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Abstract: Accurately measuring systemic financial risk and analyzing its sources are important
issues. This study focuses on the frequency dynamics of volatility connectedness in Chinese financial
institutions using a spectral representation framework of generalized forecast error variance decom-
position with the least absolute shrinkage and selection operator vector autoregression. It assesses the
volatility connectedness network using complex network analysis techniques. The data are derived
from 31 publicly traded Chinese financial institutions between 4 January 2011 and 31 August 2023,
encompassing the Chinese stock market crash in 2015 and the COVID-19 pandemic. The frequency
dynamics of the volatility connectedness results indicate that long-term connectedness peaks and
cross-sectoral connectedness rises during periods of financial instability, especially in the recent bull
market (2014–2015) and the 2015 Chinese stock market crash. The volatility connectedness of Chinese
financial institutions declined during the COVID-19 pandemic but rose during the post-COVID-19
pandemic period. Network estimation results show that securities triggered the 2015 bull market,
whereas banks were the main risk transmitters during the 2015 market crash. These results have
important practical implications for supervisory authorities.

Keywords: frequency volatility connectedness; Chinese financial institutions; financial regulation;
LASSO-VAR; network estimation

1. Introduction

The connectedness of financial institutions is an important trigger for the accumulation,
propagation, and spread of systemic financial risks. Since the 2008 global financial crisis,
considerable attention has been directed toward financial entities’ connectedness because
institutions are dubbed “too connected to fail” [1–3]. Shocks considered insignificant,
such as those that affect only a few institutions or markets at an early stage, can spread
across highly interconnected financial institutions, eventually affecting the entire financial
system [4,5].

As China increases its position as the second leading country in the global financial
system, its financial system has increasingly been under scrutiny via global markets. This
is also due to China’s rapid economic growth and the Chinese stock market crash that
occurred in 2015 [6,7]. After the financial crisis, global systemically important banks
(G-SIBs) shifted from developed to emerging economies like China [8]. Five Chinese
financial institutions—the Agricultural Bank of China (ABC), Bank of China (BOC), China
Construction Bank (CCB), Industrial and Commercial Bank of China Ltd. (ICBC), and Ping
An Insurance (Group) Co. of China, Ltd. (PAI)—have been included on the G-SIB list
since 2011 and the list of global systemically important insurers (G-SIIs) since 2014. This
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implies that China is a significant player in the global financial system. Thus, gauging and
comprehending connectedness in China’s financial system is vital for prudential authorities
in China and the global financial system.

Research examining volatility connectedness across diverse financial markets and insti-
tutions has steadily increased. For example, there have been numerous studies conducted
on international stock markets [9–11], commodity markets [12,13], gold markets [14,15],
global sovereign credit default swaps [16,17], exchange rate markets [18–20], cryptocurren-
cies [21–23], and crude oil, gold, and stock markets [24,25].

The connectedness of financial institutions in China has received much attention
from scholars. Some studies use the tail-event driven network (TENET) approach [26]
to investigate the financial institutions in China affected by the extreme risk spillover
network [27], some studies apply decomposed returns and the Granger causality test to
measure the systematic and idiosyncratic networks of financial institutions in China [7],
some studies [28] use the Diebold–Yilmaz method [29] to examine volatility connectedness
among 14 publicly traded commercial banks in China, and some studies [30] investigate
the frequency dynamics of connectedness among financial institutions in China using the
Baruník–Křehlík method [31].

The spread of COVID-19, which began in January 2020, had a huge impact on global
financial markets within a short period of time [32]. The outbreak of the COVID-19
pandemic led to higher non-performing loan rates for banks [33], premium income declined
for insurance [34], the index for the stock market declined, and the entire financial market
was in a state of shock [35]. Although some studies have explored the impact of COVID-
19 on the volatility connectedness of global stock markets [36], dominant agricultural
commodity markets [37], cryptocurrencies, and fiat currencies [38], there has been a lack
of attention paid to the impact of COVID-19 on the volatility connectedness of Chinese
financial institutions.

Methodological aspects of the connectedness index based on vector autoregression
(VAR) have been widely used in the economic and financial literature [23]. Among them,
Diebold and Yilmaz’s time-domain method [29], based on the variance decomposition of
prediction error, has attracted much attention and been applied to stock, crude oil, bond
market connectedness, and so on [39–41]. To extend connectedness, a new time-frequency
connectedness method to decompose the spillover results has been proposed [31], which
places variables that were originally in the time domain into different frequency domains,
thus revealing differences in spillover levels at different cycle lengths. The most recent
studies on frequency connectedness [42–44] employ the new approach proposed by Baruník
and Křehlík [31]. The model proposed by Diebold and Yilmaz deals only with the time
domain, whereas the method proposed by Baruník and Křehlik enables the assessment of
connectedness by simultaneously considering both magnitude and directionality features
concerning time and different frequencies. Hence, unlike the aggregate time-variant infor-
mation used in the Diebold–Yilmaz method [45], aggregate connectedness is decomposed
into different frequency domains using the method proposed by Baruník and Křehlík.
Distinguishing between short- and long-term connectedness is important because recent
research emphasizes that connectedness in markets pertinent to finance and commodities
varies with diverse degrees of persistence [46,47]. For example, when portfolio construction
is a concern, investors with long (short) investment perspectives may pay attention to
the long-run (short-run) volatility connectedness between institutions. Moreover, high
long-run volatility connectedness across diverse institutions implies the persistence of a
long-term impact on the system. Therefore, policymakers should concentrate on shocks
that increase long-run volatility connectedness across financial institutions, as such shocks
would have a long-run effect on the system.

This study employs the connectedness methodology proposed by Baruník and Křehlík
to assess the time and frequency of the dynamic connectedness of 31 Chinese financial
institutions. This study contributes to the literature in the following ways. First, the
previous literature evaluated the connectedness of financial institutions only in the time
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domain [27,40,41,48], whereas we distinguish the connectedness among institutions at
different frequencies over different periods. This is an important distinction since our
results indicate that the significance of an institution as a target or source of risks depends
on the frequency and period. In addition, we examine the connectedness of all financial
institutions, including banks, insurers, and securities, whereas some studies consider
only banks [28]. Second, we utilize Baruník and Křehlík’s advantageous approach [31]
in different sectors to analyze the connectedness of 31 publicly traded Chinese financial
institutions at three different frequencies (short-, medium-, and long-term). Our approach
is like some recent works [30,49] that surveyed the connectedness of different financial
institutions but did not analyze the network structure of connectedness in depth. Our
approach further explores the frequency connectedness network graphs to understand the
underlying network structure better. Third, the data span for our study encompasses not
only the Chinese stock market crash in 2015 but also the outbreak of COVID-19 in 2020,
during which financial markets experienced extreme volatility.

Finally, we found that both long-term and cross-sectoral connectedness reached a
maximum as system stability faced uncertainty or distress, especially during the recent
bullish period (2014–2015) and the 2015 Chinese stock market crash. Hence, long-run
connectedness can be utilized as an early alert indicator by regulators monitoring distress
in the system. Moreover, when cross-sectoral connectedness increases, regulatory commis-
sions should focus on cross-sectoral connectedness and increase their efforts to coordinate
administrative abilities.

The remainder of the paper is organized as follows. Section 2 presents the methodology.
Section 3 presents the data that have been employed. Section 4 presents the empirical results
and discussion. Finally, Section 5 presents our conclusions.

2. Methodology

We employ the connectedness methodology proposed by Baruník and Křehlík to
assess the time and frequency of the dynamic connectedness of 31 Chinese financial institu-
tions, which we considered to prolong the time-frequency aspect of the Diebold–Yilmaz
connectedness approach.

The method proposed by Diebold and Yilmaz uses forecasting error variance decom-
position under the generalized VAR model introduced by Koop et al. [50] and Pesaran and
Shin [51] to obtain predictions related to both the magnitude and direction of connectedness
in the global financial system within the time domain. The spectral representation of vari-
ance decompositions was included in the Diebold–Yilmaz approach by Baruník and Křehlík
as an extension of the method [47,52], thus simplifying the estimation of unconditional
connectedness relations in the frequency domain. Hence, the Baruník–Křehlík approach
provides the distinctive feature of gauging the dynamics of connectedness among a set of
variables that consider time and frequencies simultaneously.

2.1. Diebold–Yilmaz Time-Domain Connectedness

The VAR(p) model, expressed as yt = ∑
p
i=1 Φiyt−i + εt, consisting of N variables, is

first estimated when the Diebold–Yilmaz approach is implemented. As the number of
variables increases, the parameters to be estimated increase quadratically because the VAR
model is over-parameterized. This causes a high probability of observing a “dimensional
disaster”. Overparameterization makes the VAR model unable to estimate more variables,
which is why Diebold and Yilmaz [29] chose only 13 financial institutions when studying
the volatility spillover effect in the U.S. The current study examines 31 financial institutions.
When the lag order p = 5 for the VAR model is chosen, 4836 parameters must be estimated.
However, the traditional VAR model cannot estimate them accurately.

To overcome this problem, we estimate VAR(p) using an extended version of the least
absolute shrinkage and selection operator vector autoregression (LASSO-VAR) framework
proposed by Nicholson et al. [53]. Moreover, we applied Simon et al. [54]’s sparse-group
LASSO method, which considers sparse effects at both the group and intragroup levels.
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By using the moving average model, the VAR(p) can be defined as follows: Yt = ∑∞
j=1

Ψjεt−j, where Ψj = Φ1Ψj−1 + Φ2Ψj−2 + · · ·+ ΦpΨj−p, where Ψ0 is an identity matrix of
dimension N × N and Ψj is a zero matrix for j < 0.

Diebold and Yilmaz’s [45] generalized variance decomposition (GVD) VAR method
was employed, independent of variable ordering. Variable k contributes to variable j using
H-step-ahead generalized forecast error variance expressed as

θH
jk =

σ−1
kk ∑H−1

h=0

(
e′ jΨhΣek

)2

∑H−1
h=0

(
e′ jΨh ∑ Ψ′hej

) (1)

The covariance matrix for the error vector ε is denoted by Σ, the standard deviation
of the error term in the kth equation is denoted by σkk, a selection vector with the jth and
kth elements equal to 1 and the rest equal to 0 s are denoted by ej and ek, respectively,
and the variance matrix of the error vector ε is denoted by Σ. Because orthogonality may
not be satisfied by shocks in the GVD framework, the sum of the forecast error variance
is not necessarily equal to one. Hence, each element of the H-step-ahead GVD matrix is
normalized by the summation of the row sum, that is,

θ̃H
jk =

θH
jk

∑N
k=1 θH

jk

(2)

where ∑N
j=1 θ̃H

jk = 1 and ∑N
i,j=1 θ̃H

jk = N followed by the construction. θ̃H
jk is the pairwise

directional connectedness ranging from attributes k to j; that is, if θ̃H
jk is positive, then

attribute k generates connectedness with variable j.
To analyze the network’s topological properties, three connectivity measurement

categories were selected: (i) system-wide connectivity, (ii) sector-conditional connectivity,
and (iii) institutional-level connectivity.

From an overall system perspective, the total connectedness (TC), expressed as the
portion of the variance in the forecasts that its errors contribute by themselves, was com-
puted. The ratio of the summation of the off-diagonal elements in the normalized GVD
matrix is given by Equation (3):

TC =
∑j 6=k θ̃H

jk

N
(3)

Moreover, four measurements regarding the strength of sector-conditional connectivity
were introduced. When focusing on a certain sector, we can obtain measurements such
as the total connectedness within the sector, directional connectedness from the sector to
others or from others to the sector, and the net directional connectedness of the sector. For
sector M, these indicators are TCM, IN_DCM, OUT_DCM, and NET_DCM, and they were
computed as follows:

TCM =
∑j 6=k,j,k∈M θ̃H

jk

NM × (NM − 1)
(4)

IN_DCM =
∑j∈M,k/∈M θ̃H

jk

NM × (N − NM)
(5)

OUT_DCM =
∑j∈M,k/∈M θ̃H

kj

NM × (N − NM)
(6)

NET_DCM = OUT_DCM − IN_DCM (7)

where the total number of financial institutions in the system and sector M is denoted
by N and NM, respectively, and thus, the number of other sectors is denoted by N − NM.
Considering sector M as a subsystem, the higher the total connectedness, the more intense
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the risk spillover among institutions in the sector. Additionally, IN_DCM, OUT_DCM, and
NET_DCM represent the significance of sector M for risk reception, risk transmission, and
net risk spillover, respectively.

Regarding institutional-level connectivity, to assess the significance of individual finan-
cial institutions in risk transmission (reception), three directional measures of institutional
strength, IN_Sj and OUT_Sj representing the directional connectedness from institution j
to others and from others to institution j, respectively, and Net_Sj, which represents the net
directional connectedness of institution j, are denoted by

IN_Sj =
N

∑
k=1,j 6=k

θ̃H
jk (8)

OUT_Sj =
N

∑
k=1,j 6=k

θ̃H
kj (9)

Net_Sj = IN_Sj −OUT_Sj (10)

2.2. Baruník–Křehlík Frequency-Domain Connectedness

Following Dew-Becker and Giglioi’s work [55], as proposed by Baruník and Křehlík [31],
a frequency response function can be obtained by using the moving average coefficients Ψh,
to which Fourier transform is applied, that is, Ψ

(
e−iω) = ∑h e−iωhΨh, where ω denotes the

frequency and i =
√
−1. The associated power spectrum SY(ω) represents the distribution

of yt over the frequency components ω and is denoted by SY(ω) = ∑∞
h=∞ E(yty′t−h)e−iωh =

Ψ
(
e−iω)ΣΨ′

(
e+iω).

Employing the frequency response functions from the spectral representation helps
derive the GVD in the frequency domain. Thus, the generalized forecast error variance
decomposition (GFEVD) at a particular frequency ω was calculated as follows:

θjk(ω) =
σ−1

kk

∣∣Ψ(e−iω)Σ∣∣2j,k(
Ψ
(
e−iω

)
ΣΨ′

(
e+iω

))
jj

(11)

where θjk(ω) is the proportion of the spectrum of the jth variable at a given frequency
ω that can be attributed to shocks in the kth variable. To extract frequencies from the
natural decomposition of the original GFEVD, a weight was assigned to θjk(ω) concerning
the frequency portion of the variance of the jth variable. The weighting function can be
expressed as

Γj(ω) =

(
Ψ
(
e−iω)ΣΨ′

(
e+iω))

jj
1

2π

∫ π
−π

(
Ψ
(
e−iω

)
ΣΨ′

(
e+iω

))
jjdλ

(12)

which represents the power of the jth variable at a given frequency and sums the frequencies
to a constant value of 2π. For a frequency band given by d = (a, b), a, b ∈ (−π, π), a < b,
the GFEVD on frequency band d is expressed as θd

jk = 1
2π

∫ b
a Γj(ω)θjk(ω)dω. Then, the

scaled GVD is defined in frequency band d as

θ̃d
jk = θd

jk/ ∑
k

θ∞
jk (13)

where θ̃d
jk measures the percentage of forecast error variation for variable k due to shocks to

variable j at a specific frequency band d, and θ∞
jk is the GFEVD of the entire range of the

frequencies.
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The total connectedness at frequency band d can be denoted by:

TCd =
∑j 6=k θ̃d

jk

∑ θ̃∞
jk

(14)

The original connectedness is decomposed into distinct parts by the frequency connected-
ness. When the summation was conducted, the total connectedness, TC, expressed by Diebold
and Yilmaz [29], was equal to this summation. Equations (4)–(7) and Equations (8)–(10) define
a similar sector and directional frequency connectedness in the frequency domain.

2.3. Graphical Display of Network

In the analysis, 31 nodes and 312 edges were obtained in the graphs, consisting of
the entire network, with all these edges hiding the basic figures in the network structure.
Hence, network graphs only denote the thickest edges, which is merely a visual choice.
Statistics related to all the networks were computed using the full network.

Following Bostanci and Yilmaz [16] and Demirer et al. [56], Gephi open-source soft-
ware was used to construct, visualize, and analyze voluminous network graphs. Color, size,
and locations for nodes and thickness and color for edges were employed for additional
and hard-to-spot information.

The node color indicates the node sector. Nodes representing financial institutions
with outgoing edges in the same sector have the same color. Green, red, and yellow indicate
banks, securities, and insurers, respectively.

The to-connectedness of a node is indicated by its size. Each node’s radius is propor-
tional to the to-connectedness of its corresponding financial institution. A larger node size
denotes the institutions with a larger overall influence.

The pairwise direction is indicated by edge thickness and color. The thickness of the
edge from nodes i to j increases with the pairwise directional connectedness from nodes i
to j. The lighter color for edges shows the weakest links; the same is true for all other links.

The ForceAtlas2 algorithm created by Jacomy et al. [57] was employed to determine
node locations implemented in Gephi. According to the algorithm, the nodes repulse each
other, except for the connected nodes. In the algorithm, a steady state is reached when
the repelling and attracting forces balance each other exactly for every pair of nodes, as
determined by the average pairwise directional connectedness between the two nodes.
Nodes with higher pairwise directional connectedness values are expected to be closer to
each other in the steady state.

3. Data

We analyzed the daily trading data of all publicly traded financial institutions listed
in China’s A-share market before 2011, and the data were downloaded from Wind Info
between 4 January 2011, and 31 August 2023, which covered the Chinese stock market
crash in 2015. Hence, the sample includes 3 insurers, 16 banks, and 12 securities. Table 1
shows detailed information for each.

Following Diebold and Yilmaz [29] and Wang et al. [28], Garman and Klass’s range-
based volatility estimator is employed as follows [58]:

VGK
it = 0.511(Hit − Lit)

2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)− 2(Hit −Oit)(Lit −Oit)]− 0.383(Cit −Oit)
2 (15)

where Hit, Lit, Oit, and Cit are the natural logarithms of the daily high, low, opening, and
closing prices of institution i on day t, respectively. Table 1 presents the summary statistics
for the volatility series of the 31 financial institutions during the sample period. The largest
mean and standard deviation values are observed in the securities volatility series, which
implies that the stock prices of securities are more volatile than those of commercial banks
and insurers. According to statistics generated by the augmented Dickey–Fuller test (ADF),
being significant at the 1% level implies that stationarity exists in all volatility series; thus,
they can be used for VAR modeling.
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Table 1. Descriptive statistics.

Ticker Code Financial Institution Abbr. Mean Std. Dev. Skewness Kurtosis ADF

Panel A: Insurance
601318.SS Ping An Insurance PAI 0.0007 0.0009 6.26 77.92 −32.093 ***
601601.SS China Pacific Insurance CPIC 0.0009 0.0010 3.84 27.47 −30.876 ***
601628.SS China Life Insurance CLI 0.0009 0.0012 4.494 33.34 −26.268 ***

Panel B: Banks
000001.SZ Ping An Bank PAB 0.0008 0.0010 4.396 38.06 −29.637 ***
002142.SZ Bank of Ningbo NBCB 0.0009 0.0012 5.318 58.05 −29.107 ***
600000.SS Shanghai Pudong Development Bank SPDB 0.0005 0.0008 4.126 28.63 −28.839 ***
600015.SS Hua Xia Bank HXB 0.0006 0.0009 5.258 50.37 −26.748 ***
600016.SS China Minsheng Banking CMBC 0.0006 0.0010 5.216 45.88 −26.147 ***
600036.SS China Merchants Bank CMB 0.0007 0.0009 6.173 69.85 −27.399 ***
601009.SS Bank of Nanjing NJBK 0.0007 0.0011 5.239 48.79 −27.117 ***
601166.SS Industrial Bank CIB 0.0006 0.0009 4.146 28.56 −29.045 ***
601169.SS Bank of Beijing BOB 0.0005 0.0009 4.844 39.34 −26.741 ***
601288.SS Agricultural Bank of China Limited ABC 0.0004 0.0007 5.547 47.02 −27.599 ***
601328.SS Bank of Communications BOCOM 0.0005 0.0009 6.084 56.98 −23.255 ***

601398.SS Industrial and Commercial Bank
of China ICBC 0.0004 0.0007 7.051 81.36 −26.930 ***

601818.SS China Everbright Bank CEB 0.0006 0.0010 6.783 81.79 −26.274 ***
601939.SS China Construction Bank Corporation CCB 0.0005 0.0008 6.423 71.23 −25.285 ***
601988.SS Bank of China Limited BOC 0.0004 0.0009 7.442 80.89 −24.330 ***
601998.SS China CITIC Bank Corporation Limited CNCB 0.0007 0.0012 4.49 32.83 −26.976 ***

Panel C: Securities
000686.SZ Northeast Securities NESC 0.0011 0.0015 3.669 26.61 −29.014 ***
000728.SZ Guoyuan Securities GYSC 0.0011 0.0016 4.179 32.13 −27.186 ***
000776.SZ GF Securities GFSC 0.0010 0.0014 4.615 44.75 −28.925 ***
000783.SZ Changjiang Securities CJSC 0.0010 0.0015 4.829 44.68 −28.038 ***
600030.SS CITIC Securities CITICS 0.0009 0.0013 4.42 37.03 −28.984 ***
600109.SS Sinolink Securities SLSC 0.0013 0.0017 3.992 32.11 −29.332 ***
600837.SS Haitong Securities HTSEC 0.0009 0.0012 3.666 24.51 −30.530 ***
600999.SS China Merchants Securities CMSC 0.0010 0.0014 4.636 41.99 −26.952 ***
601099.SS The Pacific Securities PSC 0.0012 0.0016 3.737 26.29 −28.644 ***
601377.SS Industrial Securities CISC 0.0011 0.0015 4.272 37.63 −30.085 ***
601688.SS Huatai Securities HTSC 0.0010 0.0014 4.281 35.98 −27.371 ***
601788.SS Everbright Securities EBSCN 0.0011 0.0015 4.251 35.39 −27.821 ***

Note: ADF, augmented Dickey–Fuller test, null hypothesis of a unit root in each volatility series, *** indicates
rejection of the null hypothesis at the 1% significance level; PAI, Ping An Insurance (Group) Co. of China, Ltd.;
ABC, Agricultural Bank of China; BOC, Bank of China; CCB, China Construction Bank; ICBC, Industrial and
Commercial Bank of China Ltd.

4. Empirical results
4.1. Dynamic Analysis
4.1.1. Total Frequency Connectedness

Variance decompositions, represented by spectral representations, derive the dynam-
ics of volatility connectedness related to time frequency within a moving window of
approximately one year (250 business days). For our final model specification, VARs using
the lag group LASSO with the lag order p = 5 and the predictive horizon H = 100 days
were estimated 1. The dynamics of total connectedness concerning time in our system
are gauged by variance decompositions of the time domain, as shown in Figure 1. The
outcomes concerning the decomposition of total connectedness into frequency bands of up
to one week, one week to one month, and one month to one hundred days are shown in
Figure 2. The bands computed as TCd corresponding to the short-, medium-, and long-run
are denoted by d1 ∈ [1, 5], d2 ∈ (5, 20], d3 ∈ (20, 100] periods, respectively.
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Figure 2. The total volatility connectedness at frequency band d (TCd) with d1 ∈ [1, 5] in blue,
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window with a length of 250 days, VARs using the lag group LASSO with the max lag order p = 5.

First, we focus on the total connectedness, as shown in Figure 1. On average, the
total connectedness of the 31 Chinese financial institutions is quite large, at above 70%.
Additionally, total connectedness is time-varying and informative. Four prominent cycles
with higher total connectedness values were observed. The first cycle started at the end of
2012 and ended in mid-2014, when China’s economic growth began to slow, and severe
industrial overcapacity led to a surge in non-performing loans from commercial banks.
Then, China’s commercial banks faced two “money shortage” events in June and December
2013 called “the Chinese banking liquidity crisis of 2013.” During this period, China’s
financial system’s volatility connectedness and systemic risk increased significantly. The
second cycle lasted from mid-2014 to August 2016, when total connectedness rose from



Systems 2023, 11, 502 9 of 29

86% to 94% and remained above 91% until August 2016. Subsequently, total connectedness
continued to fall to its lowest point of 85% from mid-2016 to the end of 2017. During
this cycle, two turning-point events took place in the Chinese stock market: (i) the bull
market on the Chinese stock exchange from mid-2014 to June 2015 and (ii) the 2015 Chinese
stock market crash and the “Chinese stock market turbulence” in early 2016. From the end
of 2014 to June 2015, financial institutions infused large amounts of funds into the stock
market by participating in highly leveraged over-the-counter transactions. This excessive
risk-taking behavior led to a significant increase in total connectedness. The third cycle ran
from mid-2018 to the second half of 2019, during which total connectedness rose rapidly in
2018. This increase can be attributed to the Sino–U.S. trade war and China’s deleveraging
strategy. The fourth cycle ran from early 2020 to 2023; in light of the COVID-19 pandemic, it
is difficult for Chinese financial institutions to do business, and they are fragmented, which
leads to a decline in volatility connectedness among Chinese financial institutions. With
the end of the COVID-19 pandemic, the curvilinear rebound from the bottom in early 2022,
which shows a recovery of volatility connectedness among Chinese financial institutions.

Figure 2 displays the frequency dynamics of the total connectedness based on time
when looking at the frequency components. The decomposition provided the first observa-
tion that the periods with high total connectedness were mostly caused by the long-run
components (d3). In particular, we noted that the long-run components in the 2015 cycle
were much higher than those in the other cycles. Intuitively, the only systemic risk event
during the sample period was the 2015 Chinese stock market crash. Another concern is
that during the COVID-19 pandemic (2020–2021), although the total connectedness did
not change significantly and may even be in a downward cycle, the long-term component
increased, indicating that the risk of long-term association increased during this period.
Connectedness typically arises during a crisis, implying that long-term connectedness
carries a substantial risk of propagation, as rising stock market price volatility accompanies
the overall high uncertainty regarding the financial system during these periods. Sub-
sequently, more persistent investor responses to shocks are observed when uncertainty
increases. Thus, when a financial system has high connectedness, long-term responses to
shocks translate into long-term uncertainty, increasing systemic risk during these periods.

4.1.2. Sector Directional Frequency Connectedness

Thus far, total connectedness and its frequency components have been the focus of
our empirical research. Although Figures 1 and 2 provide detailed information, sector-
frequency connectedness provides more valuable results. Thus, we examine the time
dynamics of connectedness in classified sectors, including insurance, banking, and securities.

Figure 3 shows the evolution of the total connectedness of (each) sector TCM, the direc-
tional connectedness from (each) sector to others OUT_DCM, or from others to (each) sector
IN_DCM, and the net directional connectedness of (each) sector NET_DCM. Throughout
the sample period, intra-sector connectedness (TCM) was always higher than cross-sector
connectedness (OUT_DCM and IN_DCM). This implies that the connectedness between
institutions in the same sector was generally high, indicating that the trends and levels of
TCM, OUT_DCM, and IN_DCM in different sectors were identical. Specifically, compared
with Figure 1, the cross-sector connectedness and total connectedness trends in Figure 3 are
consistent, whereas the intra-sector connectedness and total connectedness trends are the
opposite. Thus, the TC trend was caused by cross-sector connectedness. Additionally, net
directional connectedness, NET_DCM, was quite different for (each) sector. The banking
sector, experiencing positive net directional connectedness, implies that connectedness
from the banking sector to other sectors was greater than that from other sectors. Note that
the banking sector turned out to be the fundamental risk sender in the system because its
net directional connectedness was not only the highest but also the most positive type of
connectedness in most phases (e.g., “the Chinese banking liquidity crisis of 2013”, “Chinese
stock market crash in 2015”, “Sino-U.S. trade war in 2018”, and “COVID-19 in 2020”).
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Next, the results in Figure 4 show the evolution of both the total and directional
connectedness of (each) sector based on a frequency dynamics perspective regarding the
frequency connectedness of (each) sector (including. TCds

M, OUT_DCds
M, IN_DCds

M, and
NET_DCds

M). Similar to the above results, the trends and levels of TCds
M, OUT_DCds

M, and
IN_DCds

M in the different sectors were the same. This indicates that after the risk is gen-
erated, it quickly propagates among sectors in a highly connected system. Long-term
connectedness (d3) increases during the three abovementioned cycles (especially during
the second cycle). Intra-sector connectedness was significantly higher than cross-sector
connectedness in the short- and medium-term (d1 and d2, respectively). However, there
were some exceptions in the long-term. The connectedness within banks was higher than
the cross-sector connectedness during the 2015 cycle. These findings suggest that long-term
cross-sector connectedness may appear when a systemic problem occurs (e.g., connect-
edness behavior in the second cycle), thereby increasing systemic risk and endangering
system stability. Although the trends of TCds

M, OUT_DCds
M, and IN_DCds

M were similar in
different sectors, net frequency connectedness varied significantly. In the long-term, the
securities sector was the main risk sender during the first half of 2015, whereas the banking
sector was the main risk transmitter during the second half of 2015. Since the 2015 Chinese
stock market crash on 15 June 2015, the securities sector has played an important role. The
banking sector served as the net risk sender during the crash.



Systems 2023, 11, 502 11 of 29Systems 2023, 11, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 4. Frequency decomposition of sector directional connectedness with 𝑑 ∈ [1,5] ,  𝑑 ∈(5,20] , 𝑑 ∈ (20,100]. 
4.1.3. Institution Directional Frequency Connectedness 

Next, we discuss the directional connectedness of the 31 publicly traded Chinese fi-
nancial institutions. Figures 5–7 illustrate each institution’s long-term dynamic from-con-
nectedness, to-connectedness, and net-connectedness (the short- and medium-run direc-
tional connectedness is presented in Appendix A). Similar to the sectoral frequency con-
nectedness analysis, each institution’s long-term dynamic from- and to-connectedness co-
incides with the total long-term connectedness. More precisely, the from-connectedness 
for institutions was quite similar to the dynamic long-term to-connectedness, which var-
ied across institutions and mainly determined the dynamic long-term net-connectedness. 
Long-term net-connectedness varies substantially across time and institutions. Overall, a 
strong change was observed for all institutions in terms of long-term dynamic net-con-
nectedness during the second cycle, which includes the bullish period and stock market 
crash. Six securities, including CMSC, CISC, and HTSEC, and two banks, NJBK and 
NBCB, were the main long-term connectedness emitters during the first half of 2015, indi-
cating that the securities triggered the 2015 bull market before the crash. During the stock 
market crash, the NJBK, NBCB, and several other banks were the main long-run connect-
edness emitters. The four state-run commercial banks (ICBC, CCB, BOC, and ABC) were 

Figure 4. Frequency decomposition of sector directional connectedness with d1 ∈ [1, 5], d2 ∈ (5, 20],
d3 ∈ (20, 100].

4.1.3. Institution Directional Frequency Connectedness

Next, we discuss the directional connectedness of the 31 publicly traded Chinese
financial institutions. Figures 5–7 illustrate each institution’s long-term dynamic from-
connectedness, to-connectedness, and net-connectedness (the short- and medium-run
directional connectedness is presented in Appendix A). Similar to the sectoral frequency
connectedness analysis, each institution’s long-term dynamic from- and to-connectedness
coincides with the total long-term connectedness. More precisely, the from-connectedness
for institutions was quite similar to the dynamic long-term to-connectedness, which varied
across institutions and mainly determined the dynamic long-term net-connectedness. Long-
term net-connectedness varies substantially across time and institutions. Overall, a strong
change was observed for all institutions in terms of long-term dynamic net-connectedness
during the second cycle, which includes the bullish period and stock market crash. Six
securities, including CMSC, CISC, and HTSEC, and two banks, NJBK and NBCB, were
the main long-term connectedness emitters during the first half of 2015, indicating that
the securities triggered the 2015 bull market before the crash. During the stock market
crash, the NJBK, NBCB, and several other banks were the main long-run connectedness
emitters. The four state-run commercial banks (ICBC, CCB, BOC, and ABC) were net
receivers of long-term connectedness or shocks and contributed less than the other two
types of commercial banks: city commercial banks.
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4.2. Network Estimation Results
4.2.1. Full-Sample Networks

In this sub-section, an “average” network of institutions was predicted using the full
sample period. Figure 8a shows the total connectedness of the network of the full sample of
financial institutions. Figure 8b–d illustrate the full sample financial institution network’s
short-, medium-, and long-term connectedness. Figure 8a shows that the institutions are
split into three clusters, representing the three sectors. The connectedness across the three
clusters is weak, as shown by the thin pairwise edges among the members of the three
clusters. The results in Figure 8b–d are valid for the short-, medium-, and long-term
connectedness networks, indicating that the three clusters have weak links.
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Figure 8. Full sample connectedness network for 31 Chinese publicly traded financial institutions,
2011–2019. Created by open-source software Gephi, the nodes’ position is determined by the ForceAt-
las2 algorithm. The node sector is indicated by the node color: green, red, and yellow indicate banks,
securities, and insurers, respectively. Only the top 50% of the edges are visible for better visualization.
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4.2.2. Network Structure on Some Critical Dates

This subsection describes the network structures corresponding to recent important
dates for Chinese financial institutions. In this study, total and long-term connectedness
levels reached a maximum in the second cycle, containing both the bullish period and the
stock market crash. Next, a case study was conducted by investigating the connectedness
network of the 31 Chinese financial institutions on 31 December 2014 (when long-term
connectedness reached its maximum level during the bullish period), 30 June 2015 (the
stock market crash), and 31 December 2015 (the post-crash period). Four network graphs
are presented for each date: the total connectedness network and the short-, medium-, and
long-term connectedness networks.

Figure 9a exhibits total connectedness as three-sector clusters but with stronger links
than Figure 8a because long-term connectedness peaked during the bullish period; that
is, the cluster structure becomes less robust. Figure 9b–d illustrate the connectedness
network in the short-, medium-, and long-run. The full-sample analysis provided con-
sistency between the short- and medium-run connectedness networks. In the long-run
connectedness network shown in Figure 9d, the clusters of the three sectors disappear.
The connectedness structure transformed from a clustered structure to a core–periphery
structure, with several securities such as CMSC, CITICS, and HTSEC as core institutions.
This finding coincides with the results in Section 4.1.3, providing evidence that securities
triggered the 2015 Chinese bull market.

Figure 10 shows the total (frequency) connectedness network during the 2015 Chinese
stock market crash (30 June 2015). Similar to Figure 8, Figure 10a–c represent the clusters
of the three sectors with weak links. However, the to-connectedness of the securities and
insurance sectors (node size) is smaller than that of the banking sector, indicating that
securities were not risk emitters during the crash. In the long-term connectedness network
in Figure 10d, the connectedness structure turns into a core–periphery structure. However,
the core institutions included several banks, such as NJBK, SPDB, and CMBC, instead of
securities, indicating that banks were the main risk transmitters during the crash. Worth
noting is that the risk contributions of the five institutions listed in the G-SIB and G-SII
lists (i.e., ICBC, BOC, CCB, ABC, and PAI) were small. One possible reason is that these
systemically important institutions are well regulated. Figure 11 shows the total (frequency)
connectedness network during the post-crash period, which is similar to Figure 8 and
indicates the normal state.
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nese stock market crash (30 June 2015). Similar to Figure 8, Figure 10a–c represent the 
clusters of the three sectors with weak links. However, the to-connectedness of the secu-
rities and insurance sectors (node size) is smaller than that of the banking sector, indicat-
ing that securities were not risk emitters during the crash. In the long-term connectedness 
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Figure 9. Connectedness network for 31 Chinese publicly traded financial institutions on 31 December
2014 (50% of the edges visible). Created by open-source software Gephi, the nodes’ position is
determined by the ForceAtlas2 algorithm. The node sector is indicated by the node color: green, red,
and yellow indicate banks, securities, and insurers, respectively. Only the top 50% of the edges are
visible for better visualization.
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Figure 10. Connectedness network for 31 Chinese publicly traded financial institutions on 30 June
2015 (50% of the edges visible). Created by open-source software Gephi, the nodes’ position is
determined by the ForceAtlas2 algorithm. The node sector is indicated by the node color: green, red,
and yellow indicate banks, securities, and insurers, respectively. Only the top 50% of the edges are
visible for better visualization.
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Figure 11. Connectedness network for 31 Chinese publicly traded financial institutions on 31 Decem-
ber 2015 (50% of the edges visible). Created by open-source software Gephi, the nodes’ position is
determined by the ForceAtlas2 algorithm. The node sector is indicated by the node color: green, red,
and yellow indicate banks, securities, and insurers, respectively. Only the top 50% of the edges are
visible for better visualization.

5. Conclusions and Discussion

This study provides a new perspective on the frequency dynamics of the volatility
connectedness of 31 publicly traded Chinese financial institutions (including insurers,
banks, and securities). Our analysis was based on the spectral representation framework of
GFEVD. First, we use volatility connectedness indices to explore the dynamic frequency
characteristics of volatility connectedness pertinent to system-wide, sector-conditional,
and firm-level perspectives. Next, we explored the network graphs of the frequency
connectedness to gain a better understanding of the underlying network structure.
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Our empirical results suggest that frequency connectedness varies in intensity and
trends when a financial system experiences uncertain economic conditions or is distressed,
such as during the Chinese banking liquidity crisis of 2013, the 2018–2019 Sino–U.S. Trade
war, and especially the 2015–2016 Chinese stock market crash. Specifically, long-term
connectedness plays an important role, peaking during periods of uncertainty. Economi-
cally, stock markets appear to crunch information swiftly and placidly during periods of
short-term connectedness. This suggests that shocks are tenacious and spread over longer
periods, thus affecting the market in the long-run [31] when long-term connectedness is
created. The results also suggest that inter-sector connectedness is higher than cross-sector
connectedness in most phases. However, cross-sector connectedness arises when economic
conditions or distress are uncertain. Combining sectoral and institutional directional con-
nectedness demonstrates that securities triggered the 2015 bull market, while banks were
the fundamental risk transmitters during the stock market crash.

Overall, our studies add to the academic literature that an institution’s significance
as a target or source of risks depends on the frequency and time period. The previous
literature evaluated the connectedness of financial institutions only from the time do-
main [27,40,41,48]; it cannot explore the contribution of different frequency horizons on the
overall connectedness [59]. It is important to properly measure the dynamic connectedness
across time and frequency, for the connectedness generated at lower frequencies indicates
that the impact is persistent and the propagation time is longer, which may lead to systemic
risks more easily [30,60]. In addition, we consider the COVID-19 pandemic on the volatility
connectedness of Chinese financial institutions, which is declining during the COVID-19
pandemic and rising during the COVID-19 pandemic period [61]. Our findings are in-
consistent with existing research conclusions [62–65]. This is mainly due to the different
financial institutions examined. The existing research has mainly examined the volatility
connectedness of the banking sector, while the financial institutions in our study include
banks, insurance, and securities. Institutional business connectedness is the main channel
of risk contagion [30,65]. During the COVID-19 pandemic, the business connectedness
among financial institutions reduced; thus, the volatility connectedness among institutions
reduced due to the Chinese government’s lockdown policy [61].

Based on the above findings, we suggest that supervisory authorities should consider
the connectedness indexes of dynamic time-frequency, especially by monitoring the increase
in low-frequency connectedness among financial institutions in the pre-crisis period to
prevent the accumulation of potential risks. In addition, supervisory authorities should pay
attention to the role of different financial institutions in risk contagion and the impact of
different external shocks on systemic risk and implement differentiated regulatory policies.
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Appendix A. Short-Term and Medium-Term Directional Connectedness of 31 Chinese
Financial Institutions
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Notes
1 The choice of a forecast horizon of 100 days was based on Baruník and Křehlík’s (2018) original paper, although the connectedness

approach developed by these authors was not affected by the selected forecast horizon.
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