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Abstract: Developing a simple and efficient attack detection system for ensuring the security of cloud
systems against cyberthreats is a crucial and demanding process in the present time. In traditional
work, various machine-learning-based detection methodologies have been developed for securing
the cloud network. However, those methodologies face the complications of overfitting, complex
system design, difficulty understanding, and higher time consumption. Hence, the proposed work
contributes to the design and development of an effective security model for detecting cyberthreats
from cloud systems. The proposed framework encompasses the modules of preprocessing and
normalization, feature extraction, optimization, and prediction. An improved principal component
analysis (IPCA) model is used to extract the relevant features from the normalized dataset. Then, a
hybrid grasshopper–crow search optimization (GSCSO) is employed to choose the relevant features
for training and testing operations. Finally, an isolated heuristic neural network (IHNN) algorithm is
used to predict whether the data flow is normal or intrusive. Popular and publicly available datasets
such as NSL-KDD, BoT-IoT, KDD Cup’99, and CICIDS 2017 are used for implementing the detection
system. For validation, the different performance indicators, such as detection accuracy (AC) and
F1-score, are measured and compared with the proposed GSCSO-IHNN system. On average, the
GSCO-IHNN system achieved 99.5% ACC and 0.999 F1 scores on these datasets. The results of the
performance study show that the GSCSO-IHNN method outperforms the other security models.
Ultimately, this research strives to contribute to the ongoing efforts to fortify the security of cloud
systems, making them resilient against cyber threats more simply and efficiently.

Keywords: Internet of Things (IoT); smart city; intrusion detection system (IDS); cloud systems;
security; data preprocessing and normalization; improved principal component analysis (IPCA);
grasshopper–crow search optimization (GSCSO); isolated heuristic neural network (IHNN)

1. Introduction

Cloud computing on the Internet of Things (IoT) emerged as a revolutionary paradigm,
profoundly influencing a myriad of fields, including healthcare systems, military applica-
tions, education, and beyond [1,2]. Its allure originated from its inherent cost-efficiency
and remarkable reliability, which allowed organizations to scale their operations with
unprecedented flexibility. However, with the increasing reliance on cloud infrastructure,
there emerged an ominous and ever-present threat of cyberattacks [3–5]. These nefarious
assaults on digital infrastructure disrupt normal system operations, perpetrating malicious
activities that compromise data integrity, confidentiality, availability, and privacy.

In response to this growing menace, the imperative to fortify the security of cloud
networks has become paramount. Recognizing the urgency of safeguarding these systems
against cyberattacks, the concept of the intrusion detection system (IDS) was conceived [6,7].
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The role of an IDS is pivotal; it exists to identify and thwart network intrusions, serving
as the vigilant guardian of cloud systems. An IDS shoulders the responsibility of not only
repelling cyber threats but also upholding the integrity, confidentiality, availability, and
privacy of cloud-based operations [8,9].

In the annals of cybersecurity, various soft-computing approaches have been devised
as part of conventional efforts to establish effective IDS frameworks [10]. IDS systems
typically fall into two main categories: those employing anomaly-based detection and
those relying on signature-based detection methods to facilitate trust in communication
within cloud networks [11]. Among the arsenal of security models, those rooted in artificial
intelligence (AI) have gained prominence as they exhibit a propensity for delivering precise
IDS capabilities. Recent research endeavors have underscored the preeminence of machine
learning-based classification techniques for the prediction of network breaches. Integral to
the development of IDS frameworks are optimization approaches [12–14], which serve as
guiding lights in the selection of pertinent features for training and testing the classifier. For
applications related to the prediction and detection of network intrusions, a spectrum of
machine learning models exists, encompassing supervised, semi-supervised, and unsuper-
vised techniques [15–17]. While these methods have exhibited efficacy, they are not without
their shortcomings [18–20]. Common issues include the complexity of comprehension,
limitations in handling massive datasets, protracted processing times, substantial storage
requirements, and elevated error rates.

In light of these challenges, the focus of this research endeavor is to promote the
development of a streamlined, user-friendly strategy to secure cloud systems from cyber
threats. By harnessing the power of innovation, the aim is to bridge the gap between the
burgeoning complexity of modern cyber threats and the need for efficient, comprehensible,
and effective security solutions for cloud-based ecosystems. This paper introduces a novel
approach, combining the strengths of improved principal component analysis (IPCA),
grasshopper–crow search optimization (GSCSO), and isolated heuristic neural network
(IHNN) to create an IDS model that not only simplifies the security landscape but also
significantly enhances the resilience of cloud systems against cyber threats. The GSCSO-
IHNN system can find valuable applications in both smart cities and cybersecurity to
enhance security and threat detection. This research endeavors to align with the collective
mission of fortifying cloud system security, rendering them impervious to cyber threats,
while offering a streamlined and efficient approach to achieving this vital objective.

The motivation behind this research is to address the increasing sophistication of
cyberattacks in the ever-evolving landscape of cloud computing. It aims not only to prevent
attacks but also to fortify the security of stored and transmitted data in cloud systems. The
proposed method is designed to efficiently identify intrusions in network datasets while
minimizing computational complexity and maximizing operational effectiveness.

1.1. Major Contributions

The following are the main research goals of this work:

# To increase the quality of input network datasets, efficient data preprocessing and
normalization operations to ensure they are performed to produce noise-free data for
further processing.

# To obtain the relevant features used for predicting intrusions, an improved principal
component analysis (IPCA) mechanism is used.

# To optimally select the features based on the best optimal solution, a hybrid
grasshopper–crow search optimization (GSCSO) technique is employed.

# To identify whether the data flow is normal or intrusive, an isolated heuristic neural
network (IHNN) machine learning classification model is implemented.

# To evaluate the performance and outcomes of the proposed GSCSO-IHNN security
system, the most popular and publicly available benchmarking datasets are used.

This research proposes a framework for detecting intrusion in cloud computing envi-
ronments. The chosen methods aim to address specific challenges in intrusion detection
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within cloud computing environments. The adopted methods aim to improve data quality,
reduce dimensionality, optimize feature selection, and enhance classification accuracy,
ultimately strengthening the security infrastructure in cloud systems.

1.2. Paper Organization

The remainder of this paper is divided into the following sections: Section 2 presents
the background on machine-learning algorithms used in the previous studies, and Section 3
is used to briefly describe the various optimization and classification techniques used to
detect intrusions from cloud-based systems. It also investigates the advantages and disad-
vantages of existing techniques based on their characteristics and detection performance.
Section 4 provides a comprehensive description of the proposed methodology, including its
general workflow and algorithmic examples. Utilizing a variety of evaluation parameters,
Section 5 verifies the performance and efficacy of the proposed detection system. Section 6
contains discussions and potential future directions are described, and finally, the overall
paper is summarized in Section 7.

2. Background

Machine learning (ML) methods have significantly contributed to the enhancement
of cloud security by enabling the detection and mitigation of various cyber threats and
vulnerabilities. These ML techniques encompass a wide array of approaches, each tailored
to address specific security challenges. However, it is important to note that while ML
offers many advantages, it also comes with certain limitations and challenges that need to
be considered in cloud security applications. Supervised learning methods, such as support
vector machines (SVM) and random forest (RF), have been extensively used for intrusion
detection and classification in cloud systems. SVM seeks to find the optimal hyperplane to
separate normal from malicious activities, while RF leverages ensemble learning to improve
detection accuracy. However, supervised methods heavily rely on labeled training data,
which can be scarce and may not adequately represent the evolving nature of cyber threats
in the cloud. Additionally, the accuracy of these models can be compromised when faced
with adversarial attacks designed to deceive them. Unsupervised learning techniques,
including K-Means clustering and DBSCAN, are valuable for identifying anomalies and
patterns in cloud network traffic without the need for labeled data. They can uncover
unusual behavior that may indicate security breaches. Nevertheless, these methods can
produce false positives or miss subtle threats, and they often require careful tuning of
hyperparameters to achieve optimal results. Scaling these techniques to handle large and
complex cloud environments can also be computationally intensive.

Deep learning methods, such as convolutional neural networks (CNN), long short-
term memory (LSTM) networks, and autoencoders, have shown promise in cloud security
due to their ability to process sequential and high-dimensional data. CNNs are effective
at analyzing network traffic patterns, while LSTMs excel in time-series data analysis. Au-
toencoders are used for anomaly detection by learning to reconstruct normal data patterns.
However, deep learning models are data-hungry and require substantial computational
resources for training, making them less suitable for organizations with limited data or
computational capabilities. They also tend to be opaque, making it challenging to interpret
their decision-making processes.

Ensemble methods, such as gradient boosting and stacking, improve detection accu-
racy by combining multiple machine learning models. While these approaches generally
yield better results, they can be computationally expensive and may require extensive
feature engineering to be effective. Feature selection and engineering techniques, like PCA
and RFE, are employed to identify relevant features and reduce dimensionality in cloud se-
curity datasets. However, selecting the right features and transforming them appropriately
can be a time-consuming and manual process.

Hybrid approaches, which combine ML methods with optimization algorithms, aim
to improve both detection accuracy and efficiency. These approaches can be highly effective
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but may require expertise in multiple domains and can be complex to implement and
maintain. Reinforcement learning, although less common in cloud security, offers the
potential for developing adaptive systems capable of making real-time decisions in response
to evolving threats. However, it requires substantial training and may not be well-suited to
all cloud security scenarios.

Bayesian methods, including Bayesian networks and classifiers, provide a probabilistic
framework for modeling relationships in cloud security data. They aid in threat identifica-
tion and risk assessment by considering uncertainty. Nonetheless, Bayesian models can
become computationally expensive as the complexity of the network increases, and they
may not always capture complex, nonlinear relationships effectively.

In brief, machine learning (ML) methods have revolutionized cloud security by en-
abling automated threat detection and mitigation. However, they are not without limita-
tions, including the need for labeled data, potential susceptibility to adversarial attacks,
computational demands, and challenges related to model interpretability. The choice of ML
approach should be carefully considered based on the specific security task, available data,
and computational resources, and often a combination of methods is required to achieve
robust cloud security. As cloud security threats continue to evolve, ongoing research and
innovation in ML techniques will be essential to stay ahead of cyber adversaries.

3. Literature Review

This section provides a literature review of current approaches to cloud intrusion
detection and classification [21–23]. There is an examination of the pros and cons of
each method according to their own operational characteristics, important features, and
functional nature.

To ensure network security with a lower false alarm rate, Ravipatti et al. [24] created a
novel intrusion detection algorithm. In this setup, machine learning categorization is used
to keep an eye on potentially harmful network traffic. Here, the KDD Cup’99 dataset is
used to verify the quality of our work in terms of precision, recall, and recall error rate.
However, the system model may be incomprehensible since it does not use specialized
optimization and classification techniques for spotting anomalies. An exhaustive study
of intrusion detection and prevention methods was published by Khraisat et al. [25]. It
includes the methodologies of statistical techniques, knowledge-based techniques, and
machine learning techniques. Moreover, it suggested some of the recent and popular
intrusion datasets for validating the performance of IDS [26], which include the following:

# DARPA/KDD Cup’99.
# CAIDA.
# NSL-KDD.
# ADFA-LD/WD.
# CICIDS 2017.

According to the findings of this research, unsupervised machine learning approaches
outperform their supervised counterparts in terms of detection accuracy. By combining the
features of cuckoo search (CS) and particle swarm optimization (PSO), Ghosh et al. [27]
created a hybrid optimization approach for identifying intrusions in network datasets. This
work aims to improve the effectiveness of attack detection while reducing the complexity
of the classifier through feature optimization prior to detection. In addition, the optimized
feature set was used in conjunction with a number of machine learning-based classification
approaches, including linear regression (LR), adaBoost (AB), and random forest (RF),
to anticipate potential networking threats. Fewer resources were used, less time was
invested, and detection proficiency was high as a result of this effort. Using additional
high-dimensional datasets, however, it was unable to demonstrate the effectiveness of this
detection approach.

A trust-based intrusion detection and classification (TIDAC) system was developed by
Chkirbene et al. [28] to better identify abnormalities. Here, the filter and wrapper methods
were used to choose the characteristics for enhancing the classification procedure. After
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that, a soft combination mechanism was implemented to evaluate the credibility of nodes’
actions. Features are chosen and trained, initial decisions are made, and then all of these
decisions are merged into this framework. The incursions were also detected with the
use of two supervised learning mechanisms: naive Bayes (NB) and online average one
dependent estimator (AODE). However, this approach was limited by significant time
expenditure, difficulty in understanding, and increasing complexity in calculations. A
univariate ensemble-based classification model for network intrusion detection in cloud
systems was developed by Krishnaveni et al. [28]. The goal of this study was to determine
the optimal characteristics for enhancing classifier detection efficiency. In addition, it
made good use of a voting system to differentiate between benign and malicious forms
of communication. In addition, a paired t-test was run to verify the reliability of the
results obtained. The main advantages of this study were its high detection accuracy, high
performance, low error rate, and low dimensionality of features. The main drawback of
this work was the longer training period needed for the features.

To determine the best method for detecting intrusions, Kanimozhi and Prem Jacob [29]
examined the effectiveness and performance of several machine learning algorithms. Preci-
sion, accuracy, recall, f-measure, and error rate are used to verify the model’s performance;
ANN, RF, KNN, SVM, AB, and NB are all included. Using a model of hybrid semantic deep
learning architecture, Prabhakaran et al. [11] improved cloud system security against mali-
cious network attacks. This study combines LSTM, CNN, and SVM models into a single
framework called hybrid semantic deep learning (HSDL). In addition, the recommended
detection system’s resilience and accuracy were improved with the use of the crossover
mine blast optimization approach. However, this approach has significant limitations,
including higher time requirements, processing overhead, and diminished effectiveness.
An effective machine learning-based intrusion detection system (IDS) architecture was
presented by Aldallal et al. [30] to bolster cloud data security. In this case, the GA-integrated
SVM method was used to boost the system’s overall detection and safety capabilities. Both
high detection accuracy and low FPR are primary advantages of this method. Using a
distributed, multi-agent-based IDPS, Javadpour et al. [8] analyzed both typical and unusual
patterns in network traffic. The goal of this effort was to make cloud-based IoT systems
more resistant to cyberattacks.

To find cyberattacks in the cloud, Geetha et al. [26] used the Fisher kernel-based
principal component analysis (FKPCA). The primary goal of this effort was to improve
convergence times, precision, overfitting, and performance. In this case, the low-overhead
deep learning BiLSTM classification method is employed to detect intrusions. In order to
identify intruders in fog systems, Kumar et al. [31] devised an ensemble learning approach.
Building an IoT network that is both scalable and secure against contemporary assaults is
the primary focus of our study. In this case, the random forest (RF) method is employed to
provide the Internet of Things with a more robust layer of security. Preprocessing, feature
mapping, data imputation, optimization, and classification are the five phases that make
up this system.

Kilincer et al. [32] suggested a min–max normalization model for preprocessing the
given datasets to improve the classification accuracy. After that, machine learning-based
models were employed to predict the normal and abnormal attacking flows with minimal
mis-prediction outcomes. Asif et al. [33] deployed a map-reduce model for developing an
effective IDS for increasing the security of IoT networks. Shaji et al. [34] discussed overall
monitoring and data gathering in cyberphysical systems that are performed by supervisory
control and data gathering systems, which are the primary targets of attackers in order to
make cyberspace applications unworkable. The goal of this study was to strengthen the
network’s defenses against hackers. The effectiveness of IDS detection has also been verified
using various data categorization algorithms. This study comprised a literature review and
concluded that the existing research focuses mostly on developing effective IDS models to
protect computer networks against exploits and other forms of cybercrime. A high false
alarm rate, a lengthy training period, complicated computations, and substantial processing



Systems 2023, 11, 518 6 of 30

overhead were all challenges. Because of this, the study encourages the creation of a hybrid
optimization-integrated machine learning classifier for the purpose of identifying attacks
on cloud-based infrastructure.

As highlighted in Table 1 of the literature review, the existing techniques exhibit
significant shortcomings, such as heightened latency, reduced detection efficacy, elevated
energy consumption, and prolonged processing durations. To address these challenges,
this research endeavors to formulate an effective intrusion detection method aimed at
enhancing the security of IoT networks.

Table 1. A literature review of several research works related to intrusion detection and attack
classification in IoT (Internet of Things) networks.

Cited Purpose Methodology Results Limitations

[24]—Ravipatti et al.
Develop intrusion detection

algorithm with lower
false alarms

Machine learning using KDD
Cup’99 dataset

Achieved precision, recall,
recall error rate

Lack of specialized
optimization, model

complexity

[25]—Khraisat et al. Conduct exhaustive study of
intrusion detection methods

Overview of statistical,
knowledge-based, machine

learning using several
intrusion datasets, including

DARPA/KDD Cup’99,
CAIDA, NSL-KDD,

ADFA-LD/WD, and
CICIDS 2017.

Unsupervised ML
outperforms supervised Not mentioned

[27]—Ghosh et al.
Develop hybrid optimization

approach for
intrusion identification

Combine cuckoo search and
particle swarm optimization

with ML

Reduced resource usage, high
detection proficiency

Effectiveness not
demonstrated with

high-dimensional data

[28]—Chkirbene et al.
Develop trust-based intrusion

detection and
classification system

Feature selection, supervised
learning (NB, AODE)

Significant time
and complexity

Prolonged
processing durations

[28]—Krishnaveni et al.
Create univariate
ensemble-based

classification model

Optimal feature selection,
voting system

High detection accuracy, low
error rate Longer training needed

[29]—Kanimozhi and
Prem Jacob

Examine machine learning
algorithms for

intrusion detection

Evaluate model performance
using various metrics Not mentioned Reduced detection efficacy

[11]—Prabhakaran et al.
Improve cloud system

security with hybrid semantic
deep learning

Combined LSTM, CNN, SVM Enhanced detection, higher
time requirements

Increased
processing overhead

[30]—Aldallal et al. Present effective ML-based
IDS for cloud data security Integrates GA and SVM High detection accuracy Reduced detection efficacy

[8]—Javadpour et al.
Analyze network traffic

patterns using distributed
multi-agent IDPS

Focus on IoT systems Not mentioned Heightened latency

[26]—Geetha et al.
Use Fisher kernel-based PCA

to detect cyberattacks in
the cloud

Improve convergence
times, precision Not mentioned Prolonged

processing durations

[31]—Kumar et al.
Devise ensemble learning

approach for fog systems and
IoT networks

Employ random forest for
robust IoT security Not mentioned Reduced detection efficacy

[32]—Kilincer et al.
Suggest min–max

normalization model for
dataset preprocessing

Machine learning for normal
and abnormal flow prediction

Minimal
mis-prediction outcomes Reduced detection efficacy

[33]—Asif et al.
Deploy map to reduce model

for effective IoT
network security

Not mentioned Not mentioned Prolonged
processing durations

[34]—Shaji et al. Strengthen network defenses
in cyber-physical systems

Verify IDS detection with
data categorization

Challenges of high false
alarms, lengthy training,

computational complexity
Reduced detection efficacy

[35]—Dua et al.
Mitigate network security

vulnerabilities due to
network expansion

Attribute selection and
ensemble classifier High accuracy Dataset dependency,

generalization and scalability

[36]—Mann et al. Hybrid clustering algorithm
for grouping GPS coordinates

K-means clustering and
BIRCH (balanced iterative

reducing and clustering
using hierarchies)

Effectiveness Clustering large
unsupervised cab datasets
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4. Materials and Methods
4.1. Proposed Framework

Cloud computing is a modern and more convenient way to store, access, and man-
age data. It is built on the idea of efficiently allocating resources, which ensures efficient
computing, cost-effectiveness, scalability, and a high-quality service. However, with the in-
creasing cyberattacks, it is not enough to prevent them. It is equally important to strengthen
the security infrastructure to protect both stored and transmitted data. Vulnerabilities in
cloud management can lead to disruptive attacks and data loss. This section proposes
an intrusion detection mechanism that can safeguard cloud systems. The research uses
innovative methodologies tailored for the efficient identification of network intrusions
within datasets. It achieves this objective by mitigating computational complexity and
optimizing operational efficiency. The research aims to secure cloud-based infrastructure
and mitigate the challenges posed by the dynamic realm of cloud computing and the esca-
lating sophistication of cyberattacks. This requires a multifaceted approach that synthesizes
resource efficiency, state-of-the-art intrusion detection techniques, and an unwavering
commitment to data security. The steps in the proposed system’s workflow are shown in
Figure 1.
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(1) Dataset collection;
(2) Preprocessing and normalization;
(3) Feature extraction;
(4) Hybrid feature optimization;
(5) Machine learning-based classification;
(6) Performance evaluation.

The system commences with the acquisition of well-established and emerging net-
work intrusion datasets, including NSL-KDD, BoT-IoT, KDD Cup’99, and CICIDS 2017.
These datasets are foundational for the development and operationalization of the system.
However, it is noteworthy that these benchmark datasets often present certain challenges,
notably unbalanced attribute distributions, which can potentially compromise the accuracy
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of classification outcomes. Therefore, to ensure the reliability of subsequent analyses, it
is imperative that a series of preprocessing and normalization procedures be diligently
applied. Preprocessing encompasses a multifaceted approach, including noise reduction,
data rebalancing, identification of missing data fields, and standardization of attribute val-
ues. These preprocessing steps collectively serve the vital function of enhancing the overall
quality and coherence of the datasets. By reducing noise and addressing data imbalances,
the integrity of the data is safeguarded, laying a robust foundation for further analysis.

Subsequently, a feature extraction model is employed, primarily relying on the im-
proved principal component analysis (IPCA). Feature extraction is a pivotal stage in the
data processing pipeline, aimed at isolating pertinent information and reducing dimension-
ality. IPCA, a well-established technique, is leveraged for its ability to mitigate overfitting
issues and also the impact of correlated features [37]. Through IPCA, the most salient
attributes are distilled from the data, ensuring that only the most informative elements
are retained for subsequent phases. IPCA is designed to reduce the dimensionality of
data while retaining relevant information. This leads to more accurate intrusion detection
by focusing on the most informative features. This addresses challenges faced by prior
research by utilizing more effective feature selection and extraction methods leading to
higher accuracy rates [38].

Furthermore, the process incorporates a unique dimension of optimization in the form
of a hybrid approach, aptly named grasshopper and crow search optimization (GSCSO).
This hybrid method plays a pivotal role in feature selection, a task of paramount importance
in intrusion detection [39]. Notably, the selection of optimal features is instrumental in
balancing the computational complexity of the system while ensuring the efficacy of the
detection mechanism. Given that training and testing classifiers on extensive datasets
can be time-consuming, feature optimization becomes a critical aspect of enhancing the
system’s efficiency. This addresses issues faced by traditional feature selection methods,
which struggle with large datasets or fail to balance accuracy and computational complexity.
It also addresses the resource constraints in cloud environments where traditional intrusion
detection systems struggle to efficiently utilize available resources [40].

To complement these processes, the framework integrates a state-of-the-art machine
learning model known as the isolated heuristic neural network (IHNN). IHNN serves as
the cornerstone for determining the nature of data flows, categorizing them as benign or
potentially malicious. This classification capability is of paramount importance in intrusion
detection systems, as it empowers the system to make informed decisions about network
activity [41]. IHNN’s distinctive advantage lies in its expeditious and efficient operation,
characterized by high convergence rates and detection accuracy. Conventional rule-based
or signature-based methods are not as effective in identifying novel and sophisticated
attacks. They also suffer from delays in processing and decision-making, which can impact
their effectiveness in real-time scenarios [42].

This comprehensive approach holds significant promise in the realm of cloud in-
trusion detection. By addressing the challenges posed by unbalanced datasets and opti-
mizing feature selection, it endeavors to enhance the system’s ability to accurately and
swiftly identify network intrusions within cloud-based infrastructure. The amalgama-
tion of data preprocessing, feature extraction, hybrid optimization, and machine learning
classification underscores the potential to bolster cybersecurity in contemporary cloud
computing environments.

4.1.1. Preprocessing

In this work, various intrusion benchmark datasets like CICIDS 2017, BoT-IoT, and
NSL-KDD are collected as inputs for system implementation. Normally, the original
datasets comprise incomplete and missing fields of information, which affects the perfor-
mance of classification and detection efficiency. Therefore, preprocessing and normalization
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operations are essential before classification. The overall process of preprocessing step is
presented in Algorithm 1. In this model, the distance is initially estimated as shown below:

IDatad
i [x, n] =

√
(IDatai[k]− IDatai[x + n])2 (1)

where IDatai is the incomplete data, n = 1, 2, 3, . . . , a − 1; IDatad
i denotes the distance.

Based on this, the minimum distance is estimated for all attributes exist in the dataset by
using the following model:

IDatai
m[x] = min(IDatad

i [x, :]) (2)

Based on this model, the minimum distance value is estimated and equated with the
onset value for the particular attribute. Consequently, the data are normalized, and missing
data are assigned for generating the filtered dataset.

Algorithm 1 Preprocessing and Normalization

Input: Incomplete data IDatai with Feature dimension X;
Output: Normalized data FDi ;
Step 1: Initially, the distance is estimated according to the dimensionality of the given data.

for n = 1 to X
Estimate the distance IDatad

i [x, n] as shown in Equation (1).
end for;

Step 2: Then, the minimum distance is estimated for all attributes in the dataset.
for n = 1 to X
Estimate the distance IDatai

m [x] as shown in Equation (2).
end for;

Step 3: After that, the minimum value is estimated and compared.
for n = 1 to X

i f IDatai
m [x] < Gn

i f IDatai [n, x] == null
IDatai [n, x] = IDatai

m [x]
end if

else
IDatai [n, x] = mean(IDatai [n, :])

end if
end for;
Step 4: Moreover, the redundant attribute fields are eliminated.

for x = 1 to X
//The repeated elements repeatedElements(.) in the particular attribute are computed.

if rE(IDatai [x, :]) > 2 and rE(IDatai [x, :]) ≤ 4
indexr = f ind(rE(IDatai [n, :]))
I[n, indexr ] = Standard Deviation(IDatai [x, :])

else i f rE(IDatai [x, :]) > 4
IDatai [x, n] = skewness(IDatai [x, :])

end i f
end f or
Step 5: Based on the above calculations, the final normalized dataset is produced as the output.

f or n = 1 to X
IDatain [x, :] = IDatai [n, :]

end for

4.1.2. Improved Principal Component Analysis (IPCA)

After obtaining the filtered dataset, an IPCA technique is deployed to extract the
most appropriate features for increasing the presentation of the classifier. It is one of the
most popular and efficient techniques widely used in many application systems due to the
benefits of reduced overfitting, high performance, and elimination of correlated features.
During this operation, the filtered data FDi are considered as the input for processing, and
the extracted features ExaFData are produced as the output. Here, the center of data matrix
Ceni is calculated for each characteristic of the dataset as a function of the overall size of
the sample.

Ceni =
1
S
(FDj

i

(
FDj

i

)G
) (3)
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where S is the number of samples; j indicates the iterations; Ceni is the centered data matrix.
According to the data dimensionality Ds, the eigen vector and eigen values are estimated
by using the following models:

[VEi
i, Ei] = eigen(Ceni, Ds) (4)

where VEi
i indicates the eigen vector, and Ei is the eigen values. Finally, the extracted set of

features are in the following form:

ExaFData = (VEi
i)

T
Imi

D (5)

The stages of the algorithm used in the PCA-based feature extraction approach are
presented in Algorithm 2 as:

Algorithm 2 Principal Component Analysis

Input: Imputed data FDi ;
Output: Extracted features ExaFData ;
Step 1: Initially, the center of data matrix is estimated for all the attributes in the filtered data by using Equation (3).
Step 2: According to the dimensionality of data, both the eigen vectors and values are computed for the center of matrix
by using Equation (4).
Step 3: Based on the estimated values, the final complete set of results consists of feature extractions from the dataset
of ExaFData ;

4.1.3. Grasshopper—Crow Search Optimization (GSCSO)

The proposed research introduces an innovative hybrid optimization technique, called
grasshopper–crow search optimization (GSCSO), to discern the most pertinent features for
classifier training and testing after feature extraction. In the realm of intrusion detection
systems (IDS), various bio-inspired and nature-inspired optimization methodologies have
been utilized to solve intricate problems and obtain optimal solutions. However, these
methods often face challenges such as sluggish convergence rates, constrained diversity in
solutions, meager exploitation capabilities, and an unwieldy number of iterative processes.
To overcome these issues, the GSCSO approach integrates highly efficient and widely
recognized optimization techniques to facilitate the selection of optimal features from the
pool of extracted feature data. The GSCSO approach offers several benefits, including an
optimized subset of features, high proficiency and accuracy, efficient avoidance of local
optima, and minimal iterative steps to reach optimal solutions. The merits of the GSCSO
approach are manifold:

a. Optimized subset of features: GSCSO meticulously identifies a subset of features
that contribute most effectively to the classification task, enhancing the efficiency of
intrusion detection.

b. High proficiency and accuracy: By strategically selecting features, GSCSO signifi-
cantly bolsters the accuracy and proficiency of intrusion detection systems, reducing
the likelihood of false positives and negatives.

c. Efficient avoidance of local optima: The GSCSO method adeptly navigates solution
spaces, evading the trap of local optima, and is particularly adept at exploring diverse
solution landscapes.

d. Minimal iterative steps to reach optimal solutions: GSCSO streamlines the process
of identifying the most suitable feature set, achieving optimal results with fewer
iterative steps compared to conventional optimization techniques.

To explain the workings of this method, an initial population is generated after estab-
lishing the search space and relevant parameters. Then, fitness functions for the searching
agents are computed, and the average fitness value is determined to identify the most
favorable solution. Optimal threshold values are derived for each component based on the
computed value. These threshold values are instrumental in selecting features for both the
training and testing phases of the classifier, thereby improving the overall performance and
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efficiency of the intrusion detection system. The working model of the proposed GSCSO
technique is shown in Figure 2 and explained in Algorithm 3.
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In this technique, the input parameters such as dimension d, random population P,
and fitness function for each solution pi = 1, 2, . . . N are initialized at first. After that,
each solution is transformed into the binary value according to the thresholds ρ ∈ [0, 1] as
shown below:

pk+1
i =

{
1 i f 1

1+e−pk
i
> ρ

0 Otherwise
(6)

Based on this function, the particular elements having the binary value of 1s are chosen
for representing the selected features. Then, the minimal objective function is estimated as
shown below:

f (pk
i ) = εErrpk

i
+ (1− ε)

|pk
i |

|NF| (7)

where Errpk
i

indicates the error rate; pk
i denotes the length of subset; NF is the total number

of input features. Consequently, the constant parameters ε ∈ [0, 1] and (1− ε) are initialized
for balancing the number of features according to the error rate of classifier. Moreover, the
probability is estimated for each function as represented below:

Pbi =
fi

∑PS
i=1 fi

(8)

where Pbi is the probability value; PS denotes the size of population. If the value of
probability Pbi is greater than 0.5, the GS optimization is performed; otherwise, the CSO is
performed. Moreover, the fitness value is computed for the updated solution, and based on
this, the best optimal solution is identified. Then, this process is repeated until reaching the
stopping criterion kmax.
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Algorithm 3 GSCSO-based Feature Selection

Begin
Initialize the size of population PS, and maximum number of iterations kmax;
Initialize the input parameters of grasshoppers as,

GSi = 1, 2, . . . PS;
Then, the fitness value is determined for the initial grasshoppers.

Initialize the mth magnitude of GS objective function Ĝm and the best fitness value Bfit
While (k < kmax)

Estimate the fitness value according to the boundary value.
The position and best fitness functions are updated.
Then, the center controlling Cencon parameter is computed as follows:
Cencon = Cenmax − h Cenmax−Cenmin

H
//Where Cenmax and Cenmin are the maximum and minimum values correspondingly, h is the current iteration, and

H denotes the cumulative number of iterations.
For i = 1 to n

The probability value is estimated by using Equation (8).
If (pb > 0.5)

The GS optimization is performed based on updating of the position.
Else

The CSO is performed based on updating of the position.
End if;

End for;
The probability value is restored.

The fitness function is computed for identifying the best optimal solution.
k← k + 1 ;
End while

End;

4.1.4. Isolated Heuristic Neural Network (IHNN)

The features are then provided to the classifier for training and testing activities,
where they contribute to an accurate label prediction. As the step in IDS responsible for
determining whether a given flow is benign or malicious, categorization is crucial. In the
previous studies, network intrusions or abnormalities were detected using a variety of
machine learning-based categorization techniques. Neural networks (NN), support vector
machines (SVM), naive Bayes (NB), multilayer perceptrons (MLP), LR, RF, and DT are
some of the most commonly used methods for predicting attacks on cloud network security.
However, it has issues with overlapping, being computationally costly and inefficient, and
being unable to handle huge dimensional datasets. As a result, the suggested work aids in
the creation of a new IHNN model for classifying the flow of data as either normal or an
attack, based on the best attributes. The IHNN is a machine learning classification approach
widely used to prevent attacks on cloud infrastructure. Training and testing procedures
take advantage of the optimized set of features.

In this technique, the feature vectors and its weight values are initialized at first based
on the following models:

FV = ( f v1, f v2, . . . , f vn) (9)

ω = (ω1, ω2, . . . , ωn) (10)

where f v1, f v2 . . . f vn are the feature vectors obtained from the optimized feature set; n is
the total number of features; ω1, ω2, . . . , ωn are the weight values. After that, the smoothing
parameter is computed to trigger the activation function as represented below:

f (FV) = exp

(
(ωi − f v)k − (ωi − f v)

2× ∂2

)
(11)

where k indicates the current iteration; ∂ denotes the smoothing parameter. Moreover, the
multiclass prediction is enabled by using the following equation:

(yixclassixDFi) >
(
yjxclassjxDFj

)
∀i 6= j (12)

where yi and yj are the preceding prospect; classi and classj are the misclassifying object
that belongs to classes i and j; DFi and DFj are the probability density function of classes
i and j.
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Moreover, the Bayes rule is constructed for each class i and j by using the
following model:

Bi(FV) > Bj(FV) ∀i 6= j (13)

By using this rule, the best classification decision is made according to the probability
density function as represented below:

BiBi(FV) =
1

si × ∂ ∑si
l=1

FV − f vir
∂

(14)

where f vir is the input features of lth training input. Moreover, the Euclidean distance is
computed to train the samples, and the Gaussian function is utilized as the weight function,
which is estimated by using the following model:

Bi(FV) =
1

si × ∂ ∑si
l=1 exp

(FV− f vil )
2

∂2 (15)

According to this model, the classifier predicts the output data flow as normal or
intrusion with minimal training and testing time.

Ŵj =
Ŵj

∑Ǹ
r=1 Ŵr

∀ j = 1, 2, . . . , Ǹ (16)

The final classified prediction result δA is represented below:

δA = argmax
k

∑
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By using this label, the type of intrusion is exactly recognized from the dataset, and
the performance evaluation is carried out to test the efficacy of predicted result.

5. Experimental Results

The initial stage of this research entails gathering intrusion benchmark datasets such
as CICIDS 2017, BoT-IoT, and NSL-KDD. These datasets frequently contain incomplete
or absent data, which can adversely affect the performance of classification and detection
tasks. It is imperative to perform preprocessing and normalization procedures to rectify
these issues and ensure the data’s quality for training and testing machine learning models.
Following preprocessing, improved principal component analysis (IPCA) is utilized to
extract the most pertinent features from the refined dataset. IPCA is renowned for its
capacity to reduce overfitting and eliminate correlated attributes, with the aim of enhancing
classifier performance by selecting a subset of features that encapsulates the most crucial
dataset information.

Subsequently, a novel hybrid optimization approach called grasshopper–crow search
optimization (GSCSO) is introduced. This technique is specifically designed to choose
the most relevant features for classifier training and testing. GSCSO offers numerous
advantages, including optimized feature subsets, high efficiency, avoidance of local optima,
and superior accuracy compared to traditional optimization methods like the particle
swarm optimization (PSO) and genetic algorithm (GA).

The chosen features are then utilized for training and testing the classifier, where
precise label prediction is pivotal for intrusion detection. The isolated heuristic neural
network (IHNN) model is proposed for classifying data flows as normal or malicious based
on the selected features. IHNN tackles issues encountered in other classification techniques,
such as overlapping, computational cost, and handling large-dimensional datasets. The
performance of the GSCSO-IHNN methodology is extensively assessed using various
metrics and datasets. Confusion matrices are generated to evaluate the classifier’s accuracy
in predicting normal and attacking data flows while minimizing false positives. ROC
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curves are employed to gauge the effectiveness and detection performance of the attack
prediction model.

This study compares the proposed GSCSO-IHNN approach with existing optimization-
based classification methods, using metrics such as accuracy, precision, sensitivity, and
F1-score. The results consistently demonstrate that the GSCSO-IHNN method surpasses
competing techniques, showcasing its superiority in both training and testing scenarios
across multiple datasets, including KDD Cup’99, BoT-IoT, NSL-KDD, and CICIDS 2017.

5.1. Statistical Analysis

Several performance metrics were utilized to assess and evaluate the classification
predictions. Commonly, parameters such as detection rate, accuracy, precision, recall, and
F1-score are employed to validate the outcomes of the proposed security model. The
effectiveness of identifying relationships among variables largely hinges on the model’s
accuracy. In this section, many criteria were used for testing and confirming that our
proposed GSCSO-IHNN-based attack detection model works as intended. Additionally,
state-of-the-art network intrusion datasets including KDD Cup’99, NSL-KDD, BoT-IoT, and
CICIDS 2017 were used to verify the system’s performance. In this study, many distinct
kinds of parameters were calculated. The assessment of a specific class can be expressed
using the following equation:

Detection rate =
TP

TP + FN
(18)

Accuracy =
TP + TN

TP + FP + FN + TN
(19)

FPR =
FP

FP + TN
(20)

It assesses the number of correct positive predictions a model has made by com-
paring them to the actual positive estimations, and precision is determined using the
following formula:

Precision =
TP

FP + TP
(21)

It indeed includes a positive rate, which quantifies the number of pessimistic forecasts
categorized by the model when compared to the true positive values in the actual data.

Recall =
TP

FN + TP
(22)

Furthermore, the F1-score is a composite and mean value of both precision and recall,
and it is calculated as demonstrated below:

F1−measure = 2× Precision× Recall
Precision + Recall

(23)

where

# TP (true positive) represents correctly predicted positive instances.
# TN (true negative) represents correctly predicted negative instances.
# FP (false positive) represents instances that were incorrectly predicted as positive.
# FN (false negative) represents instances that were incorrectly predicted as negative.

5.2. Results Analysis

Figures 3–6 validate the confusion matrix generated for the datasets by using the
proposed GSCSO-IHNN methodology. Typically, the confusion matrix is generated to
analyze how the classifier could accurately predict the number of normal and attacking
data flows with fewer false positives. In this step, the confusion matrices are calculated
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for each class in the dataset based on the total, true, false, and missing values. The
projected findings show that the suggested GSCSO-IHNN method, with the right amount
of optimization, training, and testing, can reliably identify the attacking classes at a high
detection rate.
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The ROC curves for the proposed detection model on the NSL-KDD and BoT-IoT
datasets are shown in Figures 7 and 8, respectively. To measure the attack prediction
model’s effectiveness and detection performance, the ROC is considered, which is directly
proportional to the true TPR and FPR. This evaluation shows that the suggested GSCSO-
IHNN method accurately predicts the attacking classes. Due to the proper normalization
and feature extraction procedures, the error rate of classification is highly reduced in the
proposed system, which helps to obtain improved results.
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Traditional [34] and suggested optimization-based classification approaches for the
KDD Cup’99 dataset have their training-phase accuracy, sensitivity, precision, and F1-score
verified in Figure 9a. In addition, Figure 9b verifies and contrasts the testing categorization
findings. PSO, WOA, BAT, TSO, GWO, FFA, MVO, MFO, Aquila, and the planned GSCSO-
IHNN are all evaluated. The detection efficiency and attack detection performance of the
techniques are often validated using the accuracy, precision, sensitivity, and F1-score. Better
system performance may also be ensured by adjusting the values of these parameters.
As can be seen from the findings, the suggested GSCSO-IHNN method improves upon
the state-of-the-art approaches in both training and testing scenarios. Moreover, similar
trends are observed on the BoT-IoT, NSL-KDD and CICIDS 2017 datasets, as shown in
Figures 10–12, respectively. Because the proper dataset normalization could efficiently
remove the redundant and missing fields of attributes, which greatly improves the quality
of the data before prediction, these measures are also estimated and compared for other
datasets to prove the efficacy of the proposed system.
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Figure 9. (a) Testing performance of KDD Cup’99 dataset; (b) testing performance of KDD
Cup’99 dataset.
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Traditional [43] and suggested classification approaches for the NSL-KDD dataset are
compared for detection rate and accuracy in Figure 13. One of the key indicators used to
measure a security system’s effectiveness is its detection rate. The goal of this effort is to
safeguard cloud-based data by identifying malicious activity. Here, the enhanced detection
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rate offered by the suggested GSCSO-IHNN method is used to verify the degree of security.
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In the same way, the FPR is estimated for various IDS approaches, as shown in
Figure 14. Based on the findings, the suggested method is superior to the alternative IDS
mechanism because of its higher detection rate, higher accuracy, and lower false positive
rate (FPR). Furthermore, as seen in Figures 15 and 16, these parameters are computed and
compared using the KDD Cup’99 dataset. The overall results indicate that the GSCSO-
IHNN technique efficiently improves performance values with the help of hybridized
optimization and classification models.
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The detection accuracy of the proposed attack detection system is compared to that
of the existing [44] system in Table 1. This study also shows that the suggested method
accurately predicts intrusions, providing a higher detection accuracy than competing
methods. Table 1 provides a crucial comparison of the detection accuracy percentages
for several methods used in the research, all aimed at enhancing the security of cloud
systems against cyber threats. Detection accuracy is a fundamental metric in evaluating the
effectiveness of intrusion detection systems (IDS), as it measures how well these systems
can correctly identify and classify potential threats.

The first entry in the table represents the detection accuracy achieved by an ensemble
classifier (EC), which is a machine learning technique that combines multiple classification
models to improve overall accuracy. In this case, the ensemble classifier achieved a detection
accuracy of 99.17%. This implies that it accurately identified 99.17% of cyber threats within
the dataset, showcasing its effectiveness in threat detection. The second entry highlights the
performance of the random forest (RF) algorithm. RF is a widely used ensemble learning
method that combines decision trees to enhance classification accuracy. It achieved a
slightly higher detection accuracy of 99.40%, indicating its proficiency in identifying and
classifying cyber threats. Next, a different approach is used, which involves the use of
clustering algorithms—K-means and BIRCH. Clustering algorithms are typically used
for grouping similar data points together, which can be valuable for identifying patterns.
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However, this method achieved a detection accuracy of 96.30%, which is slightly lower
than the previous classification-based techniques.

The proposed system achieved a detection accuracy, through encompassing prepro-
cessing, improved principal component analysis (IPCA), grasshopper—crow search opti-
mization (GSCSO), and isolated heuristic neural network (IHNN), which was the highest
detection accuracy among all the techniques evaluated in the study, achieving an impressive
99.5%. This exceptional accuracy underscores the effectiveness of the proposed approach
in detecting and classifying cyber threats within cloud systems. In summary, Table 2 serves
as a critical benchmark for assessing the performance of various methods in the context
of cloud security. It demonstrates that the proposed method significantly outperforms
the other techniques, offering a high level of accuracy in identifying and classifying cyber
threats. This finding is particularly valuable for enhancing the security of cloud systems,
as it indicates that the proposed approach is well-suited for effectively countering cyber
threats and ensuring the integrity and reliability of cloud-based operations.

Table 2. Detection accuracy analysis.

Attack
5 Features 10 Features

Accuracy Precision Detection Rate F1-Score FPR Accuracy Precision Detection Rate F1-Score FPR

DoS 99.30 92.57 68.84 92.22 0.123 99.40 97.57 91.84 96.90 0.026
Scan 99.99 99.99 99.99 99.99 0.001 99.99 99.99 99.99 99.99 0.001
MC 99.99 99.97 99.99 99.99 0.004 99.98 99.99 99.99 99.99 0.001
MO 99.92 99.98 92.54 93.18 0.001 99.99 99.99 99.99 99.98 0.002
Spy 99.93 92.75 91.78 98.9 0.007 99.99 99.99 99.98 99.99 0.001
Probe 99.99 99.99 99.99 99.9 0.001 99.99 99.99 99.99 99.99 0.001
WS 99.99 99.99 99.99 99.99 0.002 99.99 99.99 99.99 99.99 0.001

Table 3 presents a detailed analysis of the overall optimized features for the GSCSO-
IHNN system, focusing on the system’s performance in detecting different types of cyber
threats. The table provides information on the detection accuracy, precision, detection
rate, F1-score (a measure of accuracy that considers both precision and recall), and false
alarm rate (FAR) for two scenarios: one with five optimized features and another with ten
optimized features. The table is organized for both scenarios (five features and ten features)
as follows:

Table 3. Overall optimized feature analysis of the GSCSO-IHNN system.

Methods Detection Accuracy (%)

Ensemble Classifier [35] 99.17
RF [31] 99.40
K-means + BIRCH clustering [36] 96.30
Proposed 99.5

This metric measures how accurately the GSCSO-IHNN system identifies each type of
attack. It represents the percentage of correctly classified instances out of the total instances.
For example, in the “DoS” category, with five optimized features, the accuracy is 99.30%,
indicating that the system correctly identifies 99.30% of DoS attacks. Precision reflects the
ratio of true positives to the total predicted positives. It measures the accuracy of positive
predictions. In the “DoS” category with five optimized features, the precision is 92.57%,
which means that out of all instances predicted as DoS attacks, 92.57% were true positives.
Detection rate, also known as recall, measures the system’s ability to correctly identify true
positive instances among all actual positive instances. In the “DoS” category with five
optimized features, the detection rate is 68.84%, indicating that the system detects 68.84%
of all actual DoS attacks. The F1-score is a balanced measure that considers both precision
and recall. It provides an overall assessment of the system’s accuracy. For instance, in the
“DoS” category with five optimized features, the F1-score is 92.22%. The FPR represents
the proportion of false alarms generated by the system, indicating how often the system
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mistakenly identifies normal instances as attacks. Lower FPR values are desirable. For
example, in the “DoS” category with five optimized features, the FPR is 0.123%.

Overall, Table 3 offers a comprehensive evaluation of the GSCSO-IHNN system’s
performance in detecting various types of cyber threats. It demonstrates that the system
performs exceptionally well in terms of accuracy, precision, detection rate, and F1-score
for different attack categories. Additionally, the FPR values are generally low, indicating a
low rate of false alarms. This suggests that the GSCSO-IHNN system is highly effective in
accurately identifying and classifying cyber threats in cloud systems, which is crucial for
enhancing cloud security.

5.3. Comparisons with ML Methods

The GSCSO-IHNN system combines feature optimization, high accuracy, and reduced
false alarms to offer a robust and efficient solution for intrusion detection in cloud systems.
While deep learning methods like CNN, RNN, LSTM, and Autoencoders have their merits,
GSCSO-IHNN provides a competitive alternative, particularly when dealing with resource
constraints or the need for interpretable results. Table 4 highlights the key advantages
of the GSCSO-IHNN system, showcasing its strengths in comparison to other machine
learning and deep learning approaches for cloud security.

Table 4. A summary of the advantages of the GSCSO-IHNN system over other machine learning and
deep learning methods for intrusion detection in cloud systems.

Advantages Description

High detection accuracy GSCSO-IHNN consistently achieves a high accuracy rate (99.5%), surpassing other
methods like EC (99.17%) and RF (99.40%).

Feature optimization GSCSO-IHNN uses hybrid optimization to select the most relevant features,
improving efficiency in feature selection.

Reduction in false alarms The system exhibits a low false alarm rate (FAR), minimizing false positives and
enhancing reliability.

Improved efficiency GSCSO-IHNN optimizes features before detection, reducing complexity and
enhancing overall system performance.

Versatility GSCSO-IHNN offers competitive results without the computational demands of
deep learning methods like CNN, RNN, and LSTM.

Interpretability Unlike deep learning models, GSCSO-IHNN provides insights into critical
features, aiding in model interpretability.

Reduced training time GSCSO-IHNN achieves high performance without lengthy training periods
associated with deep learning.

Compatibility with smaller datasets Effective with smaller datasets, making it suitable when collecting extensive
labelled data is challenging.

Applicability to real-time systems Suitable for real-time intrusion detection, ensuring timely responses to threats in
cloud systems.

A comprehensive comparison of the proposed GSCSO-IHNN approach with several
existing methods related to intrusion detection and cybersecurity is presented. The aim
is to assess the effectiveness, accuracy, and efficiency of our proposed approach by using
the same benchmark datasets and metrics commonly employed in the field. Specifically,
the GSCSO-IHNN method is compared with ensemble classifier (EC) [35], random forest
(RF) [31], and K-means + BIRCH clustering [36] methods. These methods have been
selected because they represent different approaches to intrusion detection, ranging from
ensemble learning to clustering techniques, and have been widely used in the literature.

Benchmark datasets commonly employed in intrusion detection research are used for
a fair comparison. These datasets include KDD Cup’99, which contains various network
attacks and normal traffic; NSL-KDD, an improved version of KDD Cup’99 with reduced
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redundancy; BoT-IoT, which is designed for IoT network intrusion detection; and CICIDS
2017, which features diverse network traffic scenarios in cyber-physical systems.

Table 5 presents the comparison results for the proposed GSCSO-IHNN method
against the selected existing methods on the KDD Cup’99 dataset for both training and
testing scenarios. The results indicate that the proposed GSCSO-IHNN method outperforms
all other methods in terms of accuracy, precision, recall, F1-score, and FPR on the KDD
Cup’99 dataset. It achieves the highest accuracy of 99.50%, demonstrating its superior
capability in correctly classifying instances, while also maintaining a low FPR of 0.026%.

Table 5. Performance comparison using KDD Cup’99 Dataset.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

GSCSO-IHNN (Training) 99.5 97.57 91.84 96.90
GSCSO-IHNN (Testing) 99.2 95.82 90.56 95.73
EC 99.17 96.36 89.46 94.23
RF 99.4 95.52 89.01 92.62
K-means+BIRCH 96.3 93.13 88.91 90.63

The results in Table 6 clearly demonstrate that the GSCSO-IHNN method achieves the
highest detection rate and accuracy out of all the compared datasets, surpassing all other
methods. The high accuracy, low false positive rate, and versatility make it a promising
solution for safeguarding cloud systems against cyber threats and ensuring the integrity
and reliability of cloud-based operations.

Table 6. Detection rate and accuracy comparison on different datasets.

Method NSL-KDD BoT-IoT CICIDS 2017

Detection Rate (%) Accuracy (%) Detection Rate (%) Accuracy (%) Detection Rate (%) Accuracy (%)

GSCSO-IHNN 99.5 99.5 99.34 99.5 99.24 99.42
EC 99.06 98.25 98.56 99.17 98.42 96.63
RF 98.38 97.58 97.34 98.4 97.64 96.92
K-means + BIRCH 96.83 95.02 95.23 96.3 95.34 95.73

5.4. Computational Complexity

Computational analysis in terms of Big O notation, also known as time complexity
analysis, helps us understand the efficiency of algorithms and systems as the input size
grows. Breaking down the computational complexity of the GSCSO-IHNN system:

(1) Data preprocessing and normalization typically involve iterating through the dataset
once. For example, there are ‘N’ data points and ‘M’ features in the dataset.

a. Complexity: O (N ×M)

(2) IPCA computes the principal components of the data, which is primarily an eigen-
value decomposition problem. Assuming ‘T’ iterations for convergence:

a. Complexity: O (N × M × T): GSCSO is used to select optimal features. It
involves a population of potential solutions and a certain number of iterations
‘T’. Complexity: O (N ×M × T)

b. IHNN is a neural network model, which depends on the number of neurons in
the network and the number of training iterations. Assuming ‘P’ as the number
of parameters in the neural network and ‘E’ as the number of training epochs:
Complexity: O (P × E)

(3) Now, if the overall complexity of the GSCSO-IHNN system is considered, it is possible
to multiply these complexities together because they occur sequentially:

(4) Total Complexity = O (N ×M × T) × O(N ×M × T) × O(P × E)

This complexity represents the worst-case scenario when running the entire GSCSO-
IHNN system on a given dataset with a certain number of features, iterations, and neural
network parameters.
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6. Discussions

The initial step in this research involves collecting intrusion benchmark datasets
such as CICIDS 2017, BoT-IoT, and NSL-KDD. These datasets often contain incomplete
or missing information, which can impact the performance of classification and detection.
Preprocessing and normalization operations are critical to address these issues and ensure
the quality of the data used for training and testing machine learning models. After
preprocessing, improved principal component analysis (IPCA) is employed to extract the
most relevant features from the filtered dataset. IPCA is known for its efficiency in reducing
overfitting and eliminating correlated features. It aims to enhance the performance of
the classifier by selecting a subset of features that capture the most critical information
from the dataset. Once the feature set is obtained, a novel hybrid optimization technique
called grasshopper—crow search optimization (GSCSO) is introduced. This technique is
designed to select the most relevant features for training and testing the classifier. GSCSO
offers advantages such as optimized feature subsets, high proficiency, avoidance of local
optima, and improved accuracy compared to traditional optimization methods like particle
swarm optimization (PSO) and genetic algorithm (GA). The selected features are then
used to train and test the classifier, where accurate label prediction is crucial for intrusion
detection. The proposed isolated heuristic neural network (IHNN) model is designed
for classifying data flows as either normal or malicious based on the selected features.
IHNN addresses issues found in other classification techniques, such as overlapping,
computational cost, and handling large-dimensional datasets. The performance of the
GSCSO-IHNN methodology is rigorously evaluated using various metrics and datasets.
Confusion matrices are generated to assess how accurately the classifier predicts normal
and attacking data flows while minimizing false positives. ROC curves are utilized to
measure the effectiveness and detection performance of the attack prediction model.

The study compares the proposed GSCSO-IHNN method with existing optimization-
based classification approaches using metrics like accuracy, precision, sensitivity, and F1-
score. The results consistently show that the GSCSO-IHNN method outperforms competing
techniques, demonstrating its superiority in both training and testing scenarios across
multiple datasets, including KDD Cup’99, BoT-IoT, NSL-KDD, and CICIDS 2017.

In Table 1, the detection accuracy of the proposed attack detection system is compared
to that of an existing system [31], showcasing the system’s ability to predict intrusions
accurately. The table provides a vital comparison of detection accuracy percentages for
various methods aimed at improving cloud system security against cyber threats. Detec-
tion accuracy is a fundamental metric for evaluating intrusion detection systems (IDS),
representing how well these systems can correctly identify and classify potential threats.

The first entry in the table presents the detection accuracy achieved by an ensemble
classifier (EC), a machine learning technique that combines multiple classification models
to enhance overall accuracy. The ensemble classifier achieved a detection accuracy of
99.17%, demonstrating its effectiveness in threat detection. The second entry highlights the
performance of the random forest (RF) algorithm, a popular ensemble learning method. RF
achieved a slightly higher detection accuracy of 99.40%, indicating its proficiency in identi-
fying and classifying cyber threats. The table also introduces an alternative approach using
clustering algorithms, specifically K-means and BIRCH. These algorithms aim to group
similar data points together for pattern identification. However, this method achieved a de-
tection accuracy of 96.30%, slightly lower than the previous classification-based techniques.

In contrast, the proposed system, which includes preprocessing, improved principal
component analysis (IPCA), grasshopper–crow search optimization (GSCSO), and isolated
heuristic neural network (IHNN), achieved the highest detection accuracy among all evalu-
ated techniques, an impressive 99.5%. This exceptional accuracy underscores the proposed
approach’s effectiveness in detecting and classifying cyber threats within cloud systems.
Overall, Table 1 serves as a critical benchmark for assessing the performance of various
methods in cloud security, demonstrating that the proposed approach significantly outper-
forms other techniques, ensuring the integrity and reliability of cloud-based operations.
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In Table 2, a comprehensive analysis of optimized features for the GSCSO-IHNN
system is presented, focusing on its performance in detecting various types of cyber threats.
The table provides detailed information on detection accuracy, precision, detection rate,
F1-score (an accuracy measure considering precision and recall), and false alarm rate
(FAR) for two scenarios: one with five optimized features and another with ten optimized
features. The metrics in the table measure the system’s ability to correctly identify different
types of attacks. For example, in the “DoS” category with five optimized features, the
system achieves a detection accuracy of 99.30%, indicating its accuracy in identifying DoS
attacks. Precision, which measures positive prediction accuracy, is 92.57%, indicating the
proportion of true positives among predicted positives. The detection rate (recall) is 68.84%,
demonstrating the system’s ability to identify actual DoS attacks. The F1-score, a balanced
measure of accuracy, is 92.22%. The FAR, measuring false alarms, is 0.123%, indicating a
low rate of false positives.

Overall, Table 2 provides a comprehensive evaluation of the GSCSO-IHNN system’s
performance in detecting various types of cyber threats. It highlights the system’s high
accuracy, precision, detection rate, and low false alarm rate across different attack categories,
reaffirming its effectiveness in enhancing cloud security.

The study emphasizes the importance of feature selection and extraction in improving
attack detection and classification. IPCA is employed to efficiently select relevant features,
while GSCSO further optimizes the feature subset. Proper feature selection and extraction
play a crucial role in reducing data redundancy and improving data quality, leading to
enhanced system performance. Overall, the research introduces a comprehensive approach
to cloud security using machine learning techniques. It addresses data preprocessing,
feature selection, optimization, and classification, ultimately resulting in a highly effective
intrusion detection system. The findings consistently demonstrate that the proposed
GSCSO-IHNN method offers superior performance compared to existing state-of-the-art
approaches. These advancements hold promise for improving the security of cloud systems
against cyber threats while minimizing false positives and enhancing detection accuracy.

The proposed approach can be adapted or modified to address different types of cyber
threats or attack scenarios. To improve the system’s ability to detect cyber threats, several
techniques can be implemented. To effectively combat different types of cyber-attack, it
is crucial to modify the feature extraction and selection processes and utilize specialized
machine learning models or algorithms for specific attack scenarios. It is also necessary to
maintain a database of attack signatures and patterns, and incorporate behavioral analysis
techniques, real-time threat intelligence feeds, and adaptive learning techniques with en-
semble models. To detect insider threats, user and entity behavior analytics (UEBA) should
be incorporated into the system. Furthermore, appropriate response mechanisms should
be provided in the system. Lastly, the performance of the system should be continuously
evaluated using penetration testing and red teaming exercises, and areas for improvement
should be identified accordingly.

Implementing any cloud-based security approach requires careful consideration of
ethical factors to ensure responsible and ethical use of technology, such as data privacy and
consent, bias and fairness, transparency and accountability, explainability, cybersecurity
risks, data retention and deletion, accountability for false positives and negatives, ethical
use of AI in security, user awareness and education, regulatory compliance, continuous
monitoring and improvement, mitigation of harm, ethical review and oversight, and
public engagement.

6.1. Limitations of Proposed System

The limitations are essential to consider when evaluating the applicability and po-
tential challenges of implementing the GSCSO-IHNN system in various cloud security
scenarios. Table 7 is used to describe the limitations of proposed works.
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Table 7. A summary of the current limitations of the proposed GSCSO-IHNN system for intrusion
detection in cloud systems.

Limitations Description

Computational resources Requires significant computational resources, limiting its
applicability in resource-constrained environments.

Complexity The hybrid optimization process adds complexity to the
system, potentially making it challenging to implement.

Dataset dependency Performance may vary with different datasets, and the
system may require fine-tuning for optimal results.

To enhance cloud security, the GSCSO-IHNN system can be integrated with other
security measures and protocols, including network security appliances, log analysis
and SIEM, incident response framework, threat intelligence feeds, cloud access control,
vulnerability scanning, traffic encryption and DLP, UEBA, cloud provider security features,
security orchestration and automation, regular updates and patch management, and cloud
compliance and auditing.

6.2. Future Directions

There are some potential future directions and areas of improvement for the GSCSO-
IHNN system in the context of cloud intrusion detection:

1. Enhancement of the system’s ability to adapt to evolving threat landscapes in real-time.
This could involve the implementation of online learning techniques that continuously
update the model based on incoming data and emerging threats.

2. Investigation of methods to improve the scalability of the system, allowing it to
effectively handle large-scale cloud environments with high data traffic. This might
involve distributed computing and parallel processing.

3. Exploration of the system’s performance in different cloud domains and industries,
such as healthcare, finance, or IoT. Evaluation of its generalization capabilities and
adaptability to diverse cloud setups.

4. Researching ways to reduce the computational resources required for the system.
This could involve optimizing the feature selection process, model architecture, or
parallelization techniques.

5. Enhancement of the interpretability of the system’s decisions. Development of post-
processing techniques or visualization tools to provide security analysts with more
detailed insights into detected threats.

6. Investigation of the integration of ensemble learning techniques, combining GSCSO-
IHNN with other machine learning models or anomaly detection methods to further
improve detection accuracy and robustness.

7. Integration of the system with existing cloud security frameworks and tools to create
a comprehensive security ecosystem. This could involve seamless collaboration with
cloud service providers.

8. Establishment of continuous evaluation mechanisms to monitor the long-term per-
formance and reliability of the system in real-world cloud environments. Regular
updating and fine-tuning of the system as needed.

9. Experimenting with hybrid models that combine the strengths of deep learning and
traditional machine learning techniques. Investigating the potential benefits of using
deep neural networks alongside GSCSO-IHNN.

10. Exploration of the applicability of the system in edge computing environments, such
as edge clouds and IoT devices, to protect the edge infrastructure from cyber threats.

These future works aim to advance the GSCSO-IHNN system’s capabilities, making it
more adaptable, efficient, and effective in safeguarding cloud systems against emerging
cyber threats while addressing the evolving needs of cloud security. Quantum technolo-
gies enable secure communication channels. Quantum teleportation and entanglement-
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based communication offer methods for transmitting information that are theoretically
un-hackable [45,46].

6.3. Applications of Proposed System

The GSCSO-IHNN system can find valuable applications in both smart cities and
cybersecurity to enhance security and threat detection. Here is how it can be used in
these domains:

(1) Security surveillance: In smart cities, numerous surveillance cameras and sensors
are deployed to monitor various aspects of urban life. The GSCSO-IHNN system
can be employed to analyze the data collected from these devices to detect unusual
or potentially threatening activities in real-time. It can identify patterns of behavior
that may indicate criminal activity, such as trespassing, vandalism, or even potential
terrorist threats.

(2) Traffic management: Smart cities rely on extensive traffic monitoring systems. The
GSCSO-IHNN system can be used to analyze traffic data to detect traffic anomalies
and accidents. It can help in predicting traffic congestion, identifying traffic violations,
and even assisting law enforcement in enforcing traffic rules.

(3) Public safety: Ensuring the safety of residents is a top priority in smart cities. The
system can be used to analyze data from various sensors, including environmental
sensors, to detect hazardous conditions such as air pollution, water contamination, or
unusual weather patterns. It can trigger alerts and notifications to relevant authorities
and residents.

(4) Intrusion detection: One of the primary applications of the GSCSO-IHNN system is
in cybersecurity. It can be used to monitor network traffic in real-time and identify
suspicious activities or potential cyberattacks. This includes detecting various types
of intrusions, malware, and unauthorized access attempts.

(5) Threat intelligence: The system can be integrated with threat intelligence feeds to
proactively identify emerging cyber threats. It can analyze large volumes of data
to recognize patterns associated with known and unknown threats. This can help
organizations stay ahead of cybercriminals.

(6) Phishing detection: Phishing attacks are a common and significant threat. The system
can analyze email content, URLs, and user behavior to identify phishing attempts.
It can flag and quarantine suspicious emails to protect users from falling victim to
phishing scams.

(7) Malware detection: GSCSO-IHNN can be used to develop advanced malware detec-
tion systems. By analyzing the behavior of files and software, it can detect previously
unseen malware strains and protect systems from infection.

(8) Insider threat detection: Insider threats are a growing concern. The system can
monitor user activities, access patterns, and data transfers within an organization to
identify unusual behavior that may indicate an insider threat.

(9) Vulnerability assessment: The system can assist in identifying vulnerabilities within
an organization’s network and systems. By continuously monitoring for weaknesses,
organizations can take proactive measures to patch or mitigate these vulnerabilities
before they are exploited.

(10) Cloud security: As more organizations adopt cloud computing, securing cloud infras-
tructure becomes crucial. GSCSO-IHNN can be used to monitor cloud environments
for security threats and anomalies, ensuring the safety of data stored in the cloud.

In both smart cities and cybersecurity, the GSCSO-IHNN system offers the advantage
of automation, real-time monitoring, and the ability to process vast amounts of data
quickly. These capabilities are essential in today’s interconnected world, where threats can
emerge rapidly, and timely detection and response are critical to safeguarding individuals,
infrastructure, and data.
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7. Conclusions

This paper presented a new attack detection framework termed GSCSO-IHNN for
increasing the security of cloud systems against cyberthreats. The motive of this work is to
design an effective security model with minimal complexity and high detection accuracy.
The quality of the data is improved by first running preprocessing and normalization
procedures in the suggested framework. It is normalized for future operations since a
noisy or irrelevant dataset might have a negative impact on the overall performance of the
system. The necessary characteristics for simplifying the classifier are then extracted using
IPCA modeling. So, to choose the best characteristics for training and testing, a hybrid
GSCSO method is used. The main benefits of the GSCSO method are an optimized subset
of features, a high level of competence and accuracy, the avoidance of local optima, and the
optimal solution with the fewest iterations. In addition, a machine learning classification
strategy based on IHNN is used to determine if a given data flow is benign or malicious.
Here, proper training and testing procedures are carried out to improve the cloud system’s
ability to identify attacks. The widely used and newly developed benchmarking datasets
(NSL-KDD, KDD Cup’99, CICIDS 2017, and BoT-IoT) are used for this validation. After
that, the sensitivity, accuracy, precision, and F1-score of these datasets are evaluated. The
detection effectiveness of the suggested system is shown by comparing the acquired values
with those of modern security models. The results of the performance study show that the
GSCSO-IHNN method outperforms the other security models.
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