Next Issue
Volume 7, December
Previous Issue
Volume 7, June
 
 

Biology, Volume 7, Issue 3 (September 2018) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
11 pages, 2377 KiB  
Communication
Ascovirus P64 Homologs: A Novel Family of Large Cationic Proteins That Condense Viral Genomic DNA for Encapsidation
by Dennis K. Bideshi, Tatsinda Spears, Heba A. H. Zaghloul, Yeping Tan, Yves Bigot and Brian A. Federici
Biology 2018, 7(3), 44; https://doi.org/10.3390/biology7030044 - 11 Sep 2018
Cited by 6 | Viewed by 3747
Abstract
Eukaryotic dsDNA viruses use small basic protamine-like proteins or histones, typically <15 kDa, to condense and encapsidate their genomic (g)DNAs during virogenesis. Ascoviruses are large dsDNA (~100–200 kbp) viruses that are pathogenic to lepidopteran larvae. Little is known about the molecular basis for [...] Read more.
Eukaryotic dsDNA viruses use small basic protamine-like proteins or histones, typically <15 kDa, to condense and encapsidate their genomic (g)DNAs during virogenesis. Ascoviruses are large dsDNA (~100–200 kbp) viruses that are pathogenic to lepidopteran larvae. Little is known about the molecular basis for condensation and encapsidation of their gDNAs. Previous proteomic analysis showed that Spodoptera frugiperda ascovirus (SfAV-1a) virions contain a large unique DNA-binding protein (P64; 64 kDa, pI = 12.2) with a novel architecture proposed to condense its gDNA. Here we used physical, biochemical, and transmission electron microscopy techniques to demonstrate that P64’s basic C-terminal domain condenses SfAV-1a gDNA. Moreover, we demonstrate that only P64 homologs in other ascovirus virions are unique in stably binding DNA. As similar protein families or subfamilies were not identified in extensive database searches, our collective data suggest that ascovirus P64 homologs comprise a novel family of atypical large viral gDNA condensing proteins. Full article
Show Figures

Figure 1

10 pages, 758 KiB  
Article
Characterization of Plastidial and Nuclear SSR Markers for Understanding Invasion Histories and Genetic Diversity of Schinus molle L.
by Rafael Plá Matielo Lemos, Cristiane Barbosa D’Oliveira Matielo, Dalvan Carlos Beise, Vanessa Gonçalves Da Rosa, Deise Schröder Sarzi, Luiz Fernando Würdig Roesch and Valdir Marcos Stefenon
Biology 2018, 7(3), 43; https://doi.org/10.3390/biology7030043 - 10 Aug 2018
Cited by 7 | Viewed by 4208
Abstract
Invasive plant species are expected to display high dispersal capacity but low levels of genetic diversity due to the founder effect occurring at each invasion episode. Understanding the history of invasions and the levels of genetic diversity of such species is an important [...] Read more.
Invasive plant species are expected to display high dispersal capacity but low levels of genetic diversity due to the founder effect occurring at each invasion episode. Understanding the history of invasions and the levels of genetic diversity of such species is an important task for planning management and monitoring strategy for these events. Peruvian Peppertree (Schinus molle L.) is a pioneer tree species native from South America which was introduced in North America, Europe and Africa, becoming a threat to these non-native habitats. In this study, we report the discovery and characterization of 17 plastidial (ptSSR) and seven nuclear (nSSR) markers for S. molle based on low-coverage whole-genome sequencing data acquired through next-generation sequencing. The markers were tested in 56 individuals from two natural populations sampled in the Brazilian Caatinga and Pampa biomes. All loci are moderately to highly polymorphic and revealed to be suitable for genetic monitoring of new invasions, for understanding the history of old invasions, as well as for genetic studies of native populations in their natural occurrence range and of orchards established with commercial purposes. Full article
Show Figures

Figure 1

35 pages, 5657 KiB  
Review
Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities
by Thomas Heine, Willem J. H. Van Berkel, George Gassner, Karl-Heinz Van Pée and Dirk Tischler
Biology 2018, 7(3), 42; https://doi.org/10.3390/biology7030042 - 02 Aug 2018
Cited by 73 | Viewed by 10324
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent [...] Read more.
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities. Full article
(This article belongs to the Special Issue The Mechanism of Enzymatic Action)
Show Figures

Graphical abstract

34 pages, 1972 KiB  
Review
Building Principles for Constructing a Mammalian Blastocyst Embryo
by Peter L. Pfeffer
Biology 2018, 7(3), 41; https://doi.org/10.3390/biology7030041 - 23 Jul 2018
Cited by 29 | Viewed by 12585
Abstract
The self-organisation of a fertilised egg to form a blastocyst structure, which consists of three distinct cell lineages (trophoblast, epiblast and hypoblast) arranged around an off-centre cavity, is unique to mammals. While the starting point (the zygote) and endpoint (the blastocyst) are similar [...] Read more.
The self-organisation of a fertilised egg to form a blastocyst structure, which consists of three distinct cell lineages (trophoblast, epiblast and hypoblast) arranged around an off-centre cavity, is unique to mammals. While the starting point (the zygote) and endpoint (the blastocyst) are similar in all mammals, the intervening events have diverged. This review examines and compares the descriptive and functional data surrounding embryonic gene activation, symmetry-breaking, first and second lineage establishment, and fate commitment in a wide range of mammalian orders. The exquisite detail known from mouse embryogenesis, embryonic stem cell studies and the wealth of recent single cell transcriptomic experiments are used to highlight the building principles underlying early mammalian embryonic development. Full article
(This article belongs to the Special Issue Reproductive Biology)
Show Figures

Figure 1

21 pages, 1148 KiB  
Article
Test of the Deception Hypothesis in Atlantic Mollies Poecilia mexicana—Does the Audience Copy a Pretended Mate Choice of Others?
by Klaudia Witte, Katharina Baumgärtner, Corinna Röhrig and Sabine Nöbel
Biology 2018, 7(3), 40; https://doi.org/10.3390/biology7030040 - 13 Jul 2018
Cited by 5 | Viewed by 4921
Abstract
Animals often use public information for mate-choice decisions by observing conspecifics as they choose their mates and then copying this witnessed decision. When the copier, however, is detected by the choosing individual, the latter often alters its behavior and spends more time with [...] Read more.
Animals often use public information for mate-choice decisions by observing conspecifics as they choose their mates and then copying this witnessed decision. When the copier, however, is detected by the choosing individual, the latter often alters its behavior and spends more time with the previously non-preferred mate. This behavioral change is called the audience effect. The deception hypothesis states that the choosing individual changes its behavior to distract the audience from the preferred mate. The deception hypothesis, however, only applies if the audience indeed copies the pretended mate choice of the observed individual. So far, this necessary prerequisite has never been tested. We investigated in Atlantic molly males and females whether, first, focal fish show an audience effect, i.e., alter their mate choices in the presence of an audience fish, and second, whether audience fish copy the mate choice of the focal fish they had just witnessed. We found evidence that male and female Atlantic mollies copy the pretended mate choice of same-sex focal fish. Therefore, a necessary requirement of the deception hypothesis is fulfilled. Our results show that public information use in the context of mate choice can be costly. Full article
(This article belongs to the Special Issue Evolution of Mating Choice)
Show Figures

Figure 1

13 pages, 1464 KiB  
Article
Physiological and Phylogenetic Characterization of Rhodotorula diobovata DSBCA06, a Nitrophilous Yeast
by Enrico Civiero, Manuela Pintus, Claudio Ruggeri, Elena Tamburini, Francesca Sollai, Enrico Sanjust and Paolo Zucca
Biology 2018, 7(3), 39; https://doi.org/10.3390/biology7030039 - 30 Jun 2018
Cited by 13 | Viewed by 5388
Abstract
Agriculture and intensive farming methods are the greatest cause of nitrogen pollution. In particular, nitrification (the conversion of ammonia to nitrate) plays a role in global climate changes, affecting the bio-availability of nitrogen in soil and contributing to eutrophication. In this paper, the [...] Read more.
Agriculture and intensive farming methods are the greatest cause of nitrogen pollution. In particular, nitrification (the conversion of ammonia to nitrate) plays a role in global climate changes, affecting the bio-availability of nitrogen in soil and contributing to eutrophication. In this paper, the Rhodotorula diobovata DSBCA06 was investigated for growth kinetics on nitrite, nitrate, or ammonia as the sole nitrogen sources (10 mM). Complete nitrite removal was observed in 48 h up to 10 mM initial nitrite. Nitrogen was almost completely assimilated as organic matter (up to 90% using higher nitrite concentrations). The strain tolerates and efficiently assimilates nitrite at concentrations (up to 20 mM) higher than those previously reported in literature for other yeasts. The best growth conditions (50 mM buffer potassium phosphate pH 7, 20 g/L glucose as the sole carbon source, and 10 mM nitrite) were determined. In the perspective of applications in inorganic nitrogen removal, other metabolic features relevant for process optimization were also evaluated, including renewable sources and heavy metal tolerance. Molasses, corn, and soybean oils were good substrates, and cadmium and lead were well tolerated. Scale-up tests also revealed promising features for large-scale applications. Overall, presented results suggest applicability of nitrogen assimilation by Rhodotorula diobovata DSBCA06 as an innovative tool for bioremediation and treatment of wastewater effluents. Full article
Show Figures

Graphical abstract

29 pages, 366 KiB  
Concept Paper
How Organisms Gained Causal Independence and How It Might Be Quantified
by Keith Douglas Farnsworth
Biology 2018, 7(3), 38; https://doi.org/10.3390/biology7030038 - 29 Jun 2018
Cited by 18 | Viewed by 6466
Abstract
Two broad features are jointly necessary for autonomous agency: organisational closure and the embodiment of an objective-function providing a ‘goal’: so far only organisms demonstrate both. Organisational closure has been studied (mostly in abstract), especially as cell autopoiesis and the cybernetic principles of [...] Read more.
Two broad features are jointly necessary for autonomous agency: organisational closure and the embodiment of an objective-function providing a ‘goal’: so far only organisms demonstrate both. Organisational closure has been studied (mostly in abstract), especially as cell autopoiesis and the cybernetic principles of autonomy, but the role of an internalised ‘goal’ and how it is instantiated by cell signalling and the functioning of nervous systems has received less attention. Here I add some biological ‘flesh’ to the cybernetic theory and trace the evolutionary development of step-changes in autonomy: (1) homeostasis of organisationally closed systems; (2) perception-action systems; (3) action selection systems; (4) cognitive systems; (5) memory supporting a self-model able to anticipate and evaluate actions and consequences. Each stage is characterised by the number of nested goal-directed control-loops embodied by the organism, summarised as will-nestedness N. Organism tegument, receptor/transducer system, mechanisms of cellular and whole-organism re-programming and organisational integration, all contribute to causal independence. Conclusion: organisms are cybernetic phenomena whose identity is created by the information structure of the highest level of causal closure (maximum N), which has increased through evolution, leading to increased causal independence, which might be quantifiable by ‘Integrated Information Theory’ measures. Full article
19 pages, 9613 KiB  
Article
Effects of Moringa oleifera Leaves Extract on High Glucose-Induced Metabolic Changes in HepG2 Cells
by Jorge A. Sosa-Gutiérrez, Mónica A. Valdéz-Solana, Tamara Y. Forbes-Hernández, Claudia I. Avitia-Domínguez, Gonzalo G. Garcia-Vargas, José M. Salas-Pacheco, Oscar Flores-Herrera, Alfredo Téllez-Valencia, Maurizio Battino and Erick Sierra-Campos
Biology 2018, 7(3), 37; https://doi.org/10.3390/biology7030037 - 26 Jun 2018
Cited by 23 | Viewed by 6389
Abstract
Mitochondrial dysfunction is a hallmark of diabetes, but the metabolic alterations during early stages of the disease remain unknown. The ability of liver cells to rearrange their metabolism plays an important role in compensating the energy shortage and may provide cell survival. Moringa [...] Read more.
Mitochondrial dysfunction is a hallmark of diabetes, but the metabolic alterations during early stages of the disease remain unknown. The ability of liver cells to rearrange their metabolism plays an important role in compensating the energy shortage and may provide cell survival. Moringa oleifera leaves have been studied for its health properties against diabetes, insulin resistance, and non-alcoholic liver disease. We postulated that M. oleifera executes a protective function on mitochondrial functionality in HepG2 treated with high glucose. We evaluated the effect of high glucose treatment on the mitochondrial function of HepG2 cells using a Seahorse extracellular flux analyzer (Agilent, Santa Clara, CA, USA), blue native polyacrylamide gel electrophoresis (BN-PAGE), and western blot analysis. For assessment of mitochondrial abnormalities, we measured the activity of mitochondrial Complex I and IV as well as uncoupling protein 2, and sirtuin 3 protein contents. Our results demonstrate that, under conditions mimicking the hyperglycemia, Complex I activity, UCP2, Complex III and IV subunits content, supercomplex formation, and acetylation levels are modified with respect to the control condition. However, basal oxygen consumption rate was not affected and mitochondrial reactive oxygen species production remained unchanged in all groups. Treatment of HepG2 cells with M. oleifera extract significantly increased both protein content and mitochondrial complexes activities. Nonetheless, control cells’ respiratory control ratio (RCR) was 4.37 compared to high glucose treated cells’ RCR of 15.3, and glucose plus M. oleifera treated cells’ RCR of 5.2, this indicates high-quality mitochondria and efficient oxidative phosphorylation coupling. Additionally, the state app was not altered between different treatments, suggesting no alteration in respiratory fluxes. These findings enhance understanding of the actions of M. oleifera and suggest that the known antidiabetic property of this plant, at least in part, is mediated through modulating the mitochondrial respiratory chain. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop