning. The thyroid inputs and thyroid targets are defined as: (i) TI: a
21 × 7200 matrix consisting of 7200 patients characterized by 15 binary and 6 continuous
patient attributes. (ii) TT: a 3 × 7200 matrix of 7200 associated class vectors defining which
of three classes each input is assigned to. Classes are represented by a one in rows 1, 2, or 3.
(1) Normal, not hyperthyroid. (2) Hyperfunctioning. (3) Subnormal functioning.

In this network, the data were divided into 5040 samples, 1080 samples, and 1080 sam-
ples used for training, validation, and testing, respectively. The network was trained to
reduce the error between thyroid inputs and thyroid targets or until it reached the target
goal. If the ER did not decrease and the training did not improve, the training data were
halted with the data of the validation set. The testing dataset was used to deduce the
values of the targets. Thus, it determined the percentage of learning. For this example,
10 neurons were used in the hidden layer in this model for 21 inputs and 3 outputs. After
the simulation of the model, the percent error was 5.337%, 7.407%, and 5.092% for training,
validation, and testing, respectively. Thus, in total, it recognized 94.4% and the overall ER
was 5.6%. The confusion matrix and the ROC metric are illustrated in Figure 5.
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(a) The confusion Matrix (b) The ROC

Figure 5. An example of the confusion matrix and ROC metric for thyroid cancer classification.
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Figure 6 illustrates an example of a thyroid segmentation in ultrasound images using
K-means (three clusters were chosen for this example) which is one of the most commonly
used clustering techniques.

(b) Thyroid ultrasound image(a) Medullary thyroid carcinoma image

Figure 6. Example of thyroid segmentation based on the K-means method.

7. Critical Analysis and Discussion

As we delve into the core of this paper, it is essential to critically assess and discuss
the multitude of facets associated with the application of AI in thyroid carcinoma detection.
While the promise of AI has been well articulated in the existing literature, a more nuanced
perspective is needed to fully understand its impact on healthcare, both positive and
negative. In this section, we undertake a critical analysis of the effectiveness of AI models
for thyroid carcinoma detection. Moving beyond the optimistic numbers, we question
the robustness of these models in real-world clinical settings and discuss their role in the
broader context of clinical decision-making. Furthermore, we explore the potential biases
in AI models, understanding how they might inadvertently perpetuate existing inequities
in healthcare. A comparative assessment of AI-based and traditional diagnostic methods
provides deeper insights into their relative effectiveness. Moreover, acknowledging the
challenges to the implementation of AI tools in healthcare, we delve into the infrastructural,
regulatory, and cultural barriers that might hinder their widespread adoption. Lastly, we
underscore the crucial role of interdisciplinary collaboration in ensuring the successful
integration of AI into healthcare.

A summary of the performance of various thyroid cancer frameworks is detailed in
Table 10.

Table 10. Evaluation of the performance of various thyroid cancer frameworks in percentages (%).

Ref. AI Model Dataset ACC SPE SEN PPV F1 NPV AUC

[238] CNN PD 88.00 79.10 98.10 - - - -
[103] ELM PD 87.72 94.55 78.89 - - - -
[108] MLP PD 87.16 87.05 91.18 16.20 27.50 99.70 -
[142] SVM PD 63.27 71.85 38.46 32.43 - 76.87 -
[239] RF PD 86.80 87.90 85.20 - - - 92.00
[240] LR PD 77.80 79.80 70.60 - - - 75.00
[231] B PD 84.69 86.96 82.69 87.76 - 81.63 88.52
[241] Ensemble DL Cytological images 99.71 - - - - - -
[100] VGG-16 Cytological images 97.66 - - - - - -
[54] VGG-16 99.00 86.00 94.00 - 88.00 - -
[43] RF Ultrasound - - - - - - 94.00

[187] k-SVM Ultrasound - - - - - - 95.00
[131] ANN Ultrasound - - - - - - 69.00
[125] SVM RF Ultrasound - - - - - - 95.10
[242] ANN SVM Ultrasound 96.00 - - - - - -
[243] RF Ultrasound - - - - - - 75.00
[244] CNN DICOM 83.00 85.00 82.40 - - - -
[28] CNN DICOM - 91.50 - - - - -

[117] Fine-tuned DCNN PD 99.10 - - - - - -
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Table 10. Cont.

Ref. AI Model Dataset ACC SPE SEN PPV F1 NPV AUC

[245] ResNet18-based network PD 93.80 - - - - - -
[246] Multiple-scale CNN PD 82.20 - - - - - -
[99] ThyNet PD - - - - - - 92.10

[247] Alexnet CNN PD 86.00 - - - - - -
[175] DNN ACR TIRADS 87.20 - - - - - -
[124] CNN (BETNET) Ultrasound 98.30 - - - - - -
[248] ResNet TIRADS 75.00 - - - - - -
[249] Xception CT images 89.00 92.00 86.00 - - - -
[120] DCNN Sonographic images 89.00 86.00 93.00 - - - -
[250] Google inception v3 Histopathology images 95.00 - - - - - -
[251] Cascade MaskR-CNN Ultrasound 94.00 95.00 93.00 - - - -
[252] VGG16 Ultrasound - 92.00 70.00 - - - -
[253] VGG19 Ultrasound 77.60 81.40 72.50 - - - -
[40] VGG16 Ultrasound 74.00 80.00 63.00 - - - -

[189] SVM CNN Ultrasound 92.50 83.10 96.40 - - - -
[254] CNN TIRADS 85.10 86.10 81.80 - - - -
[255] CNN TIRADS 82.10 85.00 78.00 - - - -
[256] CNN TIRADS 80.30 80.10 80.60 - - - -
[257] CNN US 83.00 47.00 65.00 - - - -
[258] CNN MRI 79.00 80.00 65.00 - - - -
[259] CNN US 97.00 84.10 89.50 - - - -
[260] CNN CT image 84.00 73.00 93.00 - - - -
[261] CNN US 77.00 - - - - - -

The reported accuracy, sensitivity, and specificity of AI models in the literature may
vary widely based on the dataset used, the quality of the data, and the methodology
employed. AI models’ effectiveness in a controlled experimental environment may not
reflect their performance in a real-world clinical setting. Factors such as noise in the
data, incomplete data, and changing clinical conditions can dramatically influence the
outcome. Therefore, it is crucial to scrutinize the model’s robustness and reliability under
various conditions.

Limitations and Open Challenges

Despite the success of AI tools in thyroid cancer diagnosis, their limitations hinder the
development of effective solutions, make their application costly, and limit their diffusion.
To achieve precise thyroid cancer detection, it is crucial to centralize and securely store all
relevant data in one location, unless you opt for federated learning (FL) techniques [262].
Then, algorithms must be developed to identify all forms of thyroid cancer. Every TCD
includes a set of training images, test images, nodule plans, and classifications of nodule
characteristics of diverse sizes [263]. The datasets must be regularly updated using MRI,
CT scans, X-rays, and clinically obtained scans to assess thyroid conditions, and they
should also include demographic information such as race, ethnicity, gender, and age.
Additionally, it is important to establish a unified and centralized database accessible to all
medical centers to test, validate, and apply AI algorithms to existing data [264]. Moreover,
the rest of the limitations and open challenges can be summarized as follows:

• Insufficient clean data and accuracy: The lack of comprehensive and annotated
datasets regarding the incidence and spread of cancer, specifically thyroid cancer,
is a major hindrance to accurate cancer diagnoses and efficient treatment. Medical
statistics often do not properly record the number of deaths caused by thyroid cancer,
making data collection and validation challenging [265]. This results in a limited
quantity of data typically collected from one center, due to the absence of a dedicated
thyroid cancer clinical database shared among institutions. The accuracy of AI algo-
rithms in diagnosing thyroid cancer is also limited by the scarcity of available labeled
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cases for clinical outcomes [266]. Researchers acknowledge that a large quantity of
data is necessary for a neural network to yield accurate results, but caution must be
taken in regard to the data added during the learning phase, as it can introduce noise.

• Thyroid gland imaging: In the diagnostic evaluation of thyroid cancer, computed
tomography (CT) and MRI are available options, but they are not considered the pre-
ferred methods due to their high cost and unavailability in certain cases [55]. Instead,
ultrasound is commonly used as an alternative to physical exams, radioisotope scans,
or fine-needle aspiration biopsies. During an ultrasound examination, the doctor is
able to assess the activity of the gland by observing the echo of the node and deter-
mining its echogenicity, size, limits, and the presence of calcifications. However, the
results obtained from ultrasound tests are not always accurate enough to differentiate
between benign and malignant nodes and the images obtained can be more prone
to noise [267].

• DL models’ hyperparameters: Choosing the right DL algorithm is crucial in address-
ing various issues, particularly those related to thyroid cancer diagnosis. Due to
the close similarities between benign and malignant tumors, as well as between tu-
mors and other types of lymphocytes, it is challenging to differentiate between them
accurately [268]. To achieve this, a significant increase in the number of layers for
feature extraction may be required. However, this results in a longer processing time,
especially when dealing with large quantities of data, which can impact the timeliness
of the diagnosis for cancer patients [54].

• Computation cost and storage space: In the field of algorithms, time computing is a
metric that assesses the computational complexity of an algorithm, which predicts
the time it takes to run the algorithm by calculating the number of basic operations it
performs, as well as its dependence on the size of the input. Typically, time computing
is expressed as O(n), where n represents the size of the input, measured in terms of
the number of bits required to represent it [269]. Researchers in the AI field, especially
those working on thyroid cancer or other types of cancer diagnosis, face the challenge
of finding algorithms that are both highly accurate and efficient in terms of processing
time. They aim to develop algorithms that can analyze vast quantities of data quickly
while still providing accurate results. Moreover, the volume of data used in these
algorithms can sometimes exceed the available storage space [54].

• Imbalanced dataset: The distribution of cancer elements within categories related to
thyroid tissue cells is often uneven, as these cells often make up a minority of the total
tissue cell dataset. As a result, the dataset is highly imbalanced, consisting of both
cancer cells and normal cells. This unbalanced distribution of features in cancer cell
detection datasets often results in the suboptimal performance of AI algorithms used
for the detection [270].

• Sparse labels: Labeling is a crucial aspect of computed tomography (CT) detection,
specifically for distinguishing between normal and abnormal cancer cells. However,
the process can be time-consuming and costly due to the limited number of available
labels. This scarcity results in inconsistent decisions and can negatively impact the
accuracy of AI algorithms, which heavily rely on labeled data. This can eventually
undermine the trust and credibility of this type of application [270].

• The volume of data: At present, with the advancement in technology, especially in the
field of thyroid cancer diagnosis and the growing volume of medical and patient data,
researchers are facing challenges in suggesting algorithms that can effectively handle
a limited number of samples, noisy samples, unannotated samples, sparse samples,
incomplete samples, and high-dimensional samples. This requires AI algorithms
that are highly efficient and capable of processing vast quantities of data exchanged
between healthcare providers and patients or among specialist physicians [271].

• Error susceptibility: Despite AI being self-sufficient, it is still susceptible to errors. For
instance, when training an algorithm with TCDs to diagnose cancerous regions, it can
result in biased predictions if the training sets are biased. This can lead to a series of
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incorrect results that may go unnoticed for an extended period. If detected, identifying
and correcting the source of the problem can be a time-consuming process [272].

• Data form: Despite the numerous advancements in the use of AI for thyroid can-
cer detection, several limitations persist and pose a challenge to its progress. With
the growing demand for various medical imaging technologies that result in vast
quantities of data needed for AI algorithms, coordinating and organizing this infor-
mation has become a daunting task. This can largely be attributed to the absence of
proper labeling, annotation, or segmentation of the data, making it difficult to manage
effectively [273].

• Unexplainable AI: The utilization of AI in the medical field can sometimes yield results
that are unclear and lack proper justification, known as a “black box”. This leaves
doctors unsure about the accuracy of the results and may lead to erroneous decisions
and treatments for patients with thyroid cancer. Essentially, AI can behave like a black
box and fail to provide understandable explanations for its outputs [274].

• Lack of cancer detection platform: One of the major barriers to detecting various can-
cers, particularly thyroid cancer, is the limited availability of platforms for reproducing
and examining previous results. This shortage represents a significant weakness and
hinders the comparison of AI algorithm performance, making it challenging to im-
prove their efficacy [159]. The presence of online platforms with comprehensive
datasets, cutting-edge algorithms, and expert recommendations is vital in aiding doc-
tors, researchers, developers, and specialists to make informed decisions with a low
margin of error. Such platforms also provide a crucial supplement to clinical diagnoses
by allowing for a more comprehensive experimentation and comparison [275].

• The digitization and loss data: The digitization of medical records has become a
necessity, particularly in the realm of cancer diagnosis, due to the widespread adoption
of various technologies such as whole-slide images. These latter serve as digital
versions of glass slides, facilitating the application of AI techniques for pathological
analysis [276]. Despite its benefits, digitization in the medical field is confronted
with certain limitations, such as the risk of significant information loss during the
quantification and inaccuracies that may arise from data compression utilized in
autoencoder algorithms. Hence, it is crucial to be mindful in selecting the right
digitization technology to preserve the information and maintain the originality of the
data [277,278].

• Contrast: The absence of sufficient contrast in the tissues neighboring the TG compli-
cates the process of accurately analyzing and diagnosing thyroid cancer.

8. Future Research Directions

We also highlight the future trajectory of AI in thyroid carcinoma detection, discussing
emerging trends and technologies while considering their ethical implications. The ethical
considerations do not end there, as we further examine issues related to data privacy,
accountability, and equity. This section highlights promising research trends that will have
a major effect on enhancing thyroid cancer detection in the future.

8.1. Explainable Artificial Intelligence (XAI)

The use of AI systems in decision-making is crucial, but they can be complex and
difficult to understand. To address this issue, the field of XAI has emerged, which aims
to provide transparency in AI models. The need for XAI is especially important in health
applications where the interpretation of results is crucial. The use of XAI has been demon-
strated in the analysis of incurable diseases affecting the TG, as seen in several studies
such as [279–283]. The difference between AI and XAI is illustrated in Figure 7. In [171],
the authors present an XAI model for the detection of thyroid cancer, which improves the
confidence of medical practitioners in the predictions. Unlike traditional AI algorithms,
XAI models provide evidence to support their conclusions and avoid the limitations of



Systems 2023, 11, 519 26 of 48

“black box” algorithms. By using XAI, clinicians can make more informed decisions with
greater confidence.
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Figure 7. XAI diagram block.

8.2. Edge, Fog, and Cloud Computing for Implementation

The edge network is a combination of edge computing and AI that processes algo-
rithms based on AI near the source of data [284]. This allows for better performance and
lower costs for applications that require heavy information processing and reduces the need
for long-distance communication between the patient and the doctor. The proximity of the
information and storage capabilities to the end-user in the health sector allows for direct
and immediate access [285]. To further enhance performance, the detection of thyroid can-
cer in edge networks relies on the use of fog computing, which is a decentralized computing
architecture located between the cloud and the data-producing devices. This architecture
allows for the flexible placement of computing and storage resources in logical locations,
improving performance [286]. To ensure the proper operation of the AI-based thyroid
cancer detection system, it utilizes cloud computing as an access point. This guarantees
that the stored data, servers, databases, networks, and programs are accessible and shared
among specialized doctors, as long as it is connected to the Internet. Such a hybrid system
has proven to be effective for medical applications, including the detection of thyroid
cancer, as seen in various studies including [287–297].

8.3. Reinforcement Learning (RL)

RL, a subfield of ML, allows agents to make decisions in interactive environments
through trial and error, observation, and learning (as depicted in Figure 8). In recent
years, there has been a significant interest in using RL for detecting incurable diseases
and providing explanations to aid medical decision-making. For example, RL is used
in [298] to classify cancer data, and deep RL is used in [299] to segment lymph node
sets. The authors generate pseudo-ground-truths using RECIST-slices and achieve the
simultaneous optimization of lymph-node bounding boxes through the interaction between
a segmentation network and a policy network.
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Figure 8. Deep RL procedure.

8.4. Transfer Learning (TL)

TL is a valuable solution to the overfitting and precision challenges faced by diagnosis
systems [300–302]. This technique leverages stored knowledge from a specific problem to
address other issues such as reducing training time and data volume [271,303]. Its use in
the diagnosis of the TG is demonstrated in Figure 9. For instance, the Enhance-Net model,
as introduced in [304], could serve as a source model for enhancing the performance of a
target DL model designed for real-time medical images. Furthermore, in [158], the authors
tackle the challenge of capturing appropriate features of benign and malignant nodules
using CNNs. They transfer the knowledge learned from natural data to an ultrasound
image dataset to produce hybrid semantic deep features. The TL technique has also been
successfully applied to classify thyroid nodules images in [164]. Other related works can
be found in [162,252,305–307].
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Figure 9. Deep transfer learning for thyroid diagnosis.
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8.5. Panoptic Segmentation (PS)

The challenge of accurately separating and dividing objects with diverse and over-
lapping appearances remains an issue, particularly in the medical field. To address this,
many researchers have put forth proposals for a comprehensive and cohesive segmentation
of various details [308,309]. The focus has been on PS, which combines both instance and
semantic segmentation to identify and separate objects. In semantic segmentation, the goal
is to classify each pixel into specific classes, while in instance segmentation, the focus is on
segmenting individual object instances. AI has been incorporated into this model through
supervised or unsupervised instance segmentation learning, making it well suited for
medical applications (Figure 10). This has been demonstrated in works such as [310,311].

Semantic 
Segmentation

Feature 
Extractor

Instance 
Segmentation

Panoptic 
segmentation

Merging

Input thyroide tissue image

Figure 10. PS architecture.

8.6. Internet of Medical Imaging Things (IoMIT)

The IoMIT has recently gained widespread attention in the medical field, as it seeks to
enhance healthcare delivery and reduce treatment costs through the exchange of health
data between patients and doctors using connected devices with wireless communication
(Figure 11). One example of this integration can be found in [312], which proposes an
AI-based solution for the early detection of thyroid cancer in the IoMT, utilizing CNN to
improve the differentiation between benign and malignant nodules, ultimately saving lives.
Other relevant studies related to the IoMIT have also been conducted, such as [313,314].

8.7. Three-Dimensional Thyroid Cancer Detection (3D-TCD)

The conventional 2D ultrasound is widely used for diagnosing thyroid nodules, but
its static images may not accurately reflect the nodule’s structures. Hence, the use of 3D
ultrasound has gained attention as it provides a more comprehensive view of the lesion
by reconstructing its features and enabling a better differentiation between different diag-
noses [315]. With the ability to examine complex growth patterns and margins and to give
shape from multiple angles and levels, 3D ultrasound can provide a more accurate evaluation
of the morphological features of thyroid nodules in comparison to 2D images. This has been
confirmed through comparative studies between 3D and 2D ultrasound images [316–318].
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Figure 11. Example of a hybrid network system based on AI for thyroid cancer detection.

8.8. AI in Thyroid Surgery (AI-TS)

In light of the challenges faced in surgical procedures, the use of AI-powered robots
in surgical practices is becoming increasingly essential. AI has the potential to address
numerous clinical issues by analyzing and sharing massive quantities of data to support
decisions with a level of accuracy comparable to that of healthcare professionals [319].
Companies are incorporating AI into surgical practices by training AI-based systems and
providing robots that assist surgeons in operating rooms, supply surgical materials, handle
contaminated materials and medical waste, remotely monitor patients, and collect and
organize patient data such as electronic medical records, vital signs, laboratory results, and
video footage [320]. As such, it is important for surgeons to have a strong understanding of
AI in order to grasp its impact on healthcare. While AI-powered robotic surgery may still
be some time away, collaboration across various fields can accelerate AI’s capabilities and
improve surgical care [321–328].

8.9. Wavelet-Based AI

Recently, the wavelet transform, specifically the first and second-generation ones,
has gained recognition for its ability to detect various forms of cancer, especially when
integrated with AI. This combination has become crucial in the medical field, providing
doctors and surgeons with a tool to accurately diagnose diseases more efficiently and
quickly [329,330]. The proposed method is based on preprocessing the dataset through
DWT and then evaluating the performance of AI in classifying different types of tumors
that can impact organs in the body (as explained in Figure 12). This model holds great
potential for the detection of thyroid cancer and researchers are encouraged to test different
wavelets available in the literature to further improve its effectiveness [331].
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8.10. Learning with Reduced Data

One of the hurdles in implementing AI in the medical sector is acquiring adequate
data and annotations. AI’s capability to minimize the need for labeled data in making an
accurate diagnosis is crucial [332]. This can be achieved through various learning methods
such as semi-supervised learning, supervised learning, USL, or alternative approaches that
necessitate a smaller quantity of annotated data (Figure 13) [333].

START
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Dimensionality 

reductionClassification Clustering

Get more data Enough Thyroid
Cancer data

Predicting a category

Do you have Labeled data Predicting a quantity

No YesNoYes

Yes No

Yes

No

Figure 13. Diagram of the choice of AI-algorithms for thyroid cancer detection.

8.11. Recommender Systems (RSs)

The abundance of data collected from online medical platforms and electronic health
records can make it challenging for thyroid cancer patients to access relevant and accurate
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information [334]. The high cost of healthcare data also poses difficulties for doctors to
track patients and manage a large patient volume with various treatment options. Given
these challenges, the implementation of recommender systems (RSs) has been proposed to
improve decision-making in healthcare and ease the workload for both patients and oncol-
ogists [335,336]. The use of RS in digital health provides personalized recommendations,
an accurate analysis of big data, and stronger privacy protection through integration with
AI and machine learning technologies [337] as depicted in Figure 14.
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(4)

Patients

Data 
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Database (DB)
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Figure 14. RSs for thyroid cancer detection.

8.12. Federated Learning (FL):

FL has become very popular in the field of healthcare applications [338]. The sur-
rounding conditions greatly affect human health and cause negative effects on the economy.
Diseases of the thyroid gland are among the most common health problems that have
become noticeable among various groups of society in recent times. ML can play a vital
role in such medical conditions, as the collected data can be exploited to train an ML model
that can predict critical conditions. Emphasizing that patient data across different medical
centers should be handled privately, the FL setup is the natural choice for such applica-
tions, as depicted in Figure 15. Therefore, in [339], the authors compared the performance
of FL against five conventional deep learning methods (VGG19, ResNet50, ResNext50,
SE-ResNet50, and SE-ResNext50) for analyzing and detecting TCDs.

Central server

Hospital 1

Hospital N

Local training

Local training

Model 
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Thyroid datasets

Figure 15. FL for healthcare.
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8.13. Generative Chatbots

Most recently, the realm of AI has witnessed significant advancements, particularly
in the development of generative chatbots and large language models such as GPT vari-
ants [340]. These state-of-the-art models, trained on vast quantities of data, are adept at
generating humanlike text and engaging in coherent conversations, going beyond mere
predefined responses. As their capability has expanded, so too has their potential for
application across various domains, healthcare being one of the prominent ones. In the
healthcare sector, these sophisticated models are being explored for patient engagement,
preliminary symptom checks, providing health-related information, and even assisting
professionals with medical research and data analysis [3]. The integration of such technol-
ogy holds the promise of streamlining healthcare processes, enhancing patient experience,
and augmenting the capabilities of healthcare professionals, albeit with the necessary
precautions and ethical considerations in place [341].

Using generative chatbots or models such as ChatGPT to diagnose thyroid cancer
(or any medical condition) directly would be inappropriate and potentially dangerous.
However, they can be incorporated into healthcare settings in auxiliary roles [342]. Typically,
chatbots can gather preliminary information from patients, including their symptoms,
family history, and lifestyle habits. These data can provide a better understanding of
the patient’s concerns before they meet a healthcare professional. Moreover, they can be
programmed to provide information about thyroid cancer, such as risk factors, symptoms,
and preventive measures [343]. Patients can learn about the disease and its potential signs,
allowing them to approach healthcare providers if they find any matching symptoms.
Furthermore, while they cannot replace professional diagnostic tools, they can be designed
to guide users through a series of questions that could highlight potential risk factors or
symptoms, encouraging them to consult a medical professional for a more comprehensive
evaluation [344].

On the other hand, once a diagnosis has been made, chatbots can provide patients
with information on treatment options, side effects, diet recommendations, and answer
frequently asked questions. Additionally, they can (i) remind patients to take their medica-
tions, attend follow-up appointments, or perform regular self-examinations or monitoring,
(ii) offer support in terms of relaxation techniques, provide resources for further psycho-
logical support, or even just offer a nonjudgmental “listening ear”, and (iii) assist doctors
and other healthcare professionals by providing instant information about thyroid cancer,
recent research, or treatment options, acting as a dynamic reference tool [345].

9. Conclusions

In this research, a comprehensive overview of DNNs was presented, spotlighting
their ascendant trend in recent years owing to their superior accuracy compared to other
methodologies. An array of algorithms and training structures, inclusive of their bene-
fits and constraints, was delineated. DNNs are manifestly pivotal in myriad real-world
applications, particularly lauded for their generalizability and tolerance to noise.

Notwithstanding these advancements, barriers persist in fully adopting DNNs in thy-
roid cancer detection. A paramount obstacle is the absence of clean datasets and platforms.
To cultivate efficient and formidable cancer detection models capable of discerning more
advanced malignancies, these data constraints warrant meticulous attention.

Future research needs to be oriented towards circumventing these impediments and
enhancing thyroid cancer detection’s caliber. Furthermore, this study underscores the
urgency for amplified research endeavors in thyroid cancer identification, especially given
the diagnostic precision coveted by medical practitioners. While the detection of various
cancers in two or three dimensions is a burgeoning research area, the deficiency in ex-
pertise with diverse geometric transformations and the requisite dimensional databases
curtails the precision in diagnosing terminal illnesses. Hence, pioneering methodologies to
discern disparate magnitudes of cancerous nodules become indispensable. Such innova-
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tions can exponentially augment treatment velocity, diagnostic accuracy, enable proactive
epidemiological surveillance, and subsequently mitigate mortality rates.

Emerging technologies, namely explainable AI, edge computing, RL, PS, and RSs,
have unfurled novel research horizons in thyroid cancer detection. These innovations
are proving invaluable for clinicians by streamlining the diagnostic process, curtailing
detection time frames, and fortifying patient confidentiality. As a trajectory for future
endeavors, our focus will pivot towards a deeper probe into the contributions of these
avant-garde technologies. Our ambition is to foster a seismic paradigm shift in cancer
detection by ideating state-of-the-art, privacy-centric technologies for thyroid cancer patient
identification and broader applications, such as telehealth.
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AC Active contour
AI Artificial intelligence
ANN Artificial neural network
ATC Anaplastic thyroid carcinoma
BA Bootstrap aggregation
Bi-LSTM Bidirectional LSTM
BN Bayesian network
CAD Computer-aided diagnosis
CFS Correlation-based feature selection
CNN Convolutional neural network
CT Computed tomography
DAE Denoising autoencoder
DCG Discounted cumulative gain
DCNN Deep convolutional neural network
DDTI Digital Database Thyroid Image
DL Deep learning
DNN Deep neural network
DR Dimensionality reduction
DT Decision trees
DTCW Double-tree complex wavelet transform
DWT Discrete wavelet transfer
ELM Extreme learning machine
ER Error rate
FB Feature bagging
FL Federated learning
FNAB Fine-needle aspiration biopsy
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FTC Follicular thyroid carcinoma
GAN Generative adversarial network
GEO Gene expression omnibus
GLCM Gray-level co-occurrence matrix
HOG Histogram of oriented gradient
ICA Independent component analysis
IG Information gain
IoMIT Internet of medical imaging things
KM K-means
KNN K-nearest neighbors
LBP Local binary patterns
LR Logistic regression
LSTM lLong short-term memory
ML Machine learning
MLP Multilayer perceptron
MRI Magnetic resonance imaging
MRM MicroRNA regulatory module
MRR Mean reciprocal rank
MSE Mean squared error
MTC Medullary thyroid carcinoma
NCDR National Cancer Data Repository
PCA Principal component analysis
PLCO Prostate, Lung, Colorectal, and Ovarian
PM Probabilistic models
PS Panoptic segmentation
PSNR Peak signal to noise ratio
PTC Papillary carcinoma
RBF Radial basis function
RBM Restricted Boltzmann machine
RF Random forest
RL Reinforcement learning
RMSE Root-mean-square error
RNN Recurrent neural network
RS Recommender systems
SEER Surveillance, Epidemiology, and End Results
SL Supervised learning
SVM Support vector machine
TCD Thyroid cancer dataset
TCGA The Cancer Genome Atlas
TCL Traditional classification
TD Thyroid disease
TDDS Thyroid Disease Data Set
TG Thyroid gland
TIRADS Thyroid Imaging, Reporting, and Data System
TI-RADS Thyroid Imaging, Reporting, and Data System
TL Transfer learning
TN Thyroid nodules
USL Unsupervised learning
XAI Explainable AI
XAI Explainable artificial intelligence
XGBoost Gradient tree boosting
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280. Kobylińska, K.; Mikołajczyk, T.; Adamek, M.; Orłowski, T.; Biecek, P. Explainable machine learning for modeling of early
postoperative mortality in lung cancer. In Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable
Systems; Springer: New York, NY, USA, 2019; pp. 161–174.

281. Pintelas, E.; Liaskos, M.; Livieris, I.E.; Kotsiantis, S.; Pintelas, P. Explainable Machine Learning Framework for Image Classification
Problems: Case Study on Glioma Cancer Prediction. J. Imaging 2020, 6, 37. [CrossRef]

282. Lamy, J.B.; Sekar, B.D.; Guezennec, G.; Bouaud, J.; Séroussi, B. Intelligence Artificielle Explicable Pour le Cancer du Sein: Une Approche
Visuelle de Raisonnement à Partir de cas; EGC: Bruxelles, Belgique, 2020; pp. 457–466.

283. Poceviciute, M.; Eilertsen, G.; Lundström, C. Survey of XAI in Digital Pathology. Artif. Intell. Mach. Learn. Digit. Pathol. State-Art
Future Challenges 2020, 12090, 56.

284. Sayed, A.N.; Bensaali, F.; Himeur, Y.; Houchati, M. Edge-Based Real-Time Occupancy Detection System through a Non-Intrusive
Sensing System. Energies 2023, 16, 2388. [CrossRef]

285. Alsalemi, A.; Himeur, Y.; Bensaali, F.; Amira, A. An innovative edge-based internet of energy solution for promoting energy
saving in buildings. Sustain. Cities Soc. 2022, 78, 103571. [CrossRef]

286. Sayed, A.; Himeur, Y.; Alsalemi, A.; Bensaali, F.; Amira, A. Intelligent edge-based recommender system for internet of energy
applications. IEEE Syst. J. 2021, 16, 5001–5010. [CrossRef]

287. Charteros, E.; Koutsopoulos, I. Edge Computing for Having an Edge on Cancer Treatment: A Mobile App for Breast Image
Analysis. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin,
Ireland, 7–11 June 2020; IEEE: Washington, DC, USA, 2020; pp. 1–6.

288. Sufian, A.; Ghosh, A.; Sadiq, A.S.; Smarandache, F. A survey on deep transfer learning to edge computing for mitigating the
COVID-19 pandemic. J. Syst. Archit. 2020, 108, 101830. [CrossRef]

289. Chen, J.; Li, K.; Rong, H.; Bilal, K.; Yang, N.; Li, K. A disease diagnosis and treatment recommendation system based on big data
mining and cloud computing. Inf. Sci. 2018, 435, 124–149. [CrossRef]

290. Chai, X. Diagnosis Method of Thyroid Disease Combining Knowledge Graph and Deep Learning. IEEE Access 2020,
8, 149787–149795. [CrossRef]

291. Jagtap, P.; Jagdale, P.; Gawade, S.; Javalkar, P. Online Healthcare System Using the Concept of Cloud Computing. Int. J. Sci. Res.
Sci. Eng. Technol. IJSRSET 2016, 2, 943–946.

292. Anuradha, M.; Jayasankar, T.; Prakash, N.; Sikkandar, M.Y.; Hemalakshmi, G.; Bharatiraja, C.; Britto, A.S.F. IoT enabled cancer
prediction system to enhance the authentication and security using cloud computing. Microprocess. Microsyst. 2021, 80, 103301.
[CrossRef]
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