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Abstract: Chaos-based image encryption schemes are applied widely for their cryptographic proper-
ties. However, chaos and cryptographic relations remain a challenge. The chaotic systems are defined
on the set of real numbers and then normalized to a small group of integers in the range 0–255,
which affects the security of such cryptosystems. This paper proposes an image encryption system
developed using deep learning to realize the secure and efficient transmission of medical images over
an insecure network. The non-linearity introduced with deep learning makes the encryption system
secure against plaintext attacks. Another limiting factor for applying deep learning in this area is the
quality of the recovered image. The application of an appropriate loss function further improves the
quality of the recovered image. The loss function employs the structure similarity index metric (SSIM)
to train the encryption/decryption network to achieve the desired output. This loss function helped
to generate cipher images similar to the target cipher images and recovered images similar to the
originals concerning structure, luminance and contrast. The images recovered through the proposed
decryption scheme were high-quality, which was further justified by their PSNR values. Security
analysis and its results explain that the proposed model provides security against statistical and
differential attacks. Comparative analysis justified the robustness of the proposed encryption system.

Keywords: deep learning; image encryption; medical images; image reconstruction; structure
similarity index metric (SSIM)

1. Introduction

With the onset of the Internet of Things era and an extensive increase in digital
information transmission over the Internet, security issues such as tampering, personal
privacy disclosure and illegal data theft arise from offering convenience to users. Traditional
standard techniques such as the DES (Data Encryption Standard) and AES (Advanced
Encryption Standard) encrypt textual data and are unsuitable for encrypting digital images.
Digital images are crucial information media. As a result, a critical need exists for more
secure and effective image encryption techniques. A digital image comprises several pixels
with specific numerical values, redundant information and inter-pixel solid correlation.
Image encryption is composed of two phases, diffusion and permutation. The pixel
positions are exchanged in the permutation phase to eliminate strong correlations among
neighboring pixels and hide data. In the diffusion phase, the image pixels are changed and
diffused among each other.

Deep learning has tremendous usage in image processing, building chaotic systems,
speech recognition, steganography, etc. Recently, deep-learning-based image encryption
techniques have received extensive attention. In image encryption techniques, the content
remains invisible until decryption using a correct and authorized key. In image cryptogra-
phy techniques, the original image is encrypted into a cipher image using an encryption
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key that recovers the actual image using the decryption key. Cryptanalysis is cracking the
information security systems, ciphers, keys, or encrypted images with plaintext attacks and
ciphertext-only attacks. Figure 1 shows the relation of cryptanalysis with image encryp-
tion systems. Chaotic systems offer good cryptographic properties to image encryption
techniques against cryptanalysis attacks, due to their non-linear behavior and sensitivity
towards initial conditions.

Figure 1. Image cryptography and cryptanalysis.

As chaos theory defines itself in a continuum, its application in image cryptography is
limited. The range of pixels in the spatial domain of the image is discrete and finite and
has a deteriorating effect on the system’s security. A proper connection between chaos
and cryptography leads to various attacks, despite various suggestions [1] to improve
the cryptosystem. There is an immense need for an alternative, secure system for image
encryption. Deep learning offers non-linearity to the image encryption system to enhance
security against plaintext attacks. Figure 2 shows the image encryption process with a
deep model. Deep-learning-based image encryption schemes are gaining much attention
from recent researchers, as these schemes achieve equal or better security when compared
to traditional encryption schemes. The encryption network of the deep learning network
performs the task of encryption, and the decryption network performs the task of decryp-
tion. Apart from these two networks, a discriminator network is also employed to confirm
that the decryption network regenerates the original image with the maximum possible
similarity. This is performed with a cycle-consistent generative adversarial network (Cycle-
GAN) [2]. Cycle-GAN shows outstanding performance in image style transfer. In [3], an
image encryption/decryption network is designed based on Cycle-GAN: the original im-
ages are transformed into cipher images and recovered back through decryption network.
The authors suggest its application in the Internet of Medical Things.

Figure 2. Deep-learning-based image encryption.
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This paper proposes an image encryption scheme based on the Cycle-GAN network
for medical applications. The nonlinearity introduced in the cryptosystem makes it secure
against plaintext attacks. Further, the SSIM loss function is used in the proposed net-
work, since medical images require good-quality pictures for better information exchange.
The photos recovered through the proposed method can capture full details. The appli-
cations of this encryption scheme are limited to medical applications that can afford to
lose minute or precise information, such as radiograph images. The images recovered
through the proposed method can capture full details. The SSIM loss measures the similar-
ity between pictures, rather than the distance between the pictures. The value of SSIM lies
between [0,1], and the loss functions used for the encryption network and discriminator
network work together to reflect a measure between real and fake data. The encryption net-
work here can affect the distribution of counterfeit data, which depends on the real data’s
distribution. This way, the network trains itself. After training, the encryption/decryption
network is capable of efficiently encrypting/decrypting an input image. The size of en-
crypted images is the same as that of the original images. The trainable parameters are the
secret keys. The hospital database stores the encrypted images, and only an authorized
person with the keys can retrieve the original images.

The remainder of the paper is organized as follows. Section 2 discusses related image
encryption schemes in brief. Section 3 illustrates the proposed EncipherGAN, followed by
experimental results in Section 4. Section 5 concludes the contribution of the proposed work.

2. Related Works

This section discusses conventional research contributions exclusively carried out in
the domain of image encryption.

Chen et al. [4] proposed a neural network for impulsive synchronization of the reaction-
diffusion mechanism that captures the dynamical behaviors of the system. Further, the
system is employed for image encryption applications. Chaotic systems are widely used
for cryptography, especially for an image cryptosystem, as it provides security against
various traditional attacks, such as plaintext attacks; thus, the neural network system in [4]
was also applied in an image cryptosystem. Dridi et al. [5] proposed an image encryption
scheme based on combination of chaotic and neural networks. This scheme proved to
be more secure and less complex as compared to the existing schemes. Hu et al. [6]
proposed image encryption with a stacked auto-encoder network for generating chaotic
sequences. The scheme proved efficient due to the stacked autoencoder network’s parallel
computing abilities and resistance to traditional attacks. Hu et al. [7] proposed novel
image steganography without embedding a message into the carrier image using a deep
model that improved image security metrics. The scheme shows high extraction phase and
resistance against steganalysis algorithms.

Li et al. [8] illustrated an image encryption scheme that generated the encryption
key by training a CNN on the CASIA iris dataset [9], extracting the features from iris
image and encoding the feature vector using RS error correcting code. This encoded
vector was further used to encrypt plain images using XOR operation. Ding et al. [3]
improved the previous scheme by training a GAN on Montgomery County’s chest X-ray
set [10] to generate the encryption key. This scheme showed a larger key space, high
resistance to standard image processing attacks, high security due to pseudo randomness
and high sensitivity to change. Jin and Kim [11] proposed a DNN-based image encryption
scheme that restricted pre-sharing of the keys between systems. It instead created and
utilized the keys used in the symmetric key encryption itself, which enhanced security.
Another DNN-based robust image encryption scheme was proposed by Maniyath and
Thanikaiselvan [12], which was trained on the SIPI image dataset and used chaotic maps
to encrypt the image without affecting the image quality. Erkan et al. [13] encrypted the
images using a diverse chaotic sequence generated using sensitive keys from training a
CNN on the ImageNet database. The initial conditions of the hyperchaotic logistic map
used for encryption were determined by the parameters generated through the network.
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Fratalocchi et al. [14] developed a two-layer deep neural network to classify silica aerogel
(SA) into physical unclonable functions. SA exhibits chaotic behavior, which can be used
as keys for cryptographic applications. This system generates a sequence of random key
with every possible input condition. Li et al. [15] proposed a Cycle-GAN-based image
encryption scheme; the network was trained on a plain-cipher satellite images dataset.
Double random phase encoding was used to encrypt the images. Ding et al. [16] proposed
another Cycle-GAN based scheme that was trained on a chest X-ray dataset [10]. In addition
to the encryption–decryption task, the neural network also identifies the specific object
in the cipher image. Bao and Xue [17] investigated the foundations of a strong avalanche
effect by studying weaknesses in the previous scheme. A new improved scheme was
proposed that also included a diffusion process into Bao et al.’s [18] scheme. The training
of the neural network was performed on a satellite images dataset obtained from Google
maps to reduce the avalanche affect. The schemed proved to be more efficient but showed
low performance in decryption. Networks of Cycle-GANs are extensively employed in the
encryption and decryption networks in deep-learning-based image encryption schemes,
image steganography [19], etc.

3. Proposed Method

The proposed EncipherGAN develops an encrypted image from a given plain image,
and vice versa. First, the encryption network G spawns an encrypted image from the plain
image, and then decryption network H generates a plain image from the cipher image.
The encryption network of Encipher-GAN is trained to generate cipher images that look
similar to the target cipher image using encryption network G and discriminator network
Dx; similarly, the proposed decryption network, F, along with the discriminator, Dy, is
trained with the objective of reconstructing plain images with minimum differences with
reference to the original plain image. Figure 3 presents the flow diagram of the proposed
encryption method.

Figure 3. Flow diagram of the encryption process.

3.1. Encryption Network

The encryption network transforms the style of the plain image (set X) to the style
of the cipher image (set Y). The architecture of the encryption network, as illustrated in
Figure 4, has three modules, i.e., a feature encoder, a transformation module and a feature
decoder. The configuration of the encryption/decryption network, consisting of input
layers and a series of convolution layers, is given in Table 1.
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Figure 4. Encryption/decryption network.

Table 1. Architecture of the encryption/decryption network.

Layer Size of
Kernel

Normalization
Technique

Activation
Function Output Parameters

Input 256× 256× 3

Convolution 7× 7 Instance ReLU 64× 256× 256 4704

Convolution 3× 3 Instance ReLU 128× 128× 128 18,432

Convolution 3× 3 Instance ReLU 256× 64× 64 73,728

Resnet Blocks (9, each with 2 convolutions) 3× 3 Batch ReLU 256× 64× 64 2,564,208

Transpose Convolution 3× 3 Instance ReLU 128× 128× 128 73,728

Transpose Convolution 3× 3 Instance ReLU 64× 256× 256 18,432

Convolution 7× 7 Tanh ReLU 256× 256× 3 4704

1. Feature Encoder:
The input image is downsampled with three layers of convolution to extract the
features of images.
The encoder consists of three convolutions, each of which is followed by instance
normalization and reLU activation. The first convolution layer has 64 filters of size
7× 7, followed by convolutions with filters of size 3× 3. The encoder downsamples
the plain image to extract features.

2. Transformation Module:
In this phase, the features are transformed by residual blocks. The model is opti-
mized using a ResNet based architecture to enhance the stability of the model. These
residual blocks consist of convolution–batch normalization–ReLU–convolution–batch
normalization–LRelU. The output of each of these blocks are concatenated and then
passed to the decoder. The size of input features and output remains the same dur-
ing transformation.

3. Feature Decoder:
The decoder upsamples the transformed features using rounds of transpose convolu-
tion layers. In the final convolution layer, these features are mapped to output image
of size 256× 256× 3.

3.2. Discriminator Network

The discriminator network consists of layers of convolution with leaky ReLU activation
that extracts features of image, reducing the input volume by a factor of 2. Each convolution
is performed with kernel size = 4 and stride = 2. Figure 5 presents the architecture of
discriminator network. The output of the discriminator is classification of image similar to
target or not; this is achieved with sigmoid activation in the final layer. The configuration
of discriminator network is given in Table 2. The discriminator takes in two input images
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and compares its features through the network. The network outputs a value which is used
to update the encryption network.
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Figure 5. Discriminator model.

Table 2. Architecture of discriminator.

Layer Size of Kernel Normalization
Technique

Activation
Function Output Parameters

Input (Two Inputs of same size) 256× 256× 3

Convolution 4× 4 ReLU 128× 128× 64 3136

Convolution 4× 4 Instance
Normalization ReLU 64× 64× 128 131456

Convolution 4× 4 Instance
Normalization ReLU 32× 32× 256 524056

Convolution 4× 4 Instance
Normalization ReLU 16× 16× 512 2098688

Convolution 4× 4 Instance
Normalization 16× 16× 1 8193

linear Sigmoid 1

3.3. Decryption Network

The decryption network architecture is identical to the encryption network architecture.
The input to this network is the cipher image, and the generated image is the plain image.

3.4. Training

Discriminator data for training: The discriminator takes data from two sources: the
real images (plain/cipher) and the fake ones generated by encryption/decryption network.
During training of the discriminator Dx, the weights of the encryption network remain the
same; it generates cipher images for the discriminator to classify correctly. For training,
the discriminator uses one loss function. The adam optimizer is employed to generate a
global minimum while updating the weights through backpropagation. The loss function
to be minimized for training discriminator is defined as

LD = µ(SSIM(x, y)) (1)
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where µ = 0.2 is the hyperparameter to achieve an acceptable equilibrium between the
structure aspect of target image and generated image, where SSIM, i.e., the structural
similarity index metric, is defined as

SSIM(x, y) =
(2uxuy + C1)(δxy + C2)

(u2
x + u2

y + C1)(δ2
x + δ2

y + C2)
(2)

where C1 = (k1L)2; C2 = (k2L)2; L is the maximum value of a pixel; k1 = 0.01 and k2 = 0.03
are constant parameters; δx represents standard deviation of image x; and δxy represents
the covariance of image x and image y. The values of SSIM lies in range [0,1], where one
indicates completely identical images.

The encryption network learns to create fake data so that the discriminator cannot
classify correctly. The encryption network takes input image and generates cipher image.
This cipher image is tested for similarity with the real cipher image by the discriminator.
If the discriminator gives a value below 0.75, then the weights of the encryption network
are updated with the loss function used by encryption network Lgen, defined as

Lgen(G) = µ(1− SSIM(x, y)) (3)

The objective of optimization here is to obtain a global minimum, i.e., making the
generated cipher images look similar to the real cipher images. The discriminator output
determines whether the weights of the encryption network are to be updated using back-
propagation or not. The encryption network is trained with the help of the discriminator.
The discriminator’s weights remain constant when training of the encryption network is
performed. For one epoch, the discriminator is trained, and then the encryption network is
trained for one epoch. This cycle is repeated continuously for training of the entire network.

The decryption network is similar to the encryption network and transforms the
generated cipher image back to a plain image. The training of discriminator network is
performed in a similar way with the help of discriminator Dy. The encryption system
transforms image x from domain X into a cipher image through mapping G(x), and the
decryption system must be able to retrieve the plain image x back from cipher image
G(x)—i.e., x → G(x) → F(G(x)) ≈ x; therefore, forward-cycle consistency loss [2] is
defined as

Lcyc = Ex∼Pdata(x)
[||F(G(x))− x)] +Ey∼Pdata(y)

[(G(F(y))− y||1], (4)

and is also employed during training of encryption/decryption network. This loss penalizes
the output image x̂ generated by the decryption network when it deviates in content from
the target x and vice versa.

Total Loss of the Network

Total loss of the encryption network is defined as

L(G, F) = Lgen(G) + LD + λLcyc (5)

The value of constant λ = 10.
Finally, the information in the plain image is converted into a cipher image with

perceptual properties of the real cipher image. The parameters in encryption/decryption
network are the final parameters that form the private key. The plain image is regenerated
from the cipher image with cycle consistency loss. Mean-square error (MSE) calculates
the pixel-level differences between two images that do not account for the adjacent pixel
correlation between images. In this paper, the structural features of two images are consid-
ered with the SSIM index while selecting the loss function, which is an essential metric for
measuring image quality.
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3.5. Encryption/Decryption Algorithm

The encryption is performed efficiently with the encryption network once the trained
network has been obtained. During training, the parameters are randomly initialized, and
the parameters of the network obtained after training are the secret keys of the encryption
system. Using these keys, the plain image can be encrypted, and from the encrypted image,
the plain image can be retrieved. The plain image to be encrypted must belong to a class of
images on which the network is trained. The proposed model was trained on skin cancer
images taken from [20]. The encryption algorithm is given below (Algorithm 1):

Algorithm 1 Encryption model.

Input: Plain Image I of size W × H × 3 and Secret Key (K1)
Output: Cipher Image, C

Initialisation : Assign trained weights to the encryption network using secret key K1.
1: Data preprocessing : The input image has pixels in range from 0 to 255 which is

normalized using normalization technique.
2: The trained network takes in normalized input image and through a series of convolu-

tion and activation functions as defined in Table 1, the network generates cipher image
of same size as the input.

4. Security Analysis

The nonlinearity of the model enhances the security of the encryption scheme as com-
pared to chaotic encryption schemes, which are vulnerable to phase-space-reconstruction
attacks [21]. The depth of the encryption/decryption network is 15, and the number of
parameters in the network is approximately 2,800,000. These parameters obtained after
training the network are used as the secret keys for encryption/decryption. Due to depth
of the deep learning model, the complexity for cryptanalytic attacks is further increased.
Various factors that affect security the encryption system are discussed in this section.

4.1. Secret Key Space

The size of the key space determines its potential to counter brute force attacks.
The trained parameters of each layer contribute to the key space. Due to the depth of the
encryption network, the key space of the encryption system is large, i.e., 2Parameters∗32. Due
to the large key space, a brute force attack is not a practical approach for attackers.

4.2. Secret Key Sensitivity

Key sensitivity can be determined by performing encryption with different keys. Each
time the encryption network is trained, a different set of parameters is obtained. There-
fore, by training the network two times, two different sets of parameters are obtained.
The same image was used to perform encryption with each of the trained encryption net-
works, and as a result, two different cipher images were obtained, as shown in Figure 6b,c.
The PSNR value of between cipher image shown in Figure 6b,c is 10.54, which shows the
high sensitivity of the keys used in the encryption system.

Figure 6. Plain image. (a) Image 1. (b) Cipher Image 1; (c) Cipher Image 2—generated with different
sets of keys.
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4.3. Analysis of the Histogram of Generated Images

Analysis of the histogram of plain images, as shown in Figure 7a–c, and the cipher
images shown in Figure 7d–f, was performed. The histogram distribution of encrypted
images determines its resistance towards statistical attacks. The histogram of cipher im-
ages that have been generated through proposed encryption system is different from the
histogram of plain images, though they closely resemble each other. They have the same
distributions as their plain images. The similarity in the histograms of encrypted images
is shown in Figure 8. This similarity between histograms makes it difficult to obtain any
information regarding plain images and is suitable for encrypting medical images.

Figure 7. Plain image. (a) Image 1, (b) Image 2, (c) Image 3. (d) Cipher Image 1. (e) Cipher Image 2.
(f) Cipher Image 3.

Figure 8. Histogram of plain images (a–c) and corresponding cipher images (d–f).

4.4. Image Information Entropy

Image information entropy determines the uncertainty of pixels in the cipher image
and is defined as

IE = −
255

∑
i=0

pi log pi (6)
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where pi is the probability of pixel i in an image. An image with ideally random pixels has
image information entropy value eight. Table 3 displays the entropy values for plain image
pixels and their cipher images’ pixels. It is apparent from Table 3 that the entropy values
in the cipher images obtained from the image encryption scheme are higher than those of
the plain images.

Table 3. Image information entropy values of plain images and cipher images.

Images Image 1 Image 2 Image 3

Plain 7.15 6.27 6.04

Cipher 7.40 7.36 7.38

4.5. Correlation Analysis

Neighboring pixel correlation determines the strength of an encryption model against
statistical attacks. Adjacent pixel correlation in the horizontal direction was calculated by
randomly choosing 2000 horizontally adjacent pixels and then calculating the correlation
coefficient between each of the adjacent pixels using

corr =
N ∑N

i=1 (xiyi)−∑N
i=1 xi ×∑ yi

(N ∑N
i=1 x2

i − (∑N
i=1 xi)2)× (N ∑N

i=1 y2
i − (∑N

i=1 yi)2)
(7)

Similarly, the correlation coefficient was calculated for vertical and diagonal directions.
Table 4 displays the adjacent pixel correlation coefficients among pixels in plain images and
cipher images.

It is apparent in Table 4 that the adjacent pixel correlation is low in the cipher images
compared to their plain images. Figure 9a–c show the dispersal of pixels in three directions
(horizontal, vertical and diagonal directions) in plain images. Pixel distribution in its
corresponding cipher images, presented in Figure 9d–f for horizontal, vertical and diagonal
directions, justifies that the correlation among neighboring pixels in the plain image is
minimized successfully in its cipher image.

Figure 9. Adjacent pixel correlations (horizontal, vertical and diagonal directions) of plain images
(a–c) and corresponding cipher images (d–f).
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Table 4. Correlation coefficient values among adjacent pixels.

Images Horizontal Vertical Diagonal

Image 1 0.9976 0.9986 0.9959

Cipher 0.4812 0.4584 0.2169

Image 2 0.9976 0.9984 0.9963

Cipher 0.5090 0.4538 0.2043

Image 3 0.9977 0.9986 0.9961

Cipher 0.5203 0.4147 0.1782

5. Performance Analysis

The proposed model was tested on two sets of data, one that has the plain images to be
encrypted and another that has the cipher images, which does not reveal any information
regarding the plain image. These two sets of data were obtained from a skin cancer dataset
in [20], from which plain images were taken, and encrypted images were used that were
obtained by encrypting these plain images with the image encryption algorithm proposed
in [22]. All input images and generated images are of size 256× 256× 3. After training the
encryption–decryption model using a skin cancer dataset, the proposed encryption–decryption
system is capable of encrypting/decrypting random plain text/cipher text, respectively.

5.1. Optimization Process

The models are trained with the adam version of stochastic gradient descent (SGD)
with a batch size of one, which denotes that after each image was generated, weights
of the network were updated. Learning rate 0.0002, beta1 = 0.5 and beta2 = 0.999 were
employed for the adam optimizer. The network’s performance was optimized as the
training proceeded. This is apparent in the quality of encrypted images obtained at different
intervals during training. Figure 10 shows the improvement in cipher image quality as
more epochs were completed. Figure 10b shows an encrypted image after one epoch,
Figure 10c after 10 epochs and Figure 10d after 40 epochs, which reflects the continuous
optimization process of the model. Finally, after 100 epochs, as shown in Figure 10e, a good
quality cipher image was obtained.

(a) (b) (c)

(d) (e)

Figure 10. Comparison of the quality of encrypted images as training proceeded: (a) Original Image;
(b) Cipher Image (epoch 1); (c) Cipher Image (epoch 10); (d) Cipher Image (epoch 40); (e) Cipher
Image (epoch 100).
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5.2. Quality of Recovered Image

The natural image has a high correlation among pixels, along with potential structural
features. The proposed model employs the SSIM index as a loss function, which captures
the essential structure of images in the generated (cipher image) and recovered (original
image) images. After the model’s training, the proposed network encrypts original images,
as shown in Figure 11, to obtain encrypted images. The proposed decryption network
generates recovered images, as shown in Figure 11. The similarity between recovered
images and original plain images’ mosaics justifies the recovered images’ quality. Peak
signal-to-noise ratio was calculated amongst the original image and the generated image
obtained through the proposed decryption network. The values of PSNR given in Table 5
justify the network’s performance. The proposed decryption network recovered good-
quality images. Table 5 compares PSNR values obtained with the proposed network to
PSNR values obtained with other encryption networks. The value of PSNR for the proposed
network is higher than those reported in [3,23].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Quality of recovered images generated with the decryption network: (a) Original Image;
(b) Encrypted Image of (a); (c) Recovered Image from (b); (d) Original Image; (e) Encrypted Image of
(d); (f) Recovered Image from (e); (g) Original Image; (h) Encrypted Image of (g); (i) Recovered Image
from (h); (Column 1 displays original images. Column 2 displays encrypted images generated with
the encryption network. Column 3 shows recovered images generated with the decryption network.)

Table 5. PSNR values between plain images and recovered plain images.

Methods Average PSNR

Proposed Method 39.9703
DeepEDN [3] 36.514
EncryptGAN [23] 17.5992
Image encryption system with CNN denoiser [24] 24.8975
Optical Image Encryption using Deep Learning [25] 30.0000
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5.3. Comparative Analysis

Chaos-based image encryption schemes generate good-quality cipher images with
high randomness among pixels of the cipher images [12,13], as observed in the entropy
values and correlation coefficient values in Table 6. However, various cryptanalytic
works [22,26] have shown the vulnerability of chaos-based image encryption schemes
to plaintext attacks [27]. The chaotic systems are defined on a set of real numbers and
then normalized to a small group of integers in the range 0–255; this affects the security of
such cryptosystems [27–29]. The proposed encryption scheme resists plaintext attacks due
to non-linearity introduced through the deep convolutional neural network. A detailed
comparative analysis in Table 6 further justifies the ability of the proposed system to pro-
vide robustness compared to existing methods through high PSNR values of the proposed
encryption system as compared to those of [3,24,25].

Table 6. Comparative analysis of image encryption schemes with the proposed encryption system.

Ref. Technique
PSNR between

Original Image and
Recovered Image

SSIM between
Original Image and

Recovered Image

Correlation
Coefficient

Image Entropy of
Cipher Image

Proposed Deep learning based
encryption 39.9703 0.9972 0.3855 7.36

[12]

Deep learning based
secret keys and

chaos-based
encryption

inf 1 0.0149 7.98

[13]

Deep learning based
secret keys and

chaos-based
encryption

inf 1 0.00002 7.99

[3]
Deep learning based

image encryption
scheme

36.514 0.90000 – 7.95

[24]

Optical image
encryption scheme

using deep
convolutional neural

network

24.8975 0.8885 – –

[25]

Optical Image
encryption and

Hiding using deep
learning

30.0000 0.9306 – –

6. Conclusions

In this paper, an efficient and secure end-to-end encryption/decryption network is
proposed based on deep learning processes. Two networks were designed for encryption
and decryption using a skin cancer dataset. The encryption and decryption networks are
trained simultaneously to generate images with the structural feature extraction capability
of a CNN. The loss function, SSIM, is employed for training these networks, which also
takes into account the structure, luminance and contrast of the target image. The crypto-
graphic properties of its cipher images are comparable to those of cipher images generated
by traditional image encryption systems. The proposed decryption system is capable of
retrieving robust plain images with good PSNR values. The trainable parameters of the
network are the keys of the encryption–decryption system. The encryption system obtained
after training has a large number of parameters; therefore, the encryption system has a
large key space. The security of the proposed encryption system is compared with that
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of other state-of-art methods based on deep learning processes, and it is apparent that
proposed encryption/decryption system is efficient, secure and robust.
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Abbreviations

The following abbreviations are used in this manuscript:

DES Data encryption standard
AES Advanced encryption standard
Cycle GAN Cycle generative adversarial network
SSIM Structural similarity index
MSE Mean-squared error
PSNR peak signal-to-noise ratio
CNN Convolutional neural network
DNN Deep neural network
SA Silica aerogel
IE Image entropy
DeepEDN Deep learning based image encryption and decryption Network
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