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Abstract: The loss given default (LGD) is an important credit risk parameter in the regulatory system
for financial institutions. Due to the complex structure of the LGD distribution, we propose a
new approach, called the hybrid algorithms multi-stage (HMS) model, to construct a multi-stage
LGD prediction model and test it on the US Small Business Administration (SBA)’s small business
credit dataset. We then compare the model’s performance under four routes by different evaluation
metrics. Finally, pertinent business information and macroeconomic features datasets are added for
robustness validation. The results show that HMS performs well and stably for predicting LGD,
confirming the superiority of the proposed hybrid unsupervised and supervised machine learning
algorithm. Financial institutions can apply the approach to make default predictions based on other
credit datasets.

Keywords: loss given default prediction; credit risk; unsupervised machine learning; supervised
machine learning; multi-stage model

1. Introduction

When financial institutions extend loans to borrowers, credit risk is a major issue,
which refers to the risk of default and non-fulfilment of debt servicing obligations by the
borrower [1–3]. One of the key drivers of credit risk is loss given default (LGD). LGD is the
ratio of the amount of loss to a lender resulting from a borrower’s default to risk exposure. It
is critical to understand potential losses for effective allocation of regulatory and economic
capital and credit risk pricing. According to Article 107 (1) of the Capital Requirements
Regulation (CRR), financial institutions should use either the Standardized Approach (SA)
or the Internal Ratings-Based Approach (IRBA) when calculating their regulatory capital
requirements for credit risk. When implementing advanced IRBA, internal models must be
developed to estimate exposure at default (EAD), probability of default (PD), and LGD.
EAD is the risk exposure that arises when a default occurs. PD is the probability that
a borrower defaults on a loan within a given period. One of the primary objectives of
IRBA is to achieve risk-adjusted capital requirements (see Basel Committee on Banking
Supervision [4]). As shown by Gürtler and Hibbeln [5], accurate forecasts for LGD may
generally provide a competitive advantage for the applying financial institution, and
therefore, banks use a variety of methodologies to estimate it.

LGD is an important measure that banks need to estimate accurately for several
reasons. First, LGD is critical to risk management in banks and other financial institutions.
Understanding and measuring LGD can help financial institutions better assess and control
their credit risk exposures, i.e., it can be used in conjunction with PD and EAD to estimate
expected financial losses, so banks can more accurately measure potential credit losses and
thus be well prepared for future defaults. Second, financial institutions can improve their
overall risk modelling by better understanding and estimating LGD, thereby improving
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their ability to measure and manage credit risk. This is important for maintaining the
stability of the financial system and preventing financial crises. Third, estimations of LGD
and portfolio financial risk are an indispensable part of calculating the capital requirements
for covering credit losses under extreme economic conditions [6–8]. Thus, reliable LGD
prediction models play important roles in loss control and benefit maximization.

A key focus of LGD prediction models is how to accurately improve their predictive
performance and whether they can improve credit risk assessment, capital measurement or
risk management. LGD forecasting is challenging because LGD does not follow a normal
distribution [9]. A large proportion of defaulted loans are either fully recovered or not
recovered at all [10,11]. Considering the complicated nature of the LGD distribution, a multi-
stage modelling framework seems to be more appealing. Many studies have proposed
multi-stage models for LGD prediction [5,6,12–14]. Most of them use a single supervised
algorithm to predict in a multi-stage model to achieve good prediction accuracy. However,
they are deficient in several aspects: First, LGD prediction usually involves multiple factors
and variables, and a single supervised model may have difficulty in capturing all these
complexities. In addition, an over-reliance on a supervised algorithm can lead to overfitting
problems [2,15]. Second, it is likely to encounter data imbalance in LGD prediction, i.e.,
unbalanced proportions of defaulted and non-defaulted samples. A single supervised
model may not perform well under such a scenario. Third, the importance of interpreting
model predictions is critical and a single supervised model may be less able to provide
a clear explanation for the financial domain under consideration. To address the above
problems, our idea is to use an efficient unsupervised algorithm as a high-level method
in a multi-stage LGD model and propose a new approach called the hybrid algorithms
multi-stage (HMS) model.

Another key focus of LGD prediction is to obtain real credit data, as customer credit
data are confidential to most financial institutions and researchers do not have access to
such data [15]. The US Small Business Administration (SBA) dataset has been extensively
used for default risk research for many years [16]. One of the benefits of this dataset is that
we can tap into some pertinent information about a firm (indirectly reflecting the features
of the firm’s financial level such as its loans backed by real estate) and macroeconomic
features to improve the prediction performance of the developed model. This is because
if an entrepreneur borrows from a bank, their background can be understood indirectly
through unobservable characteristics. A change in the macroeconomic environment can
also lead to a sudden risk status change [17–19], especially in a recession when many
firms are strapped for funds or resources. Small firms are more weakened in access to
early external support and resources, and banks’ LGD may be further raised. But the
drawback is the incompleteness of the data. Incompleteness means that some specific data
fields are blank because some data may not have been collected from all borrowers, the
data collection process may have been modified, or the borrowers may have neglected
to submit some optional items when completing the form. However, such a “missing
state” is worth mining and can be used to segment the dataset. It is widely believed that
segmentation improves the performance of prediction models [15,20] We first consider
some pertinent information about small businesses and then use HMS to explore whether
using such information helps improve the performance of the LGD prediction model. From
a management perspective, this approach is more accurate than the other methods, as it is
not limited to sorting customers into prespecified categories [2].

We use data from the SBA, which promotes and assists small business lending in
the US credit markets to develop the HMS model for commercial banks possessing large
amounts of data and being exposed to high default rates on commercial loans. We divide
the borrowers’ LGD into three stages, resulting in three different data features for the
dataset. Specifically, in the first stage, based on a binary feature dataset, we apply different
unsupervised learning algorithms to cluster borrowers. We then apply different supervised
learning algorithms to predict whether a customer will incur a loss. In the second stage,
based on a binary feature and a sample imbalance dataset, we first perform Random Over-
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sampling (ROS), which refers to balancing the class distribution by randomly replicating
a small number of class samples to solve the class imbalance problem, and then apply a
hybrid algorithm to predict whether a customer will incur a full loss. In the third stage,
based on a continuous dataset, we apply a simple ordinary least squares (OLS) model to
predict the partial loss degrees of the borrowers. Finally, we provide a comprehensive
assessment of the borrowers’ LGD to help commercial banks make sound lending deci-
sions. In addition, the dataset includes some information that may be relevant to firms
and macroeconomic recession features as additional features for robustness validation. We
show the main idea of HMS in Figure 1. To test the validity of HMS, we compare different
integrated methods under four routes in a multi-stage LGD prediction model, as shown in
Figure 2, whose prediction performance is measured by different metrics such as the mean
absolute error (MAE), explained variance (EV), and mean squared error (MSE).
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Our HMS model has important practical implications. First, the HMS model allows
credit risk management to be broken down into multiple stages, each focusing on different
risk factors and data. This granular risk management helps financial institutions better
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understand and manage their customers’ credit risk. Second, the HMS model provides more
accurate estimates of credit risk, which improves the determination of capital requirements.
This helps financial institutions to ensure that sufficient capital is available to meet potential
credit losses. Finally, financial regulators often require financial institutions to adequately
assess and manage their credit risk, and the use of HMS models helps financial institutions
meet regulatory requirements by providing more transparent and interpretable credit
risk estimates.

We contribute to the literature in the following ways. First, by adding unsupervised
learning algorithms, our approach can help mitigate the overfitting of outputs in multi-
stage LGD models, which is typically a problem associated with the implementation of
supervised learning algorithms. Unsupervised learning algorithms help discover the un-
derlying structures and patterns in the data, thus improving the generalization of the model
and reducing the risk of overfitting. Second, we construct a new HMS model for LGD
forecasting for commercial banks in the SBA dataset. The HMS model combines multiple
algorithms, including supervised and unsupervised learning algorithms, to improve the
performance and robustness of the model. Finally, we test the importance of potential credit
risk and macroeconomic recession characteristics for LGD forecasting, which can help finan-
cial institutions detect and respond to possible credit risk upturns in a timelier manner. This
experiment is crucial for gaining insights into the credit risks of borrowers with different
LGD, helping financial institutions develop more effective risk management strategies.

We organize the rest of the paper as follows: Section 2 provides a literature review
of research on LGD. Section 3 discusses the data pre-processing approach and research
methodology. Section 4 presents the experimental results, robustness validation analysis,
and discussion of the research findings and their practical implications. Section 5 concludes
the paper and suggests topics for future research.

2. Literature Review on LGD
2.1. Theoretical Development of LGD

The Basel Capital Accord aims to better integrate regulatory capital with the under-
lying risks in a bank’s credit portfolio. Banks have the flexibility to calculate their credit
risk capital through two distinct methods: a modified standardized approach rooted in the
original 1988 capital agreement and two variations based on the Internal Ratings-Based
(IRB) approach, which allows banks to develop and use their own internal risk ratings. The
internal ratings methodology relies on four main parameters for assessing credit risk: EAD,
PD, LGD and M. M is Maturity, which refers to the deadline for repayment of a loan. For a
particular maturity, these parameters are used to compute two forms of expected loss (EL):
expected loss as an amount (the formula is EL = EAD × PD × LGD) and expected loss as a
percentage of exposure at default (the formula is EL% = PD × LGD).

Several decades ago, academic research and banking practice primarily emphasized
predicting PD. However, in recent years, considerable attention has shifted towards mod-
elling LGD. The main reason for this is that the Basel II/III framework requires banks to
give their own estimates of LGD when using IRBA methods for businesses or internal
rating methods for retail exposures. Apart from meeting regulatory demands, precise LGD
predictions play a crucial role in making risk-informed decisions. For example, they help
determine risk-adjusted loan pricing, calculate economic capital, and price assets such as
asset-backed securities or credit derivatives. [21].

The relevant literature on LGDs has different streams. Some research endeavours aim
to gauge the LGD distribution for credit portfolio modelling [22,23]. Meanwhile, others
focus on examining the factors that impact individual LGD. In addition, certain studies
explore the relation between PD and LGD [24–26]. While a large of the literature consists
of empirical investigations into corporate bonds, there is relatively less emphasis on bank
loans, primarily due to constraints related to data availability. The primary objective of
this paper is to enhance the prediction of LGDs for bank loans. We conduct a theoretical



Systems 2023, 11, 505 5 of 28

analysis of various challenges associated with forecasting LGDs and provide actionable
recommendations to achieve consistent estimates with robust predictive capability.

2.2. LGD Modelling

A wide range of LGD modelling techniques have been applied in the literature in
the past. Benchmark regression models include simple linear regression and fractional
response regression, where a logit link function is used to convert linear combinations to
fractional values bounded by 0 and 1 [27]. A more complicated regression model is the
beta transformation for accommodating irregular LGD distributions. However, machine
learning (ML) techniques, such as decision tree (DT) and support vector regression, are
more effective and competitive than the traditional parametric regression models [28–31].
In recent studies, random forest (RF) has been found to outperform other techniques in
predicting LGD [32–35].

Unsupervised ML algorithms usually include clustering algorithms, which are im-
portant data mining techniques that cluster samples into groups of similar objects rather
than giving direct predictions. As such, these unsupervised ML algorithms are often used
as complementary tools to supervised ML algorithms. Some studies have concentrated
on clustering support vector machine (SVM) models using unsupervised ML algorithms
(e.g., K-means and self-organized maps (SOMs)) [36–39]. On the other hand, unsupervised
ML algorithms, such as SOMs, that can be used for prediction have been proposed, but
relatively few applications have been reported in the field of LGD evaluation [40,41].

Many studies have proposed multi-stage models for LGD prediction [5,6,12,13,42]. In
the earliest studies, Lucas [13] proposes a two-stage model to analyse mortgage-related
LGD, i.e., dividing the loan according to whether or not it is recovered and calculating
the loss in case of recovery. A scorecard is constructed to calculate the likelihood of
repossession, followed by the utilization of a model to estimate the “haircut”, which
represents the proportion of the estimated house sale value that is realized during the
actual sale. However, the scorecard is not applicable to certain credit risk problems with
a high degree of complexity. Gürtler and Hibbeln [5] classify defaults into two types
(recovery/write-off) an d model LGD through a two-step modelling approach by taking
into account length bias sampling, different loan characteristics for default end types, and
different information sets for default status, which provides a significant improvement
in predictive power compared to direct regression methods. However, they do not fully
consider the potential impact of macroeconomic recession or volatility on LGD forecasts
and may be somewhat biased. Bellotti and Crook [6] propose a multi-stage model for
LGD prediction (consisting of two LR classifications and an OLS regression) and find that
it is important to incorporate macroeconomic features into the developed model. But
the class imbalance problem in LR classification prediction has not been solved, and the
overall model prediction ability needs to be improved. Tanoue et al. [14] analyse the factors
influencing LGD using Japanese bank loan data and develop a multi-stage model for
predicting the LGD and expected loss (EL). The shortcoming of their study is that, due to
data deficiencies, only credit score and different types of collateral quotas are considered,
and more potential factors are not fully explored. Li et al. [12] added the disclosure of post
default information to build two models, namely the hierarchical (two-stage) and hybrid
models, to predict LGD separately. Most techniques use supervised algorithms as advanced
learners in multiple stages to achieve good prediction accuracy. However, first they are
dealing with the complexity of the data, such as multidimensional credit information.
Traditional supervised learning algorithms may not be able to adequately capture these
complexities, resulting in a decrease in model performance. Second, facing the sample
imbalance problem, supervised learning algorithms may tend to favour the prediction of
categories with more samples over those with fewer samples, leading to poorer model
performance in predicting defaults. Finally, the overfitting problem caused by over-reliance
on supervised algorithms is less able to generalize new data. [2,15] Combining the above
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problems, we propose the HMS model and fully consider some potential factors with
macroeconomic aspects to predict LGD.

3. Methodology

In this section we present our proposed methodology in four aspects: credit dataset
description, data pre-processing techniques, model framework and algorithms, and model
performance evaluation. The overall process of the HMS model is shown in Figure 3.
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3.1. Credit Dataset

The data for this study come from the large and rich US SBA credit dataset1. We focus
on the data on the loan default risk based on the payment date (Disbursement_Date) for
three large banks over the period January 2003 to June 2013. The dataset has a total of
89,903 samples, including 39,943 defaults (bad borrowers) and 49,960 non-defaults (good
borrowers). Table 1 presents the sample size, number of defaults, and default rates for
the three large banks in the dataset. We find that each large bank has a high rate of small
business defaults, the highest being 62.27%, which makes the bank vulnerable to financial
crises, so it is important to predict the expected losses of small businesses. There are three
types of data for the independent variables, including borrowers’ information, business



Systems 2023, 11, 505 7 of 28

financial projection information, and macroeconomic features, as shown in Table 2. The
average value of LGD of 0.329 indicates that the expected financial loss in each default
scenario averages 32.9%.

Table 1. Description of the credit dataset.

Dataset Total Non-Defaults Defaults Defaults Ratio

Bank 1 51,827 31,778 20,049 38.68%
Bank 2 20,433 11,526 8907 43.59%
Bank 3 17,643 6656 10,987 62.27%

Table 2. Descriptive statistics of the variables.

Bank 1 Bank 2 Bank 3

Variables Mean SD Min Max Mean SD Min Max Mean SD Min Max
NoEmp 4.948 7.044 0.000 100 5.825 7.477 0.000 92 3.452 5.230 0.000 100

UrbanRural 0.925 0.263 0.000 1.000 0.860 0.347 0.000 1.000 0.932 0.252 0.000 1.000
NewExist 0.764 0.424 0.000 1.000 0.964 0.186 0.000 1.000 0.649 0.477 0.000 1.000
Createjob 0.651 2.159 0.000 50 1.041 2.288 0.000 50 1.859 3.108 0.000 50
Protion 0.503 0.030 0.350 0.955 0.513 0.065 0.500 0.900 0.811 0.107 0.200 1.000

isFranchise 0.010 0.102 0.000 1.000 0.009 0.094 0.000 1.000 0.007 0.084 0.000 1.000
Retainedjob 4.554 6.894 0.000 100 4.943 7.114 0.000 90 3.362 5.190 0.000 100

DisbursementGross 52,986 73,230 4000 2,293,500 5.825 7.477 0.000 92 67,338 223,261 4729 4,200,000
Real_Estate 0.001 0.034 0.000 1.000 0.000 0.007 0.000 1.000 0.024 0.154 0.000 1.000
Recession 0.030 0.169 0.000 1.000 0.018 0.131 0.000 1.000 0.146 0.353 0.000 1.000

LGD 0.329 0.436 0.000 1.000 0.306 0.383 0.000 1.000 0.470 0.400 0.000 1.000

Note: The borrower information includes: NoEmp: number of employees; UrbanRural: region type (urban is 1 and
rural is 0); NewExist: a dummy variable that is 1 for an existing business when the business is more than two years
old, otherwise 0 for a new business; Createjob: number of new jobs; Protion: percentage of loans guaranteed by
the SBA per small/start-up business; isFranchise: a dummy variable that indicates whether the business has a
franchise (0 for independent business and 1 for franchise); Retainedjob: number of jobs retained. The business
financial projection information includes: DisbursementGross: total payments for small/start-up businesses and
Real_Estate: indicating whether the firm has a real estate loan or not (1 if the term of the loan is more than 20 years;
otherwise, 0). The macroeconomic feature is Recession (1 if the loan is active during the Great Recession between
December 2007 and June 2009; otherwise, 0).

3.2. Data Pre-Processing

During the data pre-processing phase, we address some of the issues present in the
data as follows. (i) We empirically handle the null points by removing the characteristics
that are not filled in by more than 90% of the borrowers and replacing the remaining
null-point characteristics with the mean, median, or plurality of their variables. (ii) We
use the Upper and Lower Quartile Method, which is a statistical method commonly
used for outlier treatment. The upper quartile (usually the 95% quartile) and the lower
quartile (usually the 5% quartile) of the data are used to identify and handle outliers.
Due to the small number of outlier observations, we directly remove the outliers. (iii) To
treat the continuous variables, we standardise the eigenvalues by the Z-value, and the
processed data conform to the standard normal distribution. (iv) To process the categorical
variables, we create dummy variables to validate their behaviours and determine their
importance to the model. (v) We test for multicollinearity using the variance inflation
factor (VIF). We find no highly correlated features in the main dataset (all the VIFs are less
than 5), so we do not remove any variables. (vi) We conduct correlation analysis, whereby
we remove features from the final dataset when there are high correlations (above 90%)
between them.

3.3. Model Framework

Since borrowers with recovered loans typically do not incur losses, we assume that
their LGDs is 0. As shown in Figure 4, the LGD distribution peaks at the boundaries of
0 and 1, while the middle part of (0, 1) shows a steady upward trend. We might expect
the segmentation stage to model LGD effectively, so we consider LGD prediction as a
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combination of two classification problems and one regression problem. This is because
there may be special cases where the borrowers either repay the loan in full, do not repay
the loan at all, and only partially repay the loan. We first divide the multi-stage LGD
model into a first stage binary model with incurred loss (LGD > 0) and without incurred
loss (LGD = 0), then a second stage binary model with partial loss (0 < LGD < 1) and
full loss (LGD = 1) from incurred loss, and finally a third stage with continuous type of
partial loss.
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Specifically, for the binary classification problem of whether a loss occurs in the first
stage (LGD = 0 with 49,960 and LGD > 0 with 39,943, a ratio close to 1:1), we perform
predictions and comparisons between the hybrid and individual algorithms. For the second
stage of the binary classification problem of whether full loss occurs (0 < LGD < 1 with 33,720
and LGD = 1 with 6223, a ratio of more than 5:1), because of sample imbalance, we first
re-sample the data to make the ratio close. We then perform predictions and comparisons
between the hybrid and individual algorithms. For the third stage of predicting the
continuous partial loss problem, as shown in Figure 4, the LGDs lie in the middle (0,1)
range and are largely linear, except for the 0 and 1 boundary points, so we use simple OLS
regression for prediction. In summary, based on the three sub-models in Figure 3, the LGD
of account i is calculated as the expected value of (1− p0i){p1i + (1− p1i)Li}, where p0i is
the probability that LGD = 0 for account i estimated by the first stage, p1i is the probability
that LGD = 1 as estimated by the second stage, and Li is the OLS estimate of the third stage.
The losses are assumed to be fractional and are calculated from the regression model.

3.4. Related Algorithms

The new HMS model includes both supervised and unsupervised algorithms and
adopts the random over-sampling (ROS) approach based on the class imbalance that occurs
in the data. Furthermore, we measure the predictive performance of the model by using
different metrics. We describe the different algorithms and metrics below.

3.4.1. Unsupervised ML

K-means: K-means is a simple and effective unsupervised learning algorithm to ring
customers into k pre-defined clusters [43]. The k-means model contains only one main
parameter, namely the number of clusters k. We use the K-means method, which clusters
the given samples according to the presence condition (missing or not), to divide the dataset
into subsets and construct supervised ML models based on these subsets. The steps of this
optimisation algorithm can be found in Machado and Karray [2].
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Self-organizing map (SOM): SOM is an unsupervised neural network introduced
by Kohonen [44]. SOM is essentially a neural network with only an input layer and
a competing layer (output layer), which self-organizes and self-adaptively changes the
network parameters and structure by automatically searching for inherent regularity and
essential properties in the input sample. SOM is also a dimensionality reduction algorithm,
as it maps high-dimensional inputs to a low-dimensional discretized representation while
retaining the underlying structure of its input space.

3.4.2. Supervised ML

Ordinary least squares (OLS) regression: OLS regression is the simplest linear regres-
sion model for estimating the linear least squares values of unknown parameters. OLS
selects the parameters as a linear function of a set of explanatory variables by the principle
of least squares, i.e., minimising the sum of squares of the residuals between the dependent
variable (the value of the predicted variable) and the predictor variables observed in a
given data set. This is one of the most basic forms of LGD regression analysis [45,46].

Logistic regression (LR): LR is one of the classic algorithms in ML and is still one of
the most basic and popular algorithms for classification problems due to its simplicity,
effectiveness, parallelizability and interpretability. It is used to solve binary classification
problems (default and non-default are the two categories in this work) and regression
problems. LR can be a benchmark for the credit scoring problem [47].

Decision tree (DT): DT is a predictive (decision) model in ML that represents a mapping
relationship between target attributes and target values. The DT classification model is a
tree structure that describes the classification of instances. The DT model categorises input
samples by ranking them in a tree and then assigning them to the most appropriate leaf
nodes (class labels). In a DT diagram, each node represents a feature of the sample and
each branch represents a possible value of that feature [15].

Random forest (RF): RF refers to a classifier that uses multiple trees to train and predict
samples. The specific process is as follows: (i) randomly select a subset of the training data
and train a decision tree model on it. (ii) Repeat the above process several times for the
entire dataset, choosing a different subset of data each time and training multiple decision
tree models. (iii) Combine the predictions from multiple decision tree models to produce
a final prediction. RF is flexible and easily works with ML algorithms, providing great
results in most cases, even without hyper-parameter tuning [34].

Gradient boosting decision tree (GBDT): GBDT is an iterative DT algorithm, also
known as the multiple additive regression tree (MART) method. It works by constructing
a weak set of learners (trees) and accumulating the results of multiple DT as the final
prediction output. The algorithm combines DTs with integration ideas in an effective
way. GBDT is applicable to a wide range of regression, binary classification, and multi-
classification problems, and is a very powerful model [48].

eXtreme gradient boosting (XGBoost): XGBoost is an integrated ML algorithm based
on DTs that uses GBoost as a framework and is developed from the GBDT method. Its
main objective is to enhance the speed and efficiency of the model operations. The learning
optimisation process uses an additive model with a forward stepwise algorithm. XGBoost
not only adds a regular term but also supports row sampling to prevent overfitting. Ac-
cording to previous studies, XGBoost can obtain better results in the shortest time with
fewer computing resources [49].

Multilayer perceptron (MLP): MLP is a convergent structured artificial neural network.
The MLP neural network is fully connected between its different layers and it is not
restricted to a specific number of hidden layers. The number of hidden layers can be
adapted to meet application needs. During the optimization process (parameter solving),
most neural networks are trained by error BackPropagation, i.e., the BP algorithm. MLP
has great recognition rates and quick classification speeds [11].
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Light gradient boosting machine (LightGBM): It is a new enhancement framework
developed by Microsoft using a histogram-based DT algorithm. The basic idea is to first
discretise the continuous floating-point eigenvalues and construct a histogram. While
traversing the data, the histogram accumulates statistics based on the indices of the discrete
values. After traversing the data once, the histogram accumulates the required statistics.
Then, traversing the histogram finds the optimal segmentation point based on the discrete
values of the histogram. LightGBM significantly outperforms the actual credit scoring
models of banks [50].

3.4.3. Class Imbalance Handling Techniques

Data imbalance, i.e., the presence of only a few classes in the dataset, is the main
challenge during model training. Data imbalance causes the model to try to pick up
most classes and leads to skewed predictions. To tackle the data imbalance problem, we
adopt the ROS technique, which effectively overcomes the problem of missing important
categorical information. ROS works by randomly sampling a small number of classes and
replicating them multiple times, thus increasing the number of classes and balancing the
class distribution in the training set. Classification performance is slightly improved with
ROS [51].

3.4.4. Performance Evaluation Metrics

In the first- and second-stage classification models, precision, recall, F1, the area under
the curve (AUC), and accuracy (ACC) are the five most common validation metrics. In the
final LGD regression model, MSE, root mean square error (RMSE), EV, MAE, and R-squared
(R2) are the five commonly used validation metrics. Their relevant descriptions are shown
in Table 3.

Table 3. Performance evaluation metrics.

Type Measure Description

Classification

AUC The area enclosed with the coordinate axis under
the Receiver Operating Characteristic (ROC) curve2.

Accuracy The proportion of correctly classified samples.

Precision
The proportion of the truly classified samples to the

total number of samples assigned to that class for
a class.

Recall The proportion of true classified samples over the
total of samples that belong to that class for a class.

F1-score
This metric combines precision and recall by

harmonizing averages and penalizes
extreme values.

Regression

MSE
Square of the difference between the true value and

predicted value, which is then summed
and averaged.

RMSE MSE’s open square root.

EV The variance score of the explanatory regression
model, which takes values in the range [0, 1].

MAE Average of the absolute errors.

R2
Coefficient of determination. It is usually between
0 and 1 and reflects how accurately the model fits

the data.
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3.4.5. Shapley Additive Explanations (SHAP)

SHAP is an additivity interpretation model inspired by Shapley value, commonly
used to interpret machine learning models [52]. For each prediction sample, the model
produces a prediction value and the SHAP value is the value assigned to each feature in
that sample. Assuming that the i-th sample is xi, the j-th feature of the i-th sample is xi,j,
the model’s predicted value for the i-th sample is yi, and the baseline for the entire model
(usually the mean of the target variable across all the samples) is ybase, then the SHAP value
obeys the following equation.

yi = ybase + f (xi,1) + f (xi,2) + . . . + f (xi,k)

where f (xi,1) is the SHAP value for xi,j. Intuitively, f (xi,1) is the contribution value of the
i-th sample’s 1st feature to the final prediction value yi. When f (xi,1) > 0, it means that
the feature improves the prediction value and has a positive effect; otherwise, it means
that the feature makes the prediction value lower and has a negative effect. SHAP can take
the mean of the absolute values of how much a feature affects the target variable as the
importance of that feature.

4. Experimental Results and Discussion

This section tests the HMS model on the SBA credit dataset. Specifically, we explore
the data space of the SBA credit dataset, which contains cluster distribution mappings for
default risk (loss and no loss) and for default loss (partial loss and full loss) in Section 4.1.
Section 4.2 presents the modelling results for predicting whether a loss occurs in the first
stage and shows the classification performance of the different models. Section 4.3 presents
the modelling results in predicting whether a firm incurs a full loss. Section 4.4 presents the
overall LGD prediction results. Section 4.5 presents the robustness tests. Finally, Section 4.6
provides a discussion.

4.1. Dataset Space

We explore the dataset space from the perspective of data existence conditions before
building a multi-stage LGD model. For the first-stage samples, LGD = 0 is set to ‘0’ and
LGD > 0 is set to ‘1’. For the second-stage samples, LGD0<LGD<1 is set to ‘0’ and LGD = 1
is set to ‘1’. Then, we use K-means to cluster these two classes of LGD labelled ‘0’ and ‘1’
to obtain the distributions of LGD in Figure 5a and Figure 5b, respectively. The K-means
clustering groups the first- and second-stage samples into two classes and the results are
shown in Figure 5c and Figure 5d, respectively. SOM clustering also divides the first-
and second-stage samples into two classes and the results are shown in Figure 5e and
Figure 5f, respectively.

In the first stage of classification, the proportions of ‘0’ and ‘1’ samples in the LGD
in Figure 5a distribute evenly. In Figure 5c,e, after classification by K-means and SOM,
the binary classification ratio of the two categories becomes relatively balanced and the
performance of the classifiers is not greatly affected, so we directly adopt the process of
clustering before classification in the first stage.

In the second stage of classification, the number of ‘0’ samples for LGD are much
larger than the number of ‘1’ samples in Figure 5b, with a significant difference between
the two proportions. In addition, after performing K-means and SOM classification, the
proportions of samples in Figure 5d,f after being classified into the two categories differ
greatly, and the classifier fails to operate. This explains the necessity for ROS sampling in
the second stage to balance the sample proportions and then clustering before classification.
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4.2. Performance Evaluation of First-Stage Classification

To more accurately predict the probability of whether a loss occurs, we build individual
and hybrid models separately in the first stage, and the results are shown in Table 4. Table 4



Systems 2023, 11, 505 14 of 28

summarises the results of the model based on the test set of the SBA credit dataset, in terms
of the ACC, AUC, F1, precision, and recall metrics. We use seven base learners (LR, DT, RF,
GBDT, XGBoost, MLP, and LightGBM) to construct a single model and use the results as a
baseline group (control group). Next, we use a hybrid ML model combining K-means and
SOM with seven supervised learners for prediction, whose results serve as the experimental
group. The purpose is to explore whether the application of unsupervised clustering on
the dataset helps improve the accuracy of the first-stage classification predictions. Since
these evaluation metrics describe the performance of the model in different ways, and
no classifier outperforms the others in all the metrics, we focus on the use of AUC to
evaluate the model because it considers the confusion matrix more comprehensively than
the other metrics; it more effectively reflects the performance achieved by the model on the
unbalanced dataset.

Table 4. Performance of first-stage classification.

Clustering Model ACC Precision Recall F1 AUC

Individual Models no clustering

LR 0.6025 0.6355 0.2556 0.3645 0.5731
DT 0.5958 0.5573 0.4570 0.5022 0.5947
RF 0.5999 0.5605 0.4775 0.5157 0.6180

GBDT 0.6295 0.6269 0.4186 0.5020 0.6694
XGBoost 0.6274 0.6157 0.4387 0.5123 0.6697

MLP 0.6265 0.6120 0.4449 0.5152 0.6641
LightGBM 0.6298 0.6201 0.4389 0.5140 0.6718

K-means

clstering 1

LR 0.6052 0.6348 0.284 0.3925 0.6077
DT 0.5968 0.5609 0.4691 0.5110 0.5936
RF 0.6003 0.5623 0.4948 0.5264 0.6193

GBDT 0.6331 0.6316 0.4389 0.5179 0.6743
XGBoost 0.6338 0.6275 0.4539 0.5268 0.6744

MLP 0.6304 0.6224 0.4493 0.5219 0.6699
LightGBM 0.6341 0.6265 0.4585 0.5295 0.6773

clustering 2

LR 0.6404 0.6386 0.1045 0.1797 0.6161
DT 0.5788 0.4375 0.4142 0.4255 0.5580
RF 0.5958 0.4561 0.3787 0.4138 0.5913

GBDT 0.6263 0.5137 0.1479 0.2297 0.6157
XGBoost 0.5854 0.4358 0.3412 0.3827 0.5902

MLP 0.6397 0.641 0.0986 0.1709 0.6199
LightGBM 0.6018 0.4589 0.3195 0.3767 0.6055

SOM

clustering 1

LR 0.6046 0.6403 0.2711 0.381 0.5982
DT 0.5931 0.5563 0.4605 0.5039 0.5854
RF 0.5989 0.5619 0.4816 0.5187 0.6135

GBDT 0.6296 0.6233 0.4416 0.5169 0.6691
XGBoost 0.6274 0.6153 0.4528 0.5217 0.6699

MLP 0.6254 0.6065 0.4701 0.5297 0.6633
LightGBM 0.6313 0.6228 0.4522 0.524 0.6718

clustering 2

LR 0.6294 0.5714 0.1265 0.2072 0.5911
DT 0.5866 0.4571 0.4282 0.4422 0.5657
RF 0.5866 0.4545 0.4015 0.4264 0.5828

GBDT 0.6145 0.4886 0.1557 0.2362 0.5967
XGBoost 0.5931 0.4558 0.326 0.3801 0.5917

MLP 0.6238 0.5321 0.1411 0.2231 0.5895
LightGBM 0.6071 0.4804 0.3285 0.3902 0.5998

We can conclude the following based on AUC: First, the LightGBM model is best
among all the individual models in Table 4, with AUC (0.6718) and ACC (0.6298) being
the highest. Second, in the results of the supervised models built based on K-means and
SOM clustering subsets, the models in clustering 1 (GBDT, XGBoost, and LightGBM in
clustering 1) outperform the models built by the base learner in AUC values. The clustering
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approach provides the greatest improvement to the LR model, with a 7.5% improvement of
AUC for K-means clustering 2. Among all the hybrid models, LightGBM based on K-means
clustering 1 has the best performance with an AUC of 0.6773, which outperforms all the
individual models. From the above results, we observe that the clustering method proposed
on the SBA credit dataset does help improve the performance of the individual models.

Next, we perform an interpretability analysis based on the above optimal prediction
model for the first stage of predicting whether a small business incurs a loss. We use SHAP
to assess the feature importance of the model in the first stage, as shown in Figure 6. We find
that the top two ranked features are NoEmp and DisbursementGross (total disbursements by
small businesses), with mean absolute SHAP values of 0.2999 and 0.2585, respectively. Next
are the percentage of loans guaranteed by the SBA for small businesses Portion (0.0913), the
number of remaining jobs Retainedjob (0.0876), and economic recession Recession (0.0458).
This indicates that the number of employees is a very important feature in the first stage of
forecasting. Specifically, NoEmp has a greater impact on predicting whether a firm incurs
a loss or not. Similarly, DisbursementGross is recognised as an important characteristic
that has a significant impact on predicting whether a firm incurs a loss or not. This may
indicate that the amount of payment by the firm plays an important role in the prediction.
Additionally, Portion, Retainedjob and Recession correlate to some extent with whether a
business incurs a loss. For banks, it is important to understand which characteristics are
most important for a business’s credit assessment, which can help them to better develop a
loan approval strategy. In this case, they may pay more attention to key features such as
NoEmp and DisbursementGross to estimate the borrower’s credit risk more accurately.
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4.3. Performance Evaluation of the Second-Stage Classification

To more accurately predict the probability of whether a full loss occurs, we apply the
ROS technique to our model, which solves the problem of data imbalance. We then build
individual and hybrid models in the second stage, and the results are shown in Table 5.
Among all the individual models, RF has higher AUC (0.8934), F1 (0.8393), and recall
(0.9147) values than all other individual models. Therefore, RF has the best prediction
performance. From the ACC, AUC, F1, precision and recall metrics in Table 5, we observe
that among the hybrid models, first K-means clustering 2 combined with the RF model has
the highest values of AUC and ACC, which are 0.9588 and 0.8794, respectively, followed by
SOM clustering 1 combined with RF model, with AUC of 0.9575 and ACC of 0.8847. This
indicates that the hybrid model after the ROS technique yields more accurate and reliable
classification in the second stage. Therefore, the strategy of using a hybrid ML approach in
the second stage based on the SBA credit dataset is effective.
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Table 5. Performance of second-stage classification.

Clustering Model ACC Precision Recall F1 AUC

ROS + Individual Models no clustering

LR 0.6597 0.6059 0.9304 0.7339 0.7105
DT 0.8240 0.7791 0.9085 0.8388 0.8803
RF 0.8233 0.7753 0.9147 0.8393 0.8934

GBDT 0.6998 0.6565 0.8485 0.7403 0.7662
XGBoost 0.7568 0.7147 0.8615 0.7813 0.8342

MLP 0.6845 0.6488 0.8159 0.7228 0.7410
LightGBM 0.7257 0.6795 0.8631 0.7603 0.7978

ROS + K-means

clustering 1

LR 0.6556 0.6052 0.9033 0.7248 0.7138
DT 0.8248 0.7761 0.9148 0.8398 0.8807
RF 0.8215 0.7704 0.918 0.8377 0.8903

GBDT 0.6999 0.6541 0.8537 0.7407 0.7662
XGBoost 0.7582 0.7130 0.8675 0.7827 0.8350

MLP 0.6800 0.6392 0.8319 0.7230 0.7374
LightGBM 0.7265 0.6770 0.8704 0.7617 0.7951

clustering 2

LR 0.6156 0.5908 0.8908 0.7104 0.6414
DT 0.8786 0.8340 0.9620 0.8935 0.9061
RF 0.8794 0.8315 0.9684 0.8947 0.9588

GBDT 0.7429 0.7113 0.8655 0.7809 0.8188
XGBoost 0.8333 0.7906 0.932 0.8555 0.9172

MLP 0.6993 0.6775 0.8244 0.7438 0.7656
LightGBM 0.8057 0.7732 0.8956 0.8299 0.8940

ROS + SOM

clustering 1

LR 0.6521 0.602 0.9074 0.7238 0.6875
DT 0.8773 0.8371 0.9383 0.8848 0.9055
RF 0.8847 0.8361 0.9584 0.8931 0.9575

GBDT 0.7323 0.7033 0.8081 0.7520 0.8165
XGBoost 0.8429 0.8168 0.8859 0.8500 0.9228

MLP 0.6871 0.6556 0.7946 0.7184 0.7538
LightGBM 0.8139 0.7877 0.8617 0.8231 0.8941

clustering 2

LR 0.6628 0.6114 0.9001 0.7282 0.7134
DT 0.8190 0.7731 0.9048 0.8338 0.8773
RF 0.8160 0.7668 0.9102 0.8324 0.8834

GBDT 0.6970 0.6522 0.8490 0.7377 0.7638
XGBoost 0.7542 0.7100 0.8625 0.7789 0.8311

MLP 0.6808 0.6337 0.8625 0.7306 0.7374
LightGBM 0.7244 0.6772 0.8614 0.7583 0.7942

Based on the above analysis we conclude that the optimal prediction model for the sec-
ond stage is the K-means clustering and RF model. We further use the SHAP interpretability
approach to assess the feature importance of predicting whether a firm incurs a full loss
in the second stage. As shown in Figure 7, we find that the highest feature importance is
DisbursementGross, with the mean of Shap’s absolute value being 0.1088. This is followed by
the number of new jobs Creatjob and Portion, with the mean of Shap’s absolute values being
0.0871 and 0.0698, respectively. The impact of Recession, with a value of 0.0136, is relatively
small. These results may indicate that DisbursementGross is one of the most important
characteristics in the second stage and has a significant impact on predicting whether a
business incurs a full loss or not. Therefore, the financial situation of the firm and the level
of payments play a decisive role in full-loss forecasting. Next, Creatjob is also considered to
be an important feature with implications for full-loss forecasting. This may indicate that
whether a firm creates new jobs may be related to its full-loss risk or reflect its operating
conditions. Recessions and other factors have less of an impact on the forecast of full losses.
This may be because more important features (e.g., DisbursementGross, Creatjob, and Portion)
have greater explanatory power on this issue.
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Figure 7. SHAP feature importance ranking of variables for the second stage.

4.4. LGD Prediction Evaluation for the Third Stage

The overall LGD prediction process in this paper consists of the optimal classification
model from the first stage in Section 4.2 and the second stage in Section 4.3, with the
addition of OLS regression in the third stage. To test the HMS model under Route 4 for
the prediction of commercial bank LGD, we model the four routes in Figure 2 separately.
The results are shown in Table 6. For the MSE, RMSE and MAE evaluation metrics, smaller
values indicate better model performance, while larger absolute values of EV and R2

are better.

Table 6. Prediction performance of LGD in the third stage.

The Best Classification Model

Route First stage Second stage Third stage MSE RMSE MAE R2 EV

Route 1 LightGBM ROS + RF

OLS

0.0968 0.3111 0.1838 0.4563 0.6106

Route 2

K-means
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS+ RF 0.0968 0.3111 0.1837 0.4566 0.6106

SOM clustering
+ LightGBM ROS+ RF 0.0978 0.3128 0.1849 0.4508 0.6075

Route 3
LightGBM ROS + K-means

clustering + RF 0.0969 0.3112 0.1838 0.4562 0.6104

LightGBM ROS + SOM
clustering + RF 0.0967 0.3109 0.1836 0.4573 0.6115

Route 4

K-means
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + K-means
clustering + RF 0.0968 0.3111 0.1837 0.4566 0.6104

K-means
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + SOM
clustering + RF 0.0966 0.3108 0.1835 0.4577 0.6115

SOM clustering
+ LightGBM

ROS + K-means
clustering + RF 0.0979 0.3128 0.1849 0.4506 0.6073

SOM clustering
+ LightGBM

ROS + SOM
clustering + RF 0.0977 0.3125 0.1847 0.4518 0.6084

First, comparing Route 1 and Route 2 in Table 6, they differ in that the best classification
model for the first stage is different. The hybrid model under Route 2 has a slightly larger
R2 (0.4566) than Route 1’s R2 (0.4563) and a slightly smaller MAE (0.1837) than that under
Route 1 (0.1838). Secondly, comparing Route 1 and Route 3, they differ in the optimal
classification model for the second stage. We observe that the R2 (0.4573) and EV (0.6115)
of hybrid model under Route 3 are 0.22% and 0.15% higher than those of the benchmark
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Route 1 (0.4563) and EV (0.6106), respectively. Third, comparing Route 3 and Route 4, they
differ in that Route 3 uses the hybrid model only in the second stage, whereas Route 4
uses the hybrid model in both stages. The R2 (0.4577) for the HMS model under Route 4
increases again compared to the R2 (0.4573) of Route 3. The HMS model under Route 4 has
the largest R2 and EV and the smallest MSE (0.0966), RMSE (0.3108) and MAE (0.1835), so
it is the optimal prediction model for multi-stage LGD.

Further, we use the absolute coefficients of the OLS regressions as the feature signifi-
cance to assess the forecasts of partial losses incurred by firms in the third stage. As shown
in Figure 8, we find that the highest feature importance is the added potential information,
the presence or absence of real estate mortgages Real_Estate, with a regression absolute
coefficient value of 1. 629. This is followed by Portion and Recession, with regression abso-
lute coefficients of 0.59 and 0.1778, respectively. This result suggests that first Real_Estate
is one of the most important characteristics in the prediction of the third stage and has a
significant impact on predicting the occurrence of partial losses of the firm. This may reflect
the importance of real estate mortgages in credit risk assessment, as it may be related to the
financial position and solvency of the firm. Second, Portion has some effect on predicting
partial losses, indicating that Portion is correlated with whether a business will experience
a partial loss. Finally, Recession also has some effect on the prediction of the third stage,
despite the small ranking.

Systems 2023, 11, x FOR PEER REVIEW 19 of 31 
 

 

Route 3 
LightGBM 

ROS + K-means 
clustering + RF 0.0969 0.3112 0.1838 0.4562 0.6104 

LightGBM 
ROS + SOM clus-

tering + RF 0.0967 0.3109 0.1836 0.4573 0.6115 

Route 4 

K-means (clustering 1 + 
LightGBM) 

and (clustering 2 + 
MLP) 

ROS + K-means 
clustering + RF 0.0968 0.3111 0.1837 0.4566 0.6104 

K-means (clustering1 + 
LightGBM) and (clus-

tering 2 + MLP) 

ROS + SOM clus-
tering + RF 

0.0966 0.3108 0.1835 0.4577 0.6115 

SOM clustering  
+ LightGBM 

ROS + K-means 
clustering + RF 0.0979 0.3128 0.1849 0.4506 0.6073 

SOM clustering  
+ LightGBM 

ROS + SOM clus-
tering + RF 0.0977 0.3125 0.1847 0.4518 0.6084 

First, comparing Route 1 and Route 2 in Table 6, they differ in that the best classifica-
tion model for the first stage is different. The hybrid model under Route 2 has a slightly 
larger 2R  (0.4566) than Route 1’s 2R  (0.4563) and a slightly smaller MAE (0.1837) than 
that under Route 1 (0.1838). Secondly, comparing Route 1 and Route 3, they differ in the 
optimal classification model for the second stage. We observe that the 2R  (0.4573) and 
EV (0.6115) of hybrid model under Route 3 are 0.22% and 0.15% higher than those of the 
benchmark Route 1 (0.4563) and EV (0.6106), respectively. Third, comparing Route 3 and 
Route 4, they differ in that Route 3 uses the hybrid model only in the second stage, 
whereas Route 4 uses the hybrid model in both stages. The 2R   (0.4577) for the HMS 
model under Route 4 increases again compared to the 2R  (0.4573) of Route 3. The HMS 
model under Route 4 has the largest 2R  and EV and the smallest MSE (0.0966), RMSE 
(0.3108) and MAE (0.1835), so it is the optimal prediction model for multi-stage LGD. 

Further, we use the absolute coefficients of the OLS regressions as the feature signif-
icance to assess the forecasts of partial losses incurred by firms in the third stage. As shown 
in Figure 8, we find that the highest feature importance is the added potential information, 
the presence or absence of real estate mortgages Real_Estate, with a regression absolute 
coefficient value of 1. 629. This is followed by Portion and Recession, with regression abso-
lute coefficients of 0.59 and 0.1778, respectively. This result suggests that first Real_Estate 
is one of the most important characteristics in the prediction of the third stage and has a 
significant impact on predicting the occurrence of partial losses of the firm. This may re-
flect the importance of real estate mortgages in credit risk assessment, as it may be related 
to the financial position and solvency of the firm. Second, Portion has some effect on pre-
dicting partial losses, indicating that Portion is correlated with whether a business will 
experience a partial loss. Finally, Recession also has some effect on the prediction of the 
third stage, despite the small ranking. 
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4.5. Robustness Tests

We also run another set of experiments after adding pertinent information on small
businesses and macroeconomic features to the dataset. Specifically, we increase two ex-
planatory variables, namely Real_Estate (whether a real estate loan is owned) and Recession
(economic recession), to further assess the effectiveness of the HMS model. Correlation and
multicollinearity tests between these two variables and the original variables indicate that
there is no necessity to remove any characteristics.

Figure 9 shows the results of the validation metrics for all the models in the first
stage after adding two explanatory variables to the data features. The results show that
the LightGBM, XGBoost, and GBDT models have a better predictive ability in predicting
whether a firm incurs a loss, with AUC values of 0.6767, 0.6731, and 0.6725 in Figure 9c,
and ACC values of 0.6348, 0.6313, and 0.6323 in Figure 9a, respectively. On the other hand,
LR is the model with the worst prediction accuracy with an AUC value of 0.5921 and an
ACC value of 0.6084. These results indicate that there is a slight improvement in ACC, F1,
and AUC versus the individual models, without the addition of two explanatory variables
in Table 4.
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Figure 9. Classification performance validation results for the first stage.

Furthermore, in the classification performance of the hybrid model predictions for
the first stage after the addition of two explanatory variables in Figure 9, the results
demonstrate that LightGBM and MLP have better predictive power and higher accuracy.
The hybrid model predictions in Figure 9 have higher AUC, ACC and F1 values than the
results without the addition of the two features in Table 4. For example, the AUC and ACC
values of the best hybrid model in Table 4 are 0.6773 and 0.6341, respectively, while the
AUC in Figure 9c and ACC values in Figure 9a of the best hybrid model are 0.6802 and
0.6375, respectively. On comparing the models, we find that adding two features results
in significant improvements in AUC, ACC, F1, accuracy, and recall metrics. Thus, these
results suggest that the addition of firm pertinent information and macroeconomic features
improves the predictive performance of the first-stage classification (determining whether
a firm incurs a loss).

In conclusion, the LightGBM model performs best during the first stage for the in-
dividual model classification metric in terms of predicting whether a firm incurs a loss,
followed by the GBDT, XGBoost, and MLP models. In credit risk prediction, many complex
non-linear factors exist, which can be better captured by these models, thus improving
the performance. In terms of model selection and hyperparameter tuning, models such as
LightGBM, GBDT, and XGBoost have mature tuning tools and techniques that can help
optimise model performance. With the addition of pertinent small business information
Real_Estate and economic recession features Recession to the model, the LightGBM model
still has the best predictive power. LightGBM improves AUC and ACC by 0.73% and
0.79%, respectively, compared with the individual models, without the addition of the two
variables. In the hybrid model classification metric for predicting whether a firm incurs a
loss in the first stage, clustering makes the greatest improvement to the LR model, with the
AUC value of LR rising from 0.5731 to 0.6161. The reason may be that clustering can reduce
many feature dimensions into a few clusters. This alleviates the problem of dimensionality
catastrophe in LR models and reduces the risk of model overfitting. In addition, clustering
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can divide data samples into clusters with similar features, which may help to reduce the
problem of unbalanced categories. For linear models such as LR, a more balanced data
distribution usually leads to better performance. It is evident from these results that the
use of clustering methods on the US SBA credit dataset does help improve the performance
of the models. With the addition of Real_Estate and Recession features, the hybrid model
achieves higher values of AUC, ACC, and F1.

Figure 10 shows the classification validation metrics of the individual models and
hybrid model for the second stage after the addition of two explanatory variables. For the
prediction of whether a firm incurs a full loss by individual models, the results show that the
benchmark LR model with the lowest predictive performance has an AUC value of 0.7104 in
Figure 10c, which is almost close to the AUC (0.7105) of the LR model in Table 5. However,
the RF model after ROS sampling has the best prediction with AUC, ACC, and F1 values
of 0.8999, 0.827, and 0.8422, respectively. These results indicate substantial improvements
in ACC, F1, and AUC versus the individual models in Table 5. This reflects the fact that
the ROS (Random Oversampling) technique can help to improve the performance of the
RF model by balancing the data distribution with the addition of a few more categories of
samples, making it easier for the model to capture the occurrence of full-loss events.
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Figure 10. Classification performance validation results for the second stage.
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For the classification prediction performance in the second stage of the hybrid model
prediction process, these results show that considering different clusters, RF has the best
prediction ability with the highest accuracy and the largest ACC (0.8813) in Figure 10a and
AUC values (0.9567) in Figure 10c. Since different clusters may reflect different factors that
influence full-loss events in specific domains, the RF model may better accommodate these
domain-specific effects, improving the prediction performance under different clusters.
The AUC, ACC and F1 results approach those without the addition of the two features
in Table 5. Therefore, the hybrid model with the addition of two explanatory variables
does not significantly improve the prediction performance in the second stage. This result
echoes their weaker interpretability in conjunction with Figure 7, possibly because there is
no strong correlation between these two explanatory variables for predicting whether a
firm has a full-loss event.

So, in the second stage from the individual model classification metrics that predict
whether a firm incurs a full loss, we find that RF has the best predictive performance after
applying the ROS technique. With the addition of Real_Estate and Recession features, RF
after applying ROS still has the best prediction performance with 0.73%, 0.45%, and 0.35%
improvements in AUC, ACC, and F1, respectively. In the second stage of hybrid model
classification prediction, the hybrid model after applying ROS is the best prediction model.
However, the addition of the Real_Estate and Recession features has no significant enhancement
in AUC, ACC, and F1. In conclusion, the hybrid model is beneficial for improving the
accuracy of predicting whether a firm incurs a full loss in the second stage, but whether to
add the two feature variables has little effect on the prediction results of the hybrid model.

To verify the LGD prediction performance of the HMS model for the third stage, we
add the two explanatory features to the modelling, which follows the same process as
shown in Section 4.4. The results are shown in Table 7.

Table 7. Regression performance validation results for the LGD model.

The Best Classification Model

Route First stage Second stage Third stage MSE RMSE MAE R2 EV

Route 1 LightGBM ROS + RF

OLS

0.0993 0.3151 0.1858 0.4428 0.6015

Route 2

K-means
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + RF 0.0983 0.3136 0.1848 0.4479 0.6042

SOM
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + RF 0.0992 0.3150 0.1859 0.443 0.6017

Route 3
Individual Models ROS + K-means

clustering + RF 0.0995 0.3155 0.186 0.4412 0.6006

Individual Models ROS + SOM
clustering + RF 0.0992 0.315 0.1858 0.4429 0.6018

Route 4

K-means
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + K-means
clustering + RF 0.0986 0.314 0.1851 0.4464 0.6032

K-means
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + SOM
clustering + RF 0.0983 0.3136 0.1848 0.4480 0.6045

SOM
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + K-means
clustering + RF 0.0995 0.3154 0.1861 0.4414 0.6007

SOM
(clustering 1 + LightGBM)
and (clustering 2 + MLP)

ROS + SOM
clustering + RF 0.0992 0.315 0.1859 0.4430 0.602
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Route 1 is the benchmark model for validation. First, comparing Route 1 and Route 2
in Table 7, we conclude that the hybrid model under Route 2 has a larger R2 (0.4479) than
Route 1’s R2 (0.4428) and a slightly smaller MAE (0.1848) than that of Route 1 (0.1858).
Second, comparing Route 1 and Route 3, we observe that R2 (0.4429) and EV (0.6018)
of the hybrid model for Route 3 are larger than the R2 (0.4428) and EV (0.6015) of the
benchmark Route 1. Third, comparing the optimal R2 of the hybrid model under Route 3,
we find a 1.15% improvement in the R2 (0.448) of the hybrid model for Route 4. Route 4
has the largest R2 and EV (0.6045), whose MSE (0.0983), RMSE (0.3136), and MAE (0.1848)
are also the smallest among those under all the routes. Therefore, this validates that the
HMS model under Route 4 is the optimal model prediction model for multi-stage LGD
prediction. The clustering step is introduced one by one for each additional route, with
Route 4 achieving the highest predictive performance, suggesting that the hybrid model
is better able to capture the complexity of the data or that there are complementarities
between the individual models, then it may exhibit higher R2.

In a word, for all the multi-stage LGD prediction models, we analyse the MSE, RMSE
and MAE metrics under the four routes in Figure 2. The hybrid model under Route 2
in Table 6 has a slightly higher R2 of 0.06% and a slightly lower MAE of 0.05% than
those under Route 1. The hybrid model under Route 3 improves the R2 and EV by 0.22%
and 0.15%, respectively, versus the R2 and EV of the benchmark Route 1. The R2 of the
hybrid model under Route 4 improves by 0.3% over the R2 of the benchmark Route 1.
This route has the largest R2 and EV, and the smallest MSE, RMSE, and MAE, so is the
optimal model prediction route for multi-stage LGD prediction. The ROS strategy helps
to address the sample imbalance problem, especially in credit risk analysis, which can
improve the prediction performance for full-loss events. The combination of these strategies
makes Route 4 the best model prediction path. Thus, the HMS model of Route 4 takes
full advantage of unsupervised clustering and ROS to improve the performance of multi-
stage LGD prediction with minimum R2 and maximum EV values. This is important
for credit risk analysis and decision making. With the addition of the Real_Estate and
Recession features, the results still show that the best prediction performance is achieved
under Route 4, which consists of the HMS model, whose R2 increases by 1.17% over that
under Route 1. Thus, the HMS model is effective in improving the accuracy of multi-stage
LGD prediction.

4.6. Discussion

Following the results in Sections 4.2–4.5, we several observations and comparisons.
We analyse the predictive performance of the model for three stages, specifically predicting
whether the firm suffers losses in the first stage, predicting whether the firm suffers a
full loss in the second stage, and predicting the overall LGD of the commercial bank, and
compare the HMS model with other models. In addition, we analyse the inclusion of the
variables Real_Estate and Recession in our models, as summarised below.

First, the HMS model is better than models currently in use, e.g., the LossCale model
of Moody’s LGD prediction [53]. This is because Moody’s regression model may have
small predictive performance in some cases. The HMS model uses a multi-stage modelling
approach to predict credit losses at different stages separately. This approach can better
capture the complexity and diversity of credit losses as different stages may involve
different risk factors and prediction models. Moody’s regression modelling may prefer to
integrate all information into one model and may ignore the differences between stages.

Second, the addition of the two features significantly improves the predictive accuracy
of the classification model. The HMS model performs consistently well overall. This
suggests that the two features should be considered to improve the accuracy of commercial
banks’ LGD prediction.

Finally, the use of the SHAP interpretability methodology for the HMS model can help
to explain the model’s predictions by providing insights about the impact of each feature
on the prediction of each stage. Different features in different stages of credit risk prediction
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have different importance for different types of credit losses (whether a loss occurs, full
loss, partial loss). Within each stage, financial indicators such as DisbursementGross and
Real_estate have a high level of importance, reflecting their key role in credit risk assessment.
Portion and economic environment factors (e.g., Recession) also have an impact on the
prediction of credit losses, while their importance may vary from stage to stage. These
insights can help banks better understand risk factors, develop more accurate credit policies,
and help companies improve their financial and operational strategies to reduce credit risk.
It also highlights the importance of considering different features at different stages of the
process to assess credit risk more accurately.

In summary, the HMS model is more effective for multi-stage LGD prediction, which
helps reach an optimal route. In a practical sense, in terms of risk assessment and decision
making, understanding which features have the greatest impact on the risk of loss can
help financial institutions better assess and manage risk. They can pay more attention to
key characteristics such as Real_Estate and Portion, economic recession, etc., to formulate
more rational credit policies. For businesses, understanding what factors may affect their
risk of loss can help them improve their financial and operational strategies to reduce risk
and increase financial stability. Therefore, assessing the significance of features can help
financial institutions and businesses better understand risk factors and thus develop more
accurate decisions and strategies.

5. Conclusions

In this study, we propose a new HMS model for predicting multi-stage LGD and
test it on both an original dataset and a validation set. We then compare the overall LGD
prediction performance of the models under four routes from the perspective of different
evaluation metrics. In addition, we add pertinent firm information and macroeconomic
features for robustness checking of the results. We find that the HMS model outperforms
the models under other routes in predicting multi-stage LGD. While the literature ignores
latent firm information, we find that the classification prediction performance of the HMS
model is higher when considering such features. Our results confirm the superiority
of the new approach and increase our confidence that it can be generalised to make
predictions based on other credit datasets of financial institutions, especially Peer-to-Peer
(P2P) firms in China. In the financial field, P2P usually refers to individuals or firms
borrowing or lending money directly to other individuals or firms through an online
platform, bypassing traditional financial institutions such as banks. This hopefully will
facilitate future theoretical and empirical research on combining unsupervised learning
techniques with supervised learning models and help develop more effective combinatorial
strategies. In addition, the HMS model uses the SHAP method to provide an interpretable
explanation of the impact of each feature on the predictions. This helps to understand the
model’s predictions and identify the most important risk factors.

In practice, financial institutions can use the HMS model for credit risk assessment
to assess the credit risk of borrowers and formulate appropriate credit policies more
accurately. Next, financial institutions may use the HMS model to calculate the required
credit loss capital to assure that regulatory requirements are met. Future research could
make modifications or additions to our work in several areas. First, in terms of dealing
with outliers, we remove outliers to build better-fitting models or to produce statistically
significant results. However, outliers arise from the natural variability of LGD predictions,
and our removal of these outliers may improve the fit statistics but not the predictive power
of the model. In the future, we can use robust regression to reduce the impact of outliers in
our models and comparative analyses can be performed with and without outliers to show
the difference in results. In addition, if possible, incorporating more recent data sources into
the model may improve its performance. This includes new financial data, macroeconomic
data, industry data, and so on. Second, the forecasting of LGD is usually influenced by
time factors. Different market conditions, economic environments, and financial situations
may exist at different points in time, and these factors can influence the extent of credit
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losses. In the future, we can further investigate the impact of the business cycle on LGD.
Finally, more pertinent firm information and possible interaction effects could be explored
to improve the predictive probability of LGD.
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Notes
1 For access and download of information on the SBA (Small Business Administration) Credit Dataset, please see the link

https://www.kaggle.com/datasets/mirbektoktogaraev/should-this-loan-be-approved-or-denied (accessed on 17 March 2020).
The file title of the dataset is “Should This Loan be Approved or Denied?”.

2 The ROC curve is a visual representation of the classifier performance at different thresholds using the True Positive Rate (TPR),
which measures the proportion of positive category samples that are correctly classified as positive, as the vertical coordinate,
and the False Positive Rate (FPR), which measures the proportion of negative category samples that are incorrectly classified as
positive, as the horizontal coordinate.
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