
Citation: El Mazgualdi, C.; Masrour,

T.; Barka, N.; El Hassani, I. A

Learning-Based Decision Tool

Towards Smart Energy Optimization

in the Manufacturing Process.

Systems 2022, 10, 180. https://

doi.org/10.3390/systems10050180

Academic Editor: Vladimír Bureš

Received: 13 September 2022

Accepted: 3 October 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

A Learning-Based Decision Tool Towards Smart Energy
Optimization in the Manufacturing Process
Choumicha El Mazgualdi 1,*, Tawfik Masrour 1 , Noureddine Barka 2 and Ibtissam El Hassani 1

1 Laboratory of Mathematical Modeling, Simulation and Smart Systems (L2M3S), Artificial Intelligence for
Engineering Sciences Team (IASI), Department of Mathematics and Computer Science, ENSAM-Meknes,
Moulay Ismail University, Meknes 50050, Morocco

2 Mathematics, Computer Science and Engineering Department, Université du Québec à Rimouski, 300 Allée
des Ursulines, Rimouski, QC G5L 3A1, Canada

* Correspondence: c.elmazgualdi@edu.umi.ac.ma

Abstract: We developed a self-optimizing decision system that dynamically minimizes the overall
energy consumption of an industrial process. Our model is based on a deep reinforcement learning
(DRL) framework, adopting three reinforcement learning methods, namely: deep Q-network (DQN),
proximal policy optimization (PPO), and advantage actor–critic (A2C) algorithms, combined with
a self-predicting random forest model. This smart decision system is a physics-informed DRL that
sets the key industrial input parameters to optimize energy consumption while ensuring the product
quality based on desired output parameters. The system is self-improving and can increase its
performances without further human assistance. We applied the approach to the process of heating
tempered glass. Indeed, the identification and control of tempered glass parameters is a challenging
task requiring expertise. In addition, optimizing energy consumption while dealing with this issue
is of great value-added. The evaluation of the decision system under the three configurations has
been performed and consequently, outcomes and conclusions have been explained in this paper. Our
intelligent decision system provides an optimized set of parameters for the heating process within the
acceptance limits while minimizing overall energy consumption. This work provides the necessary
foundations to address energy optimization issues related to process parameterization from theory
to practice and providing real industrial application; further research opens a new horizon towards
intelligent and sustainable manufacturing.

Keywords: deep reinforcement learning; process parameters self-configuration; energy self-optimization;
autonomous process control; intelligent manufacturing; glass tempering process; dual-optimization
problem; Industry 4.0

1. Introduction
1.1. Background and Motivation

Energy consumption is a major sustainability focus in industrial manufacturing sec-
tor [1]. Furthermore, due to the rapid technological development and increasing indus-
trialization, energy-efficient handling is required for competitiveness purposes. Thus,
large-scale industrial installations are extremely affected, which is the case in the processing
industry, particularly in automobile construction. Electricity accounts for a significant share
of energy resources in modern industrial processes among the various energy sources. It
represents more than 50% of the total energy consumption of this sector [2,3].

As a pillar of the automotive industry, automotive glass manufacturing faces chal-
lenges in optimizing its electrical energy consumption. Extravagantly, the tempering
process of automotive glass, as one of the largest consumers of electrical energy, is con-
cerned in the present work. As a result, stakeholders are increasingly interested in reducing
energy consumption at the process level, which can lead to being competitive, becoming
sustainable and significantly reducing costs.
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By the emergence of Industry 4.0, a new trend towards smart manufacturing sys-
tems and autonomous process control is revolutionizing the manufacturing industry [4,5].
Among the technological portfolio enabling this leading revolution, the internet of things
(IoT), cyber-physical systems (CPS), and artificial intelligence (AI) are playing a pivotal
role, transforming ordinary industrial processes into smart, connected, and autonomous
processes. From a mathematical perspective, physics-based processes can be accurately
represented by mathematical equations, making them easily modelable and learned. How-
ever, from an industrial point of view, representing a process is a more complicated task
requiring, in addition to the mathematical representation, a high level of process knowledge
and environmental conditions awareness [6,7]. Reinforcement learning (RL) is a branch
of AI originally inspired by research into animal learning. Roughly speaking, an RL al-
gorithm is able to incorporate learning capabilities into an ordinary process controlled
by humans, thus allowing it to become self-configurable without the need for human
intervention [8–11].

In summary, the present work aims at developing a decision system for solving a dual-
optimization problem in the glass tempering process. The optimization problem consists of
optimizing both the final product quality and the overall energy consumption during a heat-
ing cycle. For this purpose, we developed a decision model using a self-prediction Radom
Forest (RF) model combined with three RL agents namely, deep Q-network (DQN), proxi-
mal policy optimization (PPO), and advantage actor–critic (A2C) algorithms. The agents
are led to learn the optimal strategy to identify the suitable parameter values without
prior knowledge of the operating environment. The simulated environment was realized
using a self-predicting machine learning (ML) model trained on background data obtained
from ANSYS software. The trained model will be able to identify the appropriate recipe of
parameters to meet production requirements and the energy effectiveness. Finally, the fea-
sibility and convergence of the proposed methods are confirmed by practical experiments
in an automotive glass company.

1.2. Tempering Process of Automotive Glass Manufacturing

Glass tempering is a complex manufacturing process that consists of heat treatment to
obtain a type of safety glass in high demand within the automotive industry. The process
involves extreme heating of the glass to a specific temperature and then rapid cooling
which hardens the glass both thermally and physically [12,13].

Before the tempering process, the glass is cut to the desired size to avoid any decrease
in strength after the treatment. The cut glass is then examined for imperfections such as
cracks, bubbles, and inclusion to prevent breakage during the tempering process, and it
is washed to remove any debris that may interfere with the thermal tempering. Once cut,
examined and washed, the glass begins a heat treatment process in which it travels, either
in batches or continuously feed, through a tempering furnace which exposes the glass to
a temperature of over 600 degrees Celsius. After that, a high-pressure cooling process is
applied to the heated glass. During this process, the glass surface receives jets of high
pressure air from a set of nozzles in varying positions. The cooling process; also called
“quenching”, makes the outer surfaces of the glass cool much faster than the center of the
glass and contracts [14]. As a result, quenching puts the outer surfaces into compression,
while the interior of the glass remains in tension. The existence of compressive stress in
the surface and tensile stress in the center make the tempered glass stronger than ordinary
glass. Thus, tempered glass can handle more stress than ordinary glass due to its ability
to balance the force applied to it. In addition, it causes the glass, when broken, to fall
apart into small fragments instead of splintering into sharp shards as plate glass does.
The smallish cube-like chunks are considerably less able to cause serious injuries, making
the tempered glass very used in those environments where human safety is an issue [14,15].
Tempered glass is used in the cars surrounding windows and the back window, known in
the automotive glass industry as sidelites and backlites.
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The temperature inside the tempering furnace and the glass traveling speed are the
two main control parameters of the tempering glass process, especially in automotive
glass manufacturing. Those parameters are defined as the process parameters that have
a direct impact on the final quality of the product. At the launch of a new project, those
two parameters are defined based on the accumulated experience of process engineers,
but often the operators need to adjust it, which is time and resources consuming. Thus,
defining those process parameters for any new project, bypassing destructive tests, will be
of great interest.

In our previous work [16], we investigated the applicability of the DQN algorithm
to identify and master the tempering process parameters in industrial electric furnaces,
reaching the self-configuration level of our process. We proved its convergence to an
optimal policy, and we exposed its interesting and relevant results. The developed DQN
model was able to identify the good process parameters with deviation not exceeding
process limits [16]. In the present work, we will focus more on the overall energy opti-
mization problem with the purpose of achieving the self-optimization level of the studied
process. Our main contribution concerns the resolution of a double optimization problem
using DRL techniques to deal with one of the critical industrial problems, namely, hav-
ing the right quality while optimizing energy consumption. Furthermore, in the present
context of digitalization, energy consumption is one of the sustainability concerns that
must be carried out carefully. The paper is tackling this issue from an industrial point
of view, further contributions could be made for more innovative achievements towards
a sustainable environment.

The paper is structured as follows: Section 2 outlines a number of published papers
handling the problem of energy optimization in the manufacturing industry. Section 3
provides some background on reinforcement learning and its related algorithms used in
the present work. Section 4 is about the problem statement providing a concise description
of the heating process control formulation. In Section 5, we expose, in a detailed way,
the result of the experiments. Finally, Section 6 offers some final remarks and suggestions
for further work.

2. Literature Review

Recently, there have been numerous studies carried out to optimize energy consump-
tion in various manufacturing sectors. Moreira et al. [17] used a combination of experimen-
tation and Taguchi analysis to investigate the impact of the key machining parameters of
a CNC machining process on the energy consumption. They developed a novel improved
multi-swarm Fruit Fly optimization algorithm (iMFOA) for solving the multi-objective
optimization model. The effectiveness of optimization approaches has been proven in
fine-tuning key parameters to improve energy efficiency while meeting other technical pro-
duction requirements. In [18], the fast and elitist non-dominated sorting genetic algorithm
(NSGAII) technique was applied to provide a set of Pareto multiple optimum solutions of
steam cycle power plant. The authors first used data from the operating power plant to
perform thermo-economic modeling of the steam cycle power plant. Then, the turbine inlet
temperature, the turbine extraction pressures, the boiler pressure, the condenser pressure,
the isentropic efficiency of the turbines and pumps as well as the reheat pressure were
used as control variables, while yield and total cost ratio were considered as two objective
functions for the optimization problem. Compared to the actual data of the power plant in
operation, the optimization results at some points simultaneously show a 3.76% increase
in efficiency and a 3.84% decrease in the total cost rate. Finally, a correlation between the
two objective functions and the decision variables was provided with acceptable accuracy
using artificial neural network. Seo et al. [19] developed a physics-based model capable of
mimicking the dynamic behavior of a prototype electrically amplified glassware furnace.
They presented a dynamic optimization strategy that offers an optimal balance between
the use of electricity and natural gas given fluctuations in the price of electricity. Optimal
demand response (DR) decisions for two case studies of practical interest were analyzed.
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Geng et al. [20] proposed an energy optimization and prediction model based on the
improved convolutional neural network (CNN) integrating the cross-feature (CFeCNN)
in order to improve the energy efficiency in the petrochemical industry. The developed
method was applied to establish energy optimization and prediction model of ethylene
production systems in the petrochemical industry. The capability of the proposed method
is proved by achieving an energy utilization efficiency increase of 6.38%, which leads
to a reduction of carbon emissions by 5.29%. Su et al. [21] presented a multi-objective
optimization method of cutting parameters that take into account the response surface
methodology (RSM) and the grey relational analysis. The proposed method was applied
to turn AISI 304 austenitic stainless steel for reducing energy consumption without com-
promising the cutting quality and the production rate. The turning experiments were
established using the Taguchi method, and then, using grey relational analysis, the opti-
mization problem was transformed from multi-objective into simple objective optimization
problem. Finally, the regression model based on RSM for the grey relational grade was
developed to determine the optimal combination of the turning parameters. Based on
this optimal combination, the followed optimizations were performed; surface roughness
(Ra) decreases by 66.90%, material removal rate (MRR) increases by 8.82%, and finally a
decrease in the specific energy consumption (SEC) by 81.46%. Sangwan et al. [22] proposed
a multi-objective optimization model that minimizes the power consumption while maxi-
mizing the material removal rate for different targeted values of surface roughness during
machining. The results of the proposed predictive model reveal a significant decrease of
the specific cutting energy consumption in the present study. Furthermore, an analysis of
variance (ANOVA) was performed in order to confirm the model’s fitness and adequacy.
Wang et al. [23] established a dual-objective optimization model to identify the milling
parameters that minimize the power consumption and process time. Using the sixteen
groups of experimental data, the power consumption model is obtained through nonlinear
regression. Then, an improved artificial bee colony (ABC) intelligent algorithm is used
to resolve the proposed optimization model with multiple constraints of milling process-
ing conditions. Compared with the non-dominated sorting genetic algorithm (NSGA-II),
the proposed methodology has good performance. Luan et al. [24] developed a multi-
objective optimization model performing a trade-off between machining quality, cutting
tool cost, and electricity cost for enhancing the environmental and economic impacts of the
manufacturing process. The proposed model was designed to identify the optimal cutting
conditions that minimize electrical energy and cutting tool costs without compromising
manufacturing quality. An online tool wear prediction model was developed to map the
relations between tool wear and cutting power based on an experimental study. Next,
the multi-objective optimization model is used to solve the trade-off analysis problem by
analyzing flank tool wear data, surface roughness, and the real-time cutting power data.
Finally, the grey relational grade of the cutting parameters, on the three optimization objec-
tives, was obtained using the grey relational analysis. Visualizations of the trade-offs among
the parameters were performed using the tool wear-cutting power-surface roughness trade-
off analysis. Han et al. [25] proposed a novel energy management and optimization model
of complex petrochemical industries that uses the fuzzy extreme learning machine (FELM)
method integrated with the fuzzy set theory. The triangular fuzzification is used to solve
the problem of the fluctuation and uncertainty data. In addition, the training of the FELM is
performed using the cross recombination of triangular fuzzy numbers (TFNs). Compared
with the fuzzy error back-propagation network (FBP) and the fuzzy radial basis function
network (FRBF), the FELM has the best predictive performance and the fastest convergence
speed on the University of California Irvine (UCI) standard data sets. The proposed method
was applied to manage and optimize the energy status of China’s ethylene industry, prov-
ing its effectiveness and applicability in the energy-saving potential, which is calculated up
to about 15%. Golkarnarenji et al. [26] developed an intelligent predictive model based on
support vector regression (SVR) algorithm for energy optimization in the thermal stabi-
lization process. The developed predictive model combined with genetic algorithm (GA)
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optimizer returned a very satisfactory configuration, achieving energy savings of up to
43%, under both physical property and skin-core defect constraints. Despite the limited
training data set, the developed stochastic-SVR-GA approach offers potential energy sav-
ings for similar chemical industries, including carbon fiber manufacturing. Finally, in [27],
the authors developed a real-time monitoring system of manufacturing workflow for the
Smart Connected Worker. Among others, an artificial neural network are introduced to
enable real-time energy dis-aggregation to improve energy efficiency.

The literature studies discussed above reveal a wide range of industrial problems that
has been converted into optimization problems, from single-objectives to multi-objective,
and then solved using one or more optimization techniques. However, to our best knowl-
edge, not much focus has been paid to modeling a decision system capable of providing
two-level automation, namely, self-configure and self-optimize towards an intelligent
manufacturing process.

3. Background on Reinforcement Learning

Inspired by behaviorist psychology, reinforcement learning (RL) is an aspect of ma-
chine learning where an agent learns a strategy to behave in an environment using a trial-
and-error paradigm [28,29]. At each iteration, the agent interacts with the environment and
changes its actions under a policy π. On the other hand, the environment changes state
and provides a reward in response to the action taken. The agent’s goal is to maximize the
reward received from the environment via a learned value function [30].

By performing an action and receiving a response, the agent creates its own experience
via a trade-off between exploration and exploitation of its environment [31]. As such, this
paradigm is not limited to specific conditions as it considers the whole problem of a goal-
directed agent that interacts with an uncertain environment without explicitly dividing and
isolating sub-problems [32]. In this regard, reinforcement learning is always well adapted
to changing environments and variable conditions, moreover, it easily adapts to different
control and multi-optimization tasks.

The Markov decision process (MDP) is an idealized form for reinforcement learning
problems providing precise theoretical statements. The tuple <S, A, P, R> of the Markov
decision process framework describes in a perfect way any reinforcement learning problem.
S denoted the state-space, A denoted the action-space, P is the transition probability, and R
represents the reward function. Another parameter can be added to this, which is the
discount factor γ [33]. The discounted accumulated future reward from time t, also called
the expected return is then given by:

Rt = rt + γrt+1 + ... + γT−trT = ∑T−t
k=0γkrt+k t ∈ N (1)

where rt is the reward received from the transition at time t, and T is the time when the
episode terminates.

This accumulated reward holds the information about which actions were taken in
each state, in other words, it has the information about the agent strategy or policy π.

Then, the state-value function is defined as the expected return from the current state,
s under the policy π and is then given by:

vπ(s) = E[Rt|st = s] (2)

Since the state-value function only provides the estimation of how good it is for the
agent to be in a given state, there is another function of a state value that provides a more
complete estimate, including the action to perform in a given state. This function is called
the action-value function and is defined as the expected return from state s, taking the
action a, while following policy π. The action-value function can be expressed as follows:

qπ(s, a) = E[Rt|st = s, at = a] (3)



Systems 2022, 10, 180 6 of 23

Dynamic programming (DP) is one traditional method for solving MDP problems,
it refers to a collection of algorithms namely, value iteration, policy iteration, and linear
programming [34]. Such methods rely on a clear and perfect understanding of the envi-
ronment in order to be able to model it perfectly, which involves enormous computation
time. However, if the model of the environment is not available or the process is not finite,
DP becomes more difficult to apply. In this case, model-free algorithms are such a good
alternative that uses experience to approximate the value function, and then access the
information to make decisions [11]. In many interesting applications, especially indus-
trial case studies where assuming a perfect model of the environment is a difficult task,
model-free algorithms are more suitable, providing a DP-like result with less computation.

Q learning and policy gradients are considered to be the two most popular classes of
reinforcement learning. In policy gradient methods, the policy is directly parameterized
as a distribution over actions, while Q learning is a type of value iteration method that
approximates the Q function.

3.1. Q-Learning

Proposed originally by Watkins in 1989 [35], Q-learning is a model-free, off-policy RL
algorithm that methodically updates the action value function q(s, a) without using the
dynamics of the environment. Learning the long-term expected utility Q(s, a), also called
the Q-value function, for each state-action pair is the basic idea behind the Q-learning
algorithm. Thus, the expected utility Q(s, a) directly approximates the optimal action-value
function q∗.

The standard formulation of Q-learning is stated in the pseudo-code in Figure 1.

Figure 1. Q-learning algorithm.

The parameter α is the learning rate or the step size, it denotes the update brought to
the utility value each time an action is taken, and it is the application’s specific parameter.
An episode represents the learning cycle of Q-learning. The initialization of utility values
Q(s, a) depends on the application, if there is no preference for certain actions in any
specific state, the Q(s, a) values are the same for all state-action pairs. The Q-learning is
considered as an off-policy learning algorithm, which means that the update is independent
of any policy. However, a trade-off between exploration and exploitation is ensured by the
ε-greedy policy.

In a Q-learning algorithm, a lookup table is used to represent the q-values since
every state and action need to be visited multiple times to get a good approximation of
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the q-value [36]. This makes the use of Q-learning reduced to cases where action-state
spaces are finite and discrete. However, for advanced real-world applications, the state
space is very large or even continuous which requires representing the q-function with
a function approximation.

Function approximation is a kind of generalization that attempts to find a param-
eterized function Q(s, a; θ) satisfying Q(s, a) ≈ Q(s, a; θ). Therefore, instead of looking
up a state-action pair and find its corresponding q-value, we make use of a predictive
method to find the q-values even for unseen states. As one of the most powerful function
approximation, ANN is very used especially, for nonlinear functions.

An ANN is a network of interconnected units that process information in a similar
way biological neural networks do [37]. The neurons constitute the building blocks of an
ANN, and they are connected to each other by synapses which are just weighted values.
The network is composed of layers, where information is transmitted from the input layer,
which is the data we provide to the ANN, through the hidden layers, to the output layer in
which the finished calculations of the network are placed. With an appropriate choice of
the architecture, ANNs can be used to approximate very complex functions [38].

• Deep Q-Learning

Combining the perception of deep learning (DL) with the decision-making ability of
the reinforcement learning, deep reinforcement learning (DRL) is a robust and scalable
approach widely used when dealing with complex real-world problems. The approach
consists of using ANNs as approximators of the action-value function q(s, a) by providing
end-to-end learning of appropriate representations and features for the relevant problem.
When DL is applied to Q-learning, it is called a deep Q-network (DQN) [39]. The use
of DRL instead of RL allows the good capability to capture complex, non-linear patterns
which makes it able to solve classes of problems previously deemed unfit for RL. In DQN,
the state of the RL algorithm is used as the input layer of the DNN, while the predicted
q-values of the state-action pairs are used as the output layer (Figure 2).

Figure 2. Schematic structure of Deep Q-Network (DQN) agent.

The parameters of the DNN are updated repeatedly, by minimizing the loss function
(Equation (4)), until the difference between the target value and the predicted value converges.

Li(θi) = E
[
(r + γmaxQ(s′, a′, θi−1)−Q(s, a, θi))

2] (4)

3.2. Policy Gradients

Unlike the Q learning that approximates the Q function and uses it to infer the optimal
policy π∗ (i.e., argmaxaQ(s, a)), policy gradients (PG) aims to model and optimize the
policy directly in the policy space [40]. A PG algorithm usually seeks to directly model the
action probabilities using a neural network (or other function approximators). It consists of
collecting a small batch of experiences, and then using this batch to do a gradient update
of the policy. Thus, the experiences used for the update are immediately discarded away,
and the newly updated policy is used to collect a new batch of experiences. This also means
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that policy gradient methods are typically less sample efficient than Q-learning methods
because they only use the collected experiences once for doing an update. The loss function
depends on the policy πθ(a|s) which is a parameterized function respect to θ, and it is
defined as the expectation of the log of the policy actions multiplied by an estimate of the
advantage function:

LPG(θ) = Êt

[
log πθ(at|st)Ât

]
(5)

where Ât is the advantage function, it estimates the relative value of the selected action
in the current state. Generally, it is equal to the discounted rewards minus a baseline
estimate. By properly determining the baseline, we ensure that the advantage function is
only positive if the action is good and negative if the action is bad. In practice, the baseline
function is often replaced by the value function V(s), which is simply the expected value of
total future reward at state s. So Ât is really telling us how much better the chosen action
was based on the expectation of what would normally happen regarding the state in which
the agent was.

Policy gradient generally relies on a stochastic gradient ascent algorithm to minimize
the loss (objective) function [40] described above (Equation (5)). The advantage-actor–critic
(A2C) gradient estimator is commonly used and has the form:

∇θ LPG(θ) = Êt

[
∇θ log πθ(at|st)Ât

]
(6)

Each time the agent interacts with the environment, the parameters of the neural
network are tweaked so that ”good” actions are more likely to be sampled in the future.
Hence, the process is repeated until convergence to the optimal policy. However, traditional
PG methods are sensitive to the choice of step size which can cause unbounded updates and
make them suffer from high variance and low convergence. To overcome these drawbacks,
trust region policy optimization (TRPO) was developed as an extension of the policy
gradient method [41]. TRPO consist of constraining the step size of the policy update
during training using the Kullback–Leibler (KL) divergence to limit the difference between
the policy before and after the update. The objective function of TRPO is given by:

max
θ

Êt

[
πθ(at|st)

πθold(at|st)
Ât

]
(7)

Subject to Êt
[
KL
[
πθold(·|st), πθ(·|st)

]]
≤ δ (8)

where πθold is the old policy before updating, and πθ is a new policy which will be changed in
every iteration of updating. Although its reliability and data efficiency, TRPO is a complicated
algorithm that cannot handle noise or the sharing of parameters between neural networks.

• Proximal Policy Optimization (PPO)

Proximal policy optimization (PPO) was introduced in 2017, by the OpenAI team,
as an enhancement of the TRPO, and has easily established itself as one of the most popular
RL methods preempting the deep-Q learning technique [42,43].

Retaining the advantages of TRPO, PPO aims to compute a gradient update at each
step that ensures a minimized deviation from the previous policy while reducing the cost
function. This allows PPO to strike a balance between ease of implementation, ease of
tuning, and sample complexity. This simplified optimization process of PPO is expressed
via a clipped surrogate objective function as the policy network loss function that is
formulated as follows [42]:

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(9)
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where the probability ratio rt(θ) shown in Equation (9) is defined as:

rt(θ) =
πθ(at|st)

πθold(at|st)
(10)

The probability ratio rt(θ) is between 0 and 1 when the action is less probable for the
current policy than for the policy before updating, and it is greater than 1 when the action
is more probable for the current policy than for the policy before updating.

By clipping the objective function, the ratio is limited and thus so are the policy
updates. These methods have been shown to offer improved performance when compared
to the KL divergence of TRPO while constraining the update step in a much simpler manner.
PPO’s pseudo code is shown in Figure 3.

Figure 3. PPOProximal Policy Optimization (PPO), actor–critic style algorithm.

3.3. Actor–Critic Methods

Actor–critic algorithms are a combination of policy-based and value-based methods
by providing two networks: actor network and critic network. This combination allows
actor–critic methods to have faster convergence compared to actor only or critic only
techniques [44]. Taking the state as input, the actor controls the agent behavior by selecting
the best action to learn the optimal policy. On the other hand, receiving the environment
and the action made by the actor, the critic evaluates the selected action and provides
adjustments by computing the value function. In principle, this evaluation is carried out
by calculating the temporal difference error (TD Error) of the action just selected. Thus,
if the TD error is positive, the critic suggests strengthening the tendency of selecting this
action in the future. Otherwise, it suggests weakening its tendency to be selected. Figure 4,
illustrates the architecture of actor–critic with temporal difference error (TD error).

The actor–critic has two main variants: the advantage actor–critic (A2C) and the
asynchronous actor–critic (A3C).

• Asynchronous Advantage Actor–Critic (A3C)

The asynchronous advantage actor critic (A3C) algorithm is one of the most popular
and recent reinforcement learning algorithms that was developed Google’s DeepMind in
2016 [45].



Systems 2022, 10, 180 10 of 23

Figure 4. Actor–Critic Architecture.

The main idea behind A3C method is that it implements parallel training where
multiple independent agents are exploring the environment. Each agent uses a differ-
ent exploration policy to interact with its own copy of the environment asynchronously.
The overall experience collected by the agents is aggregated and then used to update
periodically the global network. As the updates are happening asynchronously, the agents
need to reset their parameters, after each update, to the global network. The agents keep
exploring their own environment, independently, until the next update as illustrated in
Figure 5.

The asynchronous part of A3C, makes the learning process faster and more robust
allowing efficient and effective exploration of the state space.

• Advantage Actor–Critic (A2C)

The main drawback of asynchrony is that some agents would be playing with an
outdated version of the parameters and thus the global update would not be optimal. A2C
is the synchronous deterministic implementation of the A3C method. This version of the
actor–critic methods uses the same approach as A3C but in a synchronous way, meaning
that the update of the global network will be conducted once all the agents have an update
to perform. In the A2C method, a coordinator is added so that it waits for all the parallel
workers to finish their segment of experience before updating the global network weights.
Then, in the next iteration, a new segment of experience will begin with all parallel agents
having the same policy as depicted in Figure 6.

With performance comparable to the A3C algorithm, the A2C implementation enables
more consistent training due to synchronized gradient update.
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Figure 5. Simplified A3C Architecture.

Figure 6. Simplified A2C architecture.

4. Problem Statement and Proposed Methods

The experiment was performed in a glass automotive company especially, within the
heating process of tempered glass. The process consists on an electric heating furnace
composed of nine control zones, a loading table upstream the furnace and an unloading
table downstream the furnace for discharging tempered glass sheets (Figure 7).
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Figure 7. Industrial Electric furnace illustration.

Two main parameters characterize the nine control zones: the conveyor or the belt
speed that also represents the glass speed through the furnace, and the temperature that
is specific to each zone, from the nine control zones, and that may change from one zone
to another. A new product means a new type of glass defined by a different thickness,
a different color, or a slightly different geometry. Consequently, every type of glass has
a specific recipe that consists of the glass speed and the temperature vector. The two
parameters are generally fixed based on the expert process experience. Besides, some
adjustments are then necessary to achieve the desired outlet temperature of the glass.
Frequently, these adjustments are performed via trials and or destructive tests, which is
time and resource-consuming. Furthermore, once the desired temperature of the glass is
reached, the recipe is defined regardless of the relative energy consumption.

Our contribution consists of developing a decision model capable of mastering the
process parameters to meet the two indexes; the quality index represented by the exit
temperature of the glass and the energy index expressed by the overall energy consumption
of the furnace for producing one piece.

The proposed system is a DRL algorithm dealing with our dual-optimization problem
which consists of optimizing the overall energy consumption and controlling the process
parameters of tempered glass to meet the quality requirements. In this work, we have
implemented three DRL algorithms, which are PPO, A2C and DQN. Then based on these al-
gorithms, we developed our decision model combined with a quality self-prediction model.

First, the ANSYS software (Canonsburg, PA, USA) was used to generate a set of
background data that provides process parameters and the corresponding quality index.
Second, using these background data, we trained a self-prediction model to predict the
quality index for each set of parameters. Finally, we used this predictive model as our
simulated environment (i.e., industrial furnace) for the training of our model, by applying
the two proposed algorithms. Figure 8 provides a brief description of the steps needed to
develop our decision model system. In the following three sections, a detailed explanation
of the steps will be given.

4.1. Background Data Acquisition

Understanding the impact of the working conditions and the setting parameters on the
electric tempering furnace’s behavior is crucial to understand the tempering process and
the relative energy consumption. To this end, the use of a simulation software, allowing
mathematical modeling of the real asset to mimics as good as possible the real behavior
of the furnace, seems to be a good solution. In the present work, the ANSYS simulation
platform was used to simulate the behavior of glass in its working environment, given AN-
SYS’ ability to provide high-fidelity virtual prototypes [46]. It consists on creating a virtual
representation of the furnace based on mathematical modeling using finite elements. This
model involves the physical laws of heat transfer that apply in the furnace in the heating
process, namely, conduction, convection and radiation [47–49].
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Figure 8. Overview of problem formulation steps.

The rate of radiation energy is given by the Stefan–Boltzmann law of radiation, and ex-
pressed as follows:

Q = σeAT4 (11)

where σ is the Stefan–Boltzmann constant, e is the emissivity of the object, A is the radiating
surface area, and T is its absolute temperature in kelvin.

The rate of heat transfer by convection is expressed by the following equation:

.
Q = hA4T (12)

where
.

Q is the heat transferred per unit time, h is the heat transfer coefficient, A is the
surface area of the object,4T is the temperature difference.

The rate of heat transfer by conduction can be calculated by the following equation:

Q
4t

= −kA
4T
4x

(13)

where4T is the temperature difference, A is the cross-sectional surface area,4t is the time
interval during which the amount of heat Q flows through a cross-section of the material,
and4x is the distance between the ends.

In addition to involving the physical laws of the heating process, the virtual model
created by ANSYS faithfully reproduces the technical and geometric constraints of the
real furnace.

Therefore, we used the simulation results to generate background data composed of
the process parameters as inputs and its corresponding quality index as the dependent
variable. Figure 9 describes the background data acquisition procedure performed using
the ANSYS software (Canonsburg, PA, USA).

4.2. Self-Prediction Model Development

This step consists on providing a simulation environment for our RL agent using the
background data collected in the first step. We tested different prediction mapping models
to predict the quality index considering process conditions as model inputs. The models are
trained using the background data and their accuracies were compared to choose the more
accurate model. In this study, the Random Forest (RF) algorithm presents a good accuracy
in predicting the quality index. RF is a robust supervised learning (ML) algorithm used for
both regression and classification problems. It uses bagging and feature randomness to
build an uncorrelated forest of decision trees, thus providing a better performance than
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traditional ML algorithms [50,51]. In summary, the self-prediction RF algorithm will play
the role of the simulated environment allowing the training of our DRL agents.

Figure 9. Flow chart of the data acquisition procedure.

4.3. RL Decision Model

As mentioned before, the trained RF model will be used as the simulated environment
of the industrial furnace. Therefore, the last step is to develop an RL agent interacting with
this simulated environment. The goal of our RL agent is to learn the optimal strategy for
optimizing both the quality index and energy index. Figure 10 illustrates the proposed
structure of our RL decision model.

Figure 10. Proposed structure of RL decision model.
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State space S

The state vector is composed of nine values of zone temperature, the glass speed,
and the quality index as follows:

st = (T1, T2, . . . , T9, v, Texit) ∈ S (14)

Action space A

Considering our description of the problem, we identified the action space as a discrete
set of values used to adjust both the glass speed and the zone temperature Ti. The agent
can take an action that consists of increasing or decreasing glass speed or zone temperature.
The set of possible actions is denoted as follows:

Possible actions = (a1, a2, . . . , a20) (15)

where ai ∈ {a1, . . . , a9} refers to the action increase the temperature of the ith zone by
10 ◦C, and aj ∈ {a11, . . . , a19} refers to the action decrease the temperature of the (j−10)th
zone by 10 ◦C, while a10 refers to increase glass speed by 10 mm, and a20 refers to decrease
glass speed by 10 mm.

Reward function R

Once an action is taken by the RL agent, a new set of process parameters is generated,
and the quality index (Texit) is predicted bu the RF model. Consequently, the quality of the
action is expressed by a numerical reward received by the agent. Furthermore, at the end
of the episode, the reward is adjusted to involve the energy index as well. Thus, the reward
function is given by:

rt =

∣∣PreviousTexit − Ttarget
∣∣− ∣∣CurrentTexit − Ttarget

∣∣
Ttarget

+ re (16)

Based on the quality standards set by the quality department, the quality index is a
priority, and it is defined as good when it is in range

[
Ttarget − 5 ◦C, Ttarget + 5 ◦C

]
. In other

words, if the quality index does not meet the quality requirement of the process, then the
episode reward is null. Else, the episode reward is calculated as follows:

re =

{
0 i f not done
1− (∑8

i=0Ti × 0.01 + v× 0.005)/Cmax
(17)

where Cmax is the maximum cost possible that relies on the energy consumption and is
calculated as follows:

Cmax = Tmax × Nbr o f zones× 0.01 + vmax × 0.005 (18)

The coefficients 0.01 and 0.005 were defined based on the internal historical data of
the company, and they reflect the amount of energy consumed successively by the heating
elements namely, resistances and the engines that generate the movements.

In order to avoid unnecessary trials, some assumptions are added:
Tmin = 500 ◦C; Tmax = 700 ◦C; vmin = 150 mm; vmax = 200 mm
Explicitly, if action a2 was performed in the current state, the agent will move to a new

state noted:

st+1 = (T1, T2 + 10, T3, . . . , T9, v, NewTexit) (19)

This means changing from the current set of process parameters to a new set by
increasing the temperature of zone 2 by 10 ◦C, and replacing the current quality index
by NewTexit, the new quality index received from the self-prediction model. Thus, based
on this predicted quality index, the agent will receive a reward rt from the environment.
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Further, by the end of every episode, and if the quality index is OK, the reward is adjusted to
involve the energy index as well. Hence, the training process will ensure the achievement of
optimal process parameters that optimize the quality index while guaranteeing significant
energy savings.

5. Experiment Validation and Result

In the previous section, we have defined and explained all the theoretical statement of
the studied problem. The current section will focus more on their practical side, providing
the necessary explanations of the experiment settings. First, we performed a set of simula-
tions on ANSYS to acquire background data needed to train both self-prediction model
and RL agent. Next, we developed three versions of RL algorithms namely; DQN, PPO,
and A2C to evaluate the performance of our decision model.

5.1. Offline Simulation and Prediction Model Training

The experimental case study was presented in Section 5. As a reminder, it consists
of similar pieces of automotive glass (car sidelites and backlites) that undergo a thermal
tempering inside an industrial electric furnace. The furnace is composed of nine zones
characterized by their temperature values. Every type of glass has a specific passage speed
in the furnace. The temperature values plus the glass speed are defined as the process
parameters that we will try to identify in the present work in order to optimize both the
quality index and the energy index. Given a new product, the temperature value of the glass
at the furnace’s output is affected by its tolerance interval in general of ±5 ◦C. The purpose
of the present work is to achieve self-control and self-optimization of process parameters to
meet the quality requirements while optimizing energy consumption. It typically consists
of solving a dual optimization problem.

Background data collection is the first step in the development of our decision model,
but it is also a crucial task requiring high-fidelity simulations to provide meaningful data
for the predictive task and the learning task. First, we created a virtual electric furnace,
simulating the significant characteristics of the real furnace and reproducing its behavior
under working conditions. The behavior of the real furnace was simulated using a set of
features such as physical and thermal laws that describe and mimic what actually happens
in the furnace during a heating process. Numerous tests was performed to achieve the final
version of the simulated furnace which provides results very close to the behavior of the
real furnace (see Table 1).

Table 1. The selected glass characteristics and mesh size for simulations.

Characteristic Value Unit

Isotropic thermal conductivity 1.4 W m−1 K−1

Specific heat 750 J kg−1 K−1

Mesh size 1 division following X and Y __
33 divisions following Z __

Emissivity 0.9 __

Secondly, we checked the relevance and accuracy of the virtual furnace simulations
by injecting a set of process parameters that was currently in production and for which
we knew the glass outlet temperature. For example, in Table 2, we provide the process
parameters for a given glass model for which the corresponding outlet temperature is
687 ◦C.

Figure 11 shows the result obtained using our simulated furnace, it can be seen that
the temperature of the glass is 689.75 ◦C and then it is included in the interval of tolerance
which is [687−5, 687+5].



Systems 2022, 10, 180 17 of 23

Figure 11. Simulation result for the given glass model.

Table 2. Process parameters for the studied glass model.

Zone 1 2 3 4 5 6 7 8 9

Temperature (◦C) 637 652 664 666 670 678 685 685 695
Glass Speed (mm) 20 20 20 20 20 20 20 20 20

Thirdly, after validating our simulated furnace, we performed a hundred simulations
to extract background data. Then the self-prediction model (i.e., Random Forest) was
trained using the extracted data. Figure 12 presents the graph that compares predictions
with target values over 60 observations, the model accuracy is clearly highlighted with
a mean absolute error MAE = 0.806. Accurately trained, this predictive model will allow
us, subsequently, to predict the outlet temperature of the glass for any set of process
parameters. Hence, this model constitutes, coupled with the reward function, the simulated
environment with which our RL agent will interact.

Figure 12. Plot of the predicted values versus real values (Target values).
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5.2. Decision System

We used the implementation in the OpenAI Baselines project [52] to evaluate our
selected RL algorithms. Interfacing with OpenAI Gym [53] provides various advantages
especially by providing actively developed interface with multiple environments and
features useful for training. The interface, also, provides a reference implementation of RL
algorithms. For the three algorithms: DQN, PPO, and A2C, we set the controller policy
to the default multi-layer perceptron (MLP), and we used the default hyper-parameters
except for the learning rate and the number of simulation steps that are set, respectively,
to 0.00001 and 1000 steps. Training and tests were run on Windows 10 with an eight-core
i7-7700 CPU and an NVIDIA GeForce GT 1060 graphics card. The total time to execute
1 million steps was 4 h 40 min for DQN, 2 h 30 min for PPO and 3 h 57 min for A2C.

The training process consists, for several iterations, in performing a set of actions using
the simulated environment under the three configurations. After training, different plots
of the performance as well as other factors vital to the learning process, such as episode
reward, losses, average last 100 steps reward, are gathered from TensorBoard. All graphs
presented below are smoothed using the moving average, ensuring clarity of the data
presented and good visualization of trends.

Figure 13, shows the performance results of the A2C agent during the learning process.
Starting with the episode reward (Figure 13A), it oscillates slightly but in a decreased
trend before getting increased around 400,000 time steps. The value loss function (see
Figure 13C) shows that the agent performs perfectly before 250,000 time steps, then the
performance drops drastically for the rest of the learning process, which is also confirmed
while analyzing the plot of the average last 100 steps reward as depicted in Figure 13D.
Since we are using the A2C from baselines implementation, the sudden explosion of the
value loss might be connected to the entropy regularization. In short, A2C agent tends to
learn a policy at the beginning but it suddenly diverges around 250 K time steps.

Figure 13. A2C results (per time steps): (A) Episode reward, (B) Policy loss, (C) Value loss, (D) Aver-
age last 100 steps reward, (E) Number of steps per episode, (F) Entropy loss.
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Performance results of the PPO agent, during the training, are depicted in Figure 14.
Upon initial review, PPO results seems to be much more promising. During the first learning
phase (especially the first 400.000 actions), it can be seen that the reward rises significantly
before start decreasing continuously. This is because the model free reinforcement learning
needs to fully explore the entire state space to successfully learn a high-performance
behavior, which is clearly observed during the remaining training process. From 400 K
time steps, the reward increases drastically and converges.

Figure 14. PPO results (per time steps): (A) Episode reward, (B) Policy gradient loss, (C) Value loss,
(D) Average last 100 steps reward, (E) Number of steps per episode, (F) Entropy loss.

On the contrary, the oscillation phase of the DQN agent is less violent and shorter
(around 200.000-time steps). It is characterized, in general, by less fluctuating and more sta-
ble reward (see Figure 15). Eventually, after 100,000-time steps, the reward starts improving
and converging to an optimal policy that allows optimal process parameters’ control for
a given product. We can observe that the DQN agent converges more rapidly than PPO
agent, but both have a good performance. Additionally, as we mentioned before, the DQN
agent makes almost 2 h more in training for the same number of iterations. To prevent
over-fitting, the training stops once the reward converges.

A brief comparison of the episode reward of A2C, DQN and PPO is presented in
Figure 16, it can be observed that the learning curve of DQN is more stable but with lower
performance. Due to exploding gradients, A2C and PPO showed less stable learning
behavior during the first part, while the PPO curve suddenly shows a drastically hill-
climbing process (around 400 K time steps).

In addition, we plotted the two performance metrics to advance the evaluation of
our models, namely, energy cost and target temperature (see Figure 17). The purpose
of our decision model is to minimize energy consumption while ensuring good quality
expressed, in our case study, by reaching the target temperature. The energy cost obtained
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by A2C, DQN and PPO agents is shown in Figure 17A. From the first glance, it is visible
that the DQN agent performs poorly in the energy optimization task by providing higher
energy cost during the whole learning process. However, the PPO agent learns the optimal
policy to provide the lowest energy cost. On the other hand, Figure 17B, shows the target
temperature metric for the three agents. Again, PPO agent outperforms DQN and A2C in
reaching the desired temperature value in the present work.

Figure 15. DQN results (per timesteps): (A) Episode reward, (B) Exploration rate, (C) Average last
100 steps reward, (D) Number of steps per episode, (E) loss.

Figure 16. Comparison of the Episode reward of the three models
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Figure 17. Performance metrics: (A) Energy cost, (B) Target temperature.

In summary, PPO and A2C are policy-based models, which means that they are
efficient in learning stochastic policies with stochastic and high-dimensional action spaces.
However, A2C showed poor performance and divergence after a given number of episodes,
which is probably due to the fact that we are dealing with a double optimization problem
with a value function that is relatively difficult to approximate. Conversely, the PPO
algorithm achieves a balance between efficiency and performance when dealing with the
current double optimization problem. At the same time, the DQN algorithm showed better
stability compared to the other two models, which is the main characteristic of value-based
RL techniques.

In addition, the robustness of the proposed decision model was tested for some process
parameter configurations suggested by the heating process team and provided good results,
especially with the PPO agent. However, no coherent and reasoned result is to be provided
in this sense. The proposed decision model should be implemented in real time for a better
and substantial evaluation.

Admittedly, the energy index of our decision system model must be developed and
treated in depth, regarding the different laws of thermodynamics, to come up with robust
configurations especially with the reward function. In this sense, the verification and
validation of the relevance of the reward function, concerning the energy part, must be
carried out by real applications in collaboration with the appropriate department of the
company. Further works and research needs to be conducted in this direction providing
plenty of insights that will lead to progress towards sustainable smart manufacturing.

The paper solved a dual optimization problem using three DRL models and obtained
satisfactory results that certainly could be improved in future works. The main contribution
of the present work is not only providing the basis statements and formulation of process
parameters control when dealing with energy optimization in the industrial context, but also
developing, training and testing the models in the real environment and proving their
accuracies. The developed decision model is able to be generated to other processes and
industries by conducting a detailed study of the given process, and bringing the necessary
changes to the model.

6. Conclusions and Future Work

This paper has optimized the overall energy consumption by successfully applying
three RL algorithms, namely, A2C, DQN and PPO. We have applied our self-optimization
system to the glass tempering process. The developed decision system consists in solving
a dual-optimization problem by identifying dynamically and automatically the process
parameters that optimize the energy while ensuring the product quality. Validation ex-
periments were carried out over three steps: First, background data were extracted using
ANSYS simulations. Second, based on the extracted data, the self-prediction model was



Systems 2022, 10, 180 22 of 23

trained to obtain accurate predictions of the glass exit temperature reaching a MAE of 0.806.
Finally, using the prediction model as a simulated furnace environment, the RL decision
model was trained to learn the optimal strategy for solving the previously mentioned
dual-optimization problem without any prior expert knowledge. Based on the result of the
experiment, A2C is rejected due to divergence, while PPO and DQN agents showed fast
and stable convergence with a slight difference which makes DQN more stable and PPO
faster. In the two remaining configurations, our decision model has demonstrated its ability
to effectively replace the traditional method of identifying process parameters aiming for
a high level of flexibility in a cost-effective manner. In future work, we would like to
further investigate the energy optimization problem by improving the reward function and
introducing real world constraints.
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