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Abstract: A long-standing problem in ageing research is to understand how different factors
contributing to longevity should be expected to act in combination under the assumption that they
are independent. Standard interaction analysis compares the extension of mean lifespan achieved
by a combination of interventions to the prediction under an additive or multiplicative null model,
but neither model is fundamentally justified. Moreover, the target of longevity interventions is
not mean life span but the entire survival curve. Here we formulate a mathematical approach for
predicting the survival curve resulting from a combination of two independent interventions based
on the survival curves of the individual treatments, and quantify interaction between interventions
as the deviation from this prediction. We test the method on a published data set comprising survival
curves for all combinations of four different longevity interventions in Caenorhabditis elegans. We find
that interactions are generally weak even when the standard analysis indicates otherwise.

Keywords: models of ageing; longevity interventions; epistasis; survival curves; failure time analysis;
Caenorhabditis elegans

1. Introduction

Research on the biology of ageing has revealed a large variety of genetic, metabolic and
environmental interventions that increase lifespan in model organisms [1–5]. Some interventions,
such as dietary restriction, are remarkably universal and apply in similar form across widely different
species [6,7]. An important tool that is used to unravel the underlying mechanisms is epistasis
analysis, where the effect of a given intervention on lifespan is probed in the presence of another
manipulation [7–10]. In molecular and population genetics the term epistasis commonly refers to
interactions between the effects of genetic mutations [11–15], but here we will consider a broader
range of effects that includes also physiological interventions. The interpretation of epistasis studies is
relatively straightforward if the effect of the first intervention either persists unchanged or is completely
masked by the second, where the latter outcome corresponds to the original meaning of the word
epistasis [12]. However, in many cases the mutual influence of different interventions is quantitative
rather than qualitative, and correspondingly a quantitative criterion of independence is required in
order to infer whether and how the interventions interact. In the following, we will use the term
interaction to emphasize our focus on such quantitative changes, and to delimit our approach from
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the traditional understanding of epistasis as the complete inhibition of the effects of one intervention
by another.

In the past, most interaction studies have focused on mean or median lifespan as the primary
longevity phenotype. These studies typically employ a plausible null model [16] where either
the absolute lifespan extensions caused by independent interventions are assumed to add up
(additive model), or the relative increases are assumed to multiply (multiplicative model). No clear
preference for either of the two null models can be derived from first principles. It has therefore been
recommended that both the additive and multiplicative scales should be used to test for interactions in
longevity data [9]. More importantly, the restriction to mean lifespan for the quantification of longevity
effects neglects the entire information contained in the shape of the survival curve [17–19]. Many
studies have incorporated shape information by fitting experimental survival curves to mathematical
models [20–27]. However, this approach has only rarely been used to analyze interactions in terms of
model parameters such as the rate of mortality acceleration [10]. A framework for interaction analysis
that is based directly on the survival curve does not seem to have been proposed previously.

For the following discussion, a survival curve S(x) is a monotonically decreasing function that
quantifies the fraction of the population that is still alive at time x. Accordingly, S(x) is restricted
to the interval [0, 1] with limits S(0) = 1 and S(x → ∞) = 0. Then, the purpose of this paper is
to address the following question: Given a baseline survival curve S0(x) and survival curves S1(x)
and S2(x) resulting from two different longevity interventions, can one predict the survival curve
S12(x) that would result if the two interventions acted in combination and independently? We propose
several possible answers to this question that are based on different assumptions about the meaning of
independence, and which we collectively refer to as composition principles (CPs).

Adopting the view that epistatic interactions, in the most general sense of the term, express “our
surprise at the phenotype when mutations are combined, given the constituent mutations’ individual
effects” [15], the validity of a CP implies the absence of interactions on the level of the survival curves.
Correspondingly, the deviation of the data from the prediction of the CPs can be used to quantify the
amount of interactions. The implementation of this idea requires us to formalize the effect of a given
longevity intervention as a mathematical transformation acting on the set of survival curves. As a
simple example, consider the temporal rescaling operation S(x)→ S(bx), where b < 1 if lifespan is
increased [28]. If S1(x) and S2(x) arise from the baseline survival curve S0(x) by temporal rescaling
with factors b1 and b2, respectively, then the natural prediction for the survival curve of the combined
intervention, under the assumption that the two interventions do not interact, is obtained by composing
the two rescaling operations as

S12(x) = S1(b2x) = S2(b1x) = S0(b1b2x). (1)

Note that the empirical validity of this relation is far from obvious, even if all four survival curves
are indeed related by temporal scaling. In practice, we have found that simple rescaling is generally
too restrictive to allow for an accurate description of empirical data. Below we therefore complement
the scaling parameters bi by a second parameter affecting also the shape of the survival curve. The
resulting CP will be referred to as generalized scaling CP or GS-CP.

Whereas the implementation of the GS-CP requires one to explicitly estimate the parameters
defining the transformations leading from S0 to S1 and S2, the other two CPs are non-parametric. The
first is a generalization of the multiplicative null model, which extends the assumption that the relative
increases of mean lifespan combine multiplicatively to the entire quantile function Q(s). Here Q(s)
denotes the inverse function of the survival curve S(x), that is, Q(s) is the age at which a fraction s of
the population is still alive. In particular, the median lifespan is given by Q(1/2), and the generalized
multiplicative CP (GM-CP) reads

Q12(s) =
Q1(s)Q2(s)

Q0(s)
. (2)
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The temporal scaling relation (1) constitutes a special case of (2). We will see below that the
transformations underlying the GM-CP can be viewed as inhomogeneous temporal rescalings where
the scale factor depends on the fraction of surviving individuals.

In contrast to the GM-CP, which is motivated primarily by formal considerations, the third CP
is based on a clear biological picture and can be formally derived within the reliability theory of
ageing [29,30]. The key assumption taken from this theory is that the survival of an organism requires
the maintenance of several vital functional modules, and the organism dies when one of these modules
fails. In the language of failure time analysis the failures of different modules are competing risks [31],
and independence of longevity interventions implies that they affect disjoint sets of functional modules.
A straightforward derivation given below then yields the competing risks CP (CR-CP)

S12(x) =
S1(x)S2(x)

S0(x)
. (3)

Despite the formal similarity between (2) and (3), their implications are markedly different. Firstly,
whereas by construction median lifespans combine multiplicatively under the GM-CP (2), and hence
standard analysis would detect no interactions, we will show below that the CR-CP (3) contains
a generic mechanism for synergistic interaction on the level of median lifespan. Secondly, the
requirement that the CR-CP yields a valid combined survival curve S12(x) poses rather restrictive
conditions on the shapes of the survival curves S0, S1 and S2. By contrast, the GM-CP (2) is more easily
satisfied.

Below we will explore the mathematical properties of the proposed CPs in more detail and
discuss their relation to conventional interaction analysis. We then apply them to a published data set
containing measured survival curves for all combinations of four different longevity interventions in
Caenorhabditis elegans, that is, two genetic mutations, dietary restriction and cold temperature [10]. As
each of the six pairs of interventions can occur on four different backgrounds, this data set allows for a
total of 24 pairwise analyses. For each pair of interventions, we determine parametrized fits to the
four survival curves that are constrained to conform to the CPs and compare them to unconstrained
fits. The relative improvement in the accuracy of the fit that is achieved by lifting the constraint can
then be interpreted as a measure for the deviation from the specified type of independence. Somewhat
surprisingly, we find that most pairs of interventions can be well described by at least one of the CPs.
This indicates that the level of interactions, in the general sense defined above, is low. By focusing
on cases where one of the possible fits is significantly better than the others, we identify several
characteristic patterns that may provide the basis for a classification of the effect of different longevity
interventions on the survival curves. Some general conclusions and open problems for future work
that follow from our study are outlined in the Discussion.

2. Results

2.1. Composition Principles

Let S0, S1, S2 and S12 be a quadruple of survival curves corresponding to two different
interventions, that is, S1 and S2 result from S0 by single interventions and S12 results from S0 by
combining both interventions. We say that this quadruple fulfills a CP if there are mappings T1 and T2

from the set of survival curves onto itself such that

S1 = T1[S0], S2 = T2[S0] and S12 = T1[S2] = T2[S1] . (4)

This definition is based on the assumption that longevity interventions can be formally separated
from the ageing phenotype on which they act, and that the latter is sufficiently well represented
by the survival curve for this approach to be predictive. Although neither of these assumptions is
self-evident, the specific examples to be discussed in the following show that the abstract condition (4)
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unifies several natural conceptualizations of the independence between longevity interventions. It
thus provides a useful framework for a generalized, quantitative interaction analysis on the level of
survival curves.

The three specific examples of CPs described below are not exhaustive, and indeed it appears to
be a major mathematical challenge to classify all possible transformations Ti and functions Si for which
(4) holds. However, the logic of our approach only requires us to find one CP that is approximately
satisfied for a given pair of interventions in order to conclude that interaction, in the broad sense
defined here, is absent or at least weak. Finding the specific CP that minimizes the deviation between
the non-interacting prediction and the data for a particular case is analogous to (but more complex
than) the identification of the proper nonlinear scale on which to measure a phenotype in order to
obtain an unbiased estimate of genotypic interactions [11,12,14,32].

2.2. Competing Risks CP

The reliability theory of ageing [29,30] uses concepts that were developed in engineering and
product design to describe the failure of artificial systems, and applies them to living organisms. The
basic idea is that the system can be reduced to a series of blocks, where each block consists of parallel
redundant elements, and each element has a certain (constant) failure rate. The blocks in series are
interpreted as essential functional modules of an organism, such as organs, which consist of redundant
elements, such as cells and pathways. Modules cease to function if all their redundant elements have
failed, and the death of the organism is caused by the failure of one of the essential modules.

The key feature of reliability theory that is relevant in the present context is that the probability
for the organism to survive up to age x, that is, the survival curve S(x), is equal to the product of
the probabilities that each of the essential modules is still functional at time x. When there are N
independent modules each characterized by a survival probability Pk(x), the resulting survival curve
has the form

S(x) =
N

∏
k=1

Pk(x). (5)

This mathematical structure is known from failure time analysis as a competing risks model [31]. In
this setting the failure of each module k is a latent cause of death with its own survivor function Pk,
and the actual time of death or failure is the smallest among the N latent failure times. Equation (5)
then follows if the risks are independent.

Assuming that a given intervention affects only one of the N modules, the corresponding survival
probability Pk(x) is replaced by another function P′k(x), which implies the transformation Tk[S] = S φk
with φk(x) = P′k(x)/Pk(x). When two interventions affect different modules, the survival curve
corresponding to the combined intervention is then indeed given by S12 = S0φ1φ2 = S1S2/S0. If each
of the focal interventions affects several of the modules, the CR-CP remains valid provided the two
sets of affected modules are disjoint. It is implicit in the product form of (5) that the modules affected
by the two interventions are then not only independent of each other, but also independent of all other
determinants of lifespan that remain unaffected.

The validity of the CR-CP (3) places rather restrictive conditions on the shapes of the individual
survival curves involved. Since both S1 and S2 are assumed to result from longevity interventions, it
is possible that S0(x) < S1(x)S2(x) for large x, which would lead to a violation of the condition that
S12(x) ≤ 1. For a quantitative analysis of the conditions of validity of (3) we consider Weibull survival
curves of the form

Si(x) = exp(−aixni ) (6)
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with positive parameters ai and ni for i = 0, 1, 2. Constructing the double-intervention survival
curve yields

S12(x) = exp[−a1xn1 − a2xn2 + a0xn0 ] . (7)

It is easy to see that a necessary condition for the combined curve to be monotonically decreasing is
that min[n1, n2] ≤ n0 ≤ max[n1, n2]. Setting n0 = n1 = n2 = n the combined survival curve is again
of Weibull form, but it is valid only if a0 < a1 + a2. In terms of the median lifespans mi = (ln 2/ai)

1
n ,

this condition reads (
m0

m1

)n
+

(
m0

m2

)n
> 1. (8)

If both interventions are of equal effect, m1/m0 ≈ m2/m0, this condition can be satisfied only if this
effect is rather weak, m1/m0 < 21/n where often n� 1 [22]. On the other hand, the condition (8) can
also be satisfied by interventions of widely different effects, for example, m1/m0 ≈ 1 and m2/m0 � 1.
When the condition (8) is satisfied, the median lifespan of the combined intervention is given by

m12 =
(
m−n

1 + m−n
2 −m−n

0
)−1/n , (9)

which can be shown to always exceed the multiplicative expectation (see Appendix A.1 for the
derivation). Thus, at least for the simple case of Weibull survival curves with equal index n, the CR-CP
predicts positive (synergistic) interaction for median life spans, and it is expected to hold preferentially
for interventions of strongly unequal effect. We believe that this conclusion holds also beyond the
particular class of Weibull curves, and we will see below that the pattern described is indeed found in
empirical data.

Finally, we note that the CR-CP takes a simple form when written in terms of the age-dependent
mortalities or hazard rates defined by hi = −(1/Si) dSi/dx. Indeed, using (3), it follows that
h12 = h1 + h2 − h0 or

h0 − h12 = h0 − h1 + h0 − h2, (10)

which implies that the reductions of mortality afforded by the two focal interventions add up in
the combination.

2.3. Generalized Multiplicative CP

The basic assumption underlying this principle is that the age x = Q(s) at which a certain
fraction s of individuals is still alive is multiplied by an s-dependent factor fi(s) in the presence of an
intervention i. In particular, the median lifespan m0 = Q0(1/2) of the baseline population would be
multiplied by fi(1/2). In terms of survival curves, the intervention results in the multiplication of the
inverse survival curve with the function fi, that is, Ti[S] =

(
S−1 fi

)−1 , where F−1 denotes the inverse
of a function F. The survival curve corresponding to the double-intervention can then be written as

S12 = (S−1
0 f1 f2)

−1 =

(
S−1

1 S−1
2

S−1
0

)−1

, (11)

which is equivalent to (2). By construction, validity of the GM-CP ensures that median lifespans
combine multiplicatively,

m12 =
m1m2

m0
, (12)

because mi = Qi(1/2).
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Equation (2) implies that the GM-CP is fulfilled if S0, S1 and S2 are chosen arbitrarily and S12 is
constructed according to the right-hand side of (11). However, similar to the situation described above
for the CR-CP, the resulting curve S12 may not be a valid survival curve. To see this, we consider again
the example of the Weibull survival curve (6). The inverse function reads Qi(s) = (− log(s)/ai)

1/ni ,
and after some algebra one finds that the combined survival curve is again of Weibull form,
S12 = exp(−a12 xn12), with a12 = (a1

1/n1 a2
1/n2 a0

−1/n0)n12 and n12 = (n1
−1 + n2

−1 − n0
−1)−1. Since

S12 is a valid survival curve only if n12 > 0, the condition on the parameters is n−1
1 + n−1

2 > n−1
0 .

2.4. Generalized Scaling CP

Rather than multiplying a survival curve or its inverse with a function, one can also think of
applying a function to a survival curve S(x) (outer scaling) or to its argument x (temporal scaling).
This yields a transformation of the general form Ti[S](x) = gi(S(ti(x))). In order to ensure the validity
of the general CP (4), the functions gi and ti have to fulfill the conditions g1(g2(x)) = g2(g1(x)) and
t1(t2(x)) = t2(t1(x)), respectively, for all x. Furthermore, the functions have to preserve the survival
curve properties and hence gi(0) = ti(0) = 0, gi(1) = 1 and ti(x → ∞) = ∞.

A simple choice that satisfies all these conditions is a linear scaling of time [28], ti(x) = bix, and a
power function applied to the survival curve, gi(s) = sqi , with positive constants bi and qi. Starting
from a baseline survival curve S0, the single-intervention curves are then of the form

Si(x) = S0(bix)qi , i = 1, 2. (13)

In terms of the hazard rates, Equation (13) takes the form hi(x) = qibih0(bix). This shows that the
transformation combines an accelerated failure rate model (parametrized by bi) with a proportionate
risk model (parametrized by qi) [28,31]. The generalized scaling CP (GS-CP) is satisfied if constants
b1, b2, q1, q2 can be found such that the survival curve of the combined intervention is given by

S12(x) = S0 (b1b2 x)q1q2 . (14)

As was mentioned above, in the case of purely temporal scaling (q1 = q2 = 1), the transformed curves
satisfy the GM-CP (2), but in general the GS-CP does not reduce to any of the other two CPs. For
the special case when S0 is of Weibull form (6), the transformation (13) amounts to a pure temporal
rescaling with scale factor q1/n0

i bi. Correspondingly, the median lifespans combine multiplicatively, as
in (12), under the GS-CP. However, for survival curves of Gompertz form, the GS-CP is consistent with
both antagonistic and synergistic interaction on the level of the most likely lifespan (see Appendix A.2
for details).

2.5. Data Set

As an illustration of our approach, we analyzed a published data set for C. elegans exposed to four
different longevity interventions [10]. These included two genetic mutations (clk-1 and daf-2), cold
temperature (16 ◦C vs. 25 ◦C at control conditions) and dietary restriction (axenic medium). Survival
curves were obtained in triplicate for each of the 24 = 16 possible combinations of interventions. In
order to achieve the large cohort sizes required for a meaningful fit of survivorship data to survival
functions [21,22], we pooled the replicates for each set of conditions, which yields cohorts of more than
300 individuals. Since each of the six pairs of interventions can be applied to four different baseline
conditions including zero, one or two other interventions, the data allow for 24 different pairwise
comparisons. Each comparison makes use of a quadruple of survival curves comprising the baseline
condition, each of the focal interventions applied individually, and the combination of the two focal
interventions.

For a better overview of the relation between survival curves, we assign a binary string to each
of them. A position of the string corresponds to a certain intervention, with a 0/1 at this position



Biology 2018, 7, 6 7 of 16

determining whether the corresponding intervention takes place. The assignment of interventions is as
follows: The first position indicates reduced temperature, the second the daf-2 mutation, the third the
clk-1 mutation and the fourth position corresponds to dietary restriction. For example, the string 1001
labels the survival curve at 16 ◦C with dietary restriction but in the absence of genetic mutations. In
this notation, a quadruple of survival curves is represented by two strings that differ at two positions
and the two intermediate strings that differ in one position from either of the two aforementioned
strings. A valid quadruple would be, for instance, 1001 (baseline), 1101, 1011 and 1111. For the sake
of brevity we will write 1001–1111 for this quadruple of survival curves. The full list of combinations
of interventions is given in Table 1.

Table 1. Binary representation used to label combinations of longevity interventions in the data set of
Yen and Mobbs [10].

Intervention Binary Intervention Binary

None/control 0000 Dietary Restriction (DR) 0001
16 ◦C 1000 DR at 16 ◦C 1001
daf-2 0100 daf-2 & DR 0101
daf-2 at 16 ◦C 1100 daf-2 & DR at 16 ◦C 1101
clk-1 0010 clk-1 & DR 0011
clk-1 at 16 ◦C 1010 clk-1 & DR at 16 ◦C 1011
clk-1 & daf-2 0110 clk-1& daf-2 & DR 0111
clk-1 & daf-2 at 16 ◦C 1110 clk-1 & daf-2 & DR at 16 ◦C 1111

2.6. Test of Composition Principles

To quantify the consistency of the empirical data with the proposed CPs, we compare the quality
of a fit constrained to satisfy a given CP with that of an unconstrained fit. All fits are based on
3-parameter survival functions of the form

Si(x) =
[
1− {1− exp(−µix)}Mi

]Ni
. (15)

Within reliability theory, the parameters of (15) are interpreted as the failure rate of redundant elements
µi, the number of redundant elements Mi and the number of essential functional modules Ni [30].
We should like to emphasize, however, that our use of this particular functional form in the present
context is motivated solely by the observation that it is sufficiently versatile to provide satisfactory fits
to a wide range of empirical survival curves using a moderate number of parameters. The parameters
Mi and Ni will therefore not be constrained to take on integer values. To verify that our conclusions
do not depend on the particular family of survival functions that is used to implement the analysis,
we have carried out a second set of fits using a three-parameter logistic mortality model [24]. The
exemplary results shown in Appendix B are indistinguishable from those based on (15).

The fit algorithm described in the Materials and Methods section minimizes the sum of squares of
the mean square deviations (SSD) corresponding to the four curves in the quadruple

D = D2
0 + D2

1 + D2
2 + D2

12 , (16)

where Di =
1
ki

∑ki
x=0

(
Si(x)− S̃i(x)

)2 with S̃i(x) denoting the empirical surviving fraction and ki the
number of data points. In the first step of the analysis, the survival curves are fitted individually,
which implies that the terms in (16) are independent. The resulting optimal SSD is denoted by Dind.
In the next step, a second fit is carried out under the constraint imposed by the CP of interest. The
implementation of this step differs between the different CPs introduced above.
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• A direct fitting algorithm constrained to satisfy the CR-CP (3) will in most cases fail to converge
to a valid survival curve. This reflects the restrictive conditions on the individual curves imposed
by this CP. To overcome this difficulty, we further constrained the fitting procedure by demanding
that the four survival curves in the quadruple take the specific form

S0 = F1F2F3, S1 = F1F3, S2 = F2F3, S12 = F3, (17)

where the Fi(x) are again represented by three-parameter functions (15). This enforces the validity
of the CR-CP (3) but also implies that the curves have to be ordered according to S12(x) ≥
S1(x), S2(x) ≥ S0(x) for all x.

• For the GM-CP, the survival curves S0, S1 and S2 are represented by three survival functions
of the form (15), and the fourth curve S12 is constructed according to (11) using the numerical
computation of inverse functions. The nine parameters entering the three functions are then
adjusted to optimize the fit to the data quadruple.

• Finally, for the implementation of the GS-CP, the fit determines a single three-parameter survival
function S0(x) along with the four parameters b1, b2, q1, q2 entering the scaling transformations
(13) and (14).

Note that different quadruples have in general a different inherent difficulty to be fitted. As we
are interested primarily in the relative quality of the constrained fits associated with different CPs, we
normalize the SSD D for fits that fulfil a CP by the SSD Dind obtained when the four curves are fitted
independently. Doing this enables us to assess how well the different CPs are satisfied for different
quadruples of data. It turns out that the independent fits to the three-parameter survival function
(15) yield accurate approximations to the measured survival curves in all cases. Moreover, all 24
quadruples of survival curves can be fitted reasonably well by at least one of the three CPs.

Examples of three experimental quadruples and the corresponding fits are shown in Figure 1. For
each column, a different type of CP yields the lowest relative SSD. In column (a), the CR-CP provides
the best quality of the fit, in column (b) it is the GM-CP, and the GS-CP in column (c). In all three cases
the relative SSD D/Dind of the best fit is very close to unity, showing that the corresponding CP is
satisfied with high accuracy. A full set of figures showing all pairs of empirical survival curves with
their respective optimal fits can be found in the Supplementary Material (Figures S1–S24).

It is evident that the examples shown in the three columns represent different patterns. Column
(a) depicts the interaction of the clk-1 mutation with DR at low temperature. The effect of clk-1 on
lifespan is hardly detectable in the absence of DR but becomes significant when DR is applied as well.
This provides an example of synergistic interaction for mean lifespan between two interventions of
widely different individual effects. As we have seen that apparent synergistic interaction between
interventions of strongly unequal effects is a generic feature of the CR-CP, it is not surprising that this
CP is able to describe these data very well. By contrast, the survival curves in column (b) show two
interventions of similar effect (low temperature and DR applied to the daf-2 mutant) which combine
essentially multiplicatively in terms of mean lifespan. Since the GM-CP satisfies multiplicativity of
the median lifespan by construction, it yields the best fit to the data in this case. Finally, column (c)
displays a case of apparent antagonistic interaction, where the combined interventions of the clk-1
mutation and DR on the background of low temperature and daf-2 are essentially indistinguishable
from the effects of the individual interventions. The GS-CP is the only one of the three CPs that is
principally able to account for antagonistic interaction for lifespan, and therefore it provides the best
description of these data.
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Figure 1. Comparison of experimental survival curves and model fits for three cases. Experimental
survival curves are depicted by symbols and their respective fits by lines. Columns correspond to
different pairs of interventions and rows correspond to different composition principles (CPs). Column
a) shows the quadruple 1000–1011, column b) the quadruple 0010–1011, and column c) the quadruple
1010–1111. Row 1) shows the competing risks CP, row 2) shows the generalized multiplicative CP, and
row 3) shows the generalized scaling CP. Red squares represent the baseline curve, green circles and
blue upward triangles display the two single interventions in the order of their position in the binary
string (green circles first, blue upward triangles second), and purple downward triangles correspond to
the combined interventions. The fits in panels a1), b2) and c3) have the best quality in their respective
column in terms of their sum of squared deviations D defined in (16). The relative SSDs of the three
best fits are D/Dind = 0.834 (a1), 1.06 (b2) and 1.06 (c3).

The correlation between the preferred CP and the type of interaction on the level of median
lifespan that is observed in the examples shown in Figure 1 holds quite generally across all 24 pairwise
comparisons. In Figure 2 we plot the ratio D/Dind vs. the interaction coefficient of median lifespans
defined as

ε =
m0 m12

m1 m2
− 1 . (18)

The interaction coefficient vanishes under the multiplicative condition (12), and is positive (negative)
in the presence of synergistic (antagonistic) interaction. Figure 2 thus illustrates the relationship
between interaction for median lifespan quantified by ε, and interaction on the level of survival
curves quantified by the minimal value of D/Dind. As discussed previously, survival curves obeying
the CR-CP tend to favour synergistic interaction for median lifespan and hence there is a negative
correlation between the median interaction coefficient ε and the normalized SSD D/Dind for this CP
(red squares in Figure 2). In the same manner, curves obeying the GM-CP display a lower goodness
of fit (larger relative SSD) the larger the absolute value |ε|. As there is no a-priori preference of the
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GS-CP for a particular type of interaction, fits performed under this principle yield decent results
for all values of ε. Accordingly, looking only at the CP that yields the best result for a given data
quadruple, one observes that the CR-CP works best for data with strong synergistic interaction while
GM-CP works best when interaction is weak. Because both principles perform poorly with strong
antagonistic interaction, the GS-CP yields the lowest SSD in this regime.

0.1

1

10

100

1000

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Synergistic
interaction

Weak
interaction

Antagonistic
interactionN

or
m

al
iz

ed
SS

D
D
/
D

in
d

Interaction Coefficient ǫ

CR-CP
GM-CP
GS-CP

Figure 2. Preference for different composition principles correlates with interaction in median lifespan.
The sum of squared deviations D of survival curves satisfying a composition principle (CP) is divided
by the SSD Dind of independently fitted curves and shown in dependence on the median interaction
coefficient ε defined in (18). Each symbol corresponds to a combination of a data quadruple and a CP.
The CP yielding the best result for a given quadruple is marked by a black circle.

Apart from this conspicuous pattern, however, the most striking feature of Figure 2 is that
interaction on the level of survival curves is remarkably weak, in the sense that the minimal value
δ ≡ minCP{D/Dind} is often close to unity. Specifically, δ < 2 in 16 out of 24 cases, and there is only
one quadruple (0000–1100, see Figure S1) for which δ > 10. The latter corresponds to the combination
of daf-2 and low temperature, which was found to display significant antagonistic interactions for
mean lifespan in the original work of Yen and Mobbs [10]. These authors also observed negative
interactions between daf-2 and dietary restriction. In our analysis we find that these interventions
interact strongly in the presence of clk-1 (quadruple 0010–0111, Figure S18, has δ = 6.54) but not on
the control background (quadruple 0000–0101, Figure S17, has δ = 1.28). The interaction for median
life span is significant and negative in both cases.

Altogether, three out of the four quadruples with δ > 5 comprise one of the two pairs of interacting
interventions identified in [10] on different backgrounds. The fourth corresponds to the combination of
dietary restriction and cold temperature (0000–1001, Figure S13) for which the interaction for median
lifespan is weak (ε = −0.09). On the other hand, the quadruples 1000–1011 [Figure 1a) and Figure
S23] and 1010–1111 [Figure 1c) and Figure S20] display significant positive (ε > 0.4) and negative
(ε < −0.4) interaction for median lifespan, respectively, but both have δ ≈ 1. Overall, Figure 2 makes
it evident that interaction for median lifespan is a poor predictor for the existence of interactions on
the level of the survival curves.
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3. Discussion

The composition principles introduced above quantify different natural notions of independence
between longevity interventions. The GM-CP generalizes the commonly used multiplicative model
for relative life span increases to the quantile function Q(s), which is sufficient to predict the survival
curve of the combined intervention from the survival curves representing the individual interventions.
The CR-CP follows under rather general conditions from a modular structure of the functions on
which the survival of the organism depends, as exemplified by (but not restricted to) the reliability
theory of ageing. Finally, the GS-CP is based on the assumption that longevity interventions can be
viewed as generalized scaling transformations applied to the survival curve, which are commutative
and therefore yield a unique prediction for the combined survival curve.

Two of the three CPs (GM and CR) are non-parametric, in the sense that they can be
formulated without reference to a particular parametrization of the survival curves Si or the longevity
transformations Ti. One might have expected that this property would facilitate the application of these
CPs to data, but this is in fact not the case. The direct test of the CR-CP is considerably exacerbated by
the fact that the insertion of an arbitrary set of survival functions S0, S1 and S2 on the right-hand side
of (3) does not generally produce a valid survival curve. Similar problems may arise for the GM-CP (2).
In comparison, the application of the parametric GS-CP is more straightforward. In addition, it has the
benefit of yielding some insight into the nature of the longevity transformations involved through the
estimates of the parameters bi and qi in (13). As we have outlined above, the CR-CP and the GS-CP
have natural interpretations in terms of the competing risks, proportionate hazard and accelerated
failing rate models of survival analysis [31].

An important conclusion from our approach is that independence of longevity interventions on
the level of survival curves does not generally imply the absence of interaction for median lifespan.
This point is most clearly illustrated by the CR-CP, which is based on a biologically plausible concept
of independence in terms of modularity of vital functions, and implies additivity of age-dependent
mortality in the sense of (10). Nevertheless, as we have demonstrated for a class of survival functions,
interventions combined according to the CR-CP can display substantial synergistic interaction in their
effect on lifespan. We believe that this is true irrespective of the specific form of the survival curve,
and a proof of this conjecture would be of considerable interest. For the GS-CP we have shown that
the apparent interaction for the most likely lifespan can be positive or negative depending on the
parameters entering the longevity transformation.

Our explorative investigation of the empirical data set of [10] shows that all quadruples of survival
curves can be fitted rather well by at least one of the CPs. This indicates that "true" interactions that
would become manifest in a violation of the general composition principle (4) are rare, even though
interaction for median lifespan can be quite significant (see Figure 2). It remains to be seen if this
outcome is specific to the data set under investigation. None of the three suggested types of CPs were
found to be universally preferred. Instead, the preference for a given CP is correlated with the amount
and sign of interaction on the level of median lifespan. In this way, our analysis decomposes the 24
pairs of survival curves into three classes with qualitatively different patterns of interactions. So far we
have not been able to clearly attribute individual pairs of interventions to specific classes. With one
exception (the combination of low temperature and daf-2, which always falls into the GS class), the
attribution generally varies according to the identity of the two background interventions.

Moreover, despite our pooling of data obtained from different experiments, the attribution appears
to be significantly affected by measurement error. This is illustrated in Appendix C, where we show
the results of an analysis using single-set survival experiments corresponding to the largest cohort size.
Although the overall pattern is similar to Figure 2, the attribution of specific pairs of interventions
to their preferred CPs differs considerably and the correlation with the interaction parameter ε is
weakened. We expect that the recently developed methods for the generation of high-resolution
survival curves [33,34] will help to alleviate this problem and allow one to extract specific functional
information from the kind of analyses proposed here.
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4. Materials and Methods

The fitting algorithm aims to minimize the sum of squared deviations D defined in (16). Even
though the survival curves occurring in this paper have a relatively simple shape, it is still rather
difficult to fit several interdependent curves at once. In particular, standard hill-climbing algorithms
tend to converge to suboptimal minima of D. We therefore use an evolutionary algorithm that consists
of the following steps:

1. The algorithm is initialized with a population of n quadruples of survival functions. Initial
parameter values are µi = Mi = Ni = bi = qi = 1.0.

2. Next, m offspring are created that descend from randomly chosen parents. The parameters of the
children are equal to the parents’ parameters multiplied with a factor euX, where X is uniform
random variable on [−1, 1] and u > 0 is the mutation strength.

3. Out of the total population of the n + m individuals, the n with lowest SSD survive. These
individuals make up the next generation.

4. Mutation strength u is decreased by a constant factor, and the algorithm continues with the
second step.

For the fits in this paper we chose n = m = 180 and ran the algorithm for 2500 generations.
We chose u = 1 for the initial generation and decreased it in every generation by a constant factor
such that u = 0.01 in the final generation. The solutions obtained in this way generally provided
good approximations of the empirical data. Because of the high dimensionality of the parameter
space, however, there is no guarantee that the algorithm converges to the true optimum of the cost
function (16). Since the constraints due to the CPs reduce the dimension of the parameter space, this
can occasionally lead to situations where the constrained fit is somewhat better than the unconstrained
one, D/Dind < 1.

Supplementary Materials: The following are available online at www.mdpi.com/2079-7737/7/1/6/s1,
Figures S1–S24: Optimal fits obtained under the three composition principles for each of the 24 quadruples
of survival curves.
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CR-CP Competing risks CP
GM-CP Generalized multiplicative CP
GS-CP Generalized scaling CP
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Appendix A. Interaction for Median and Most Likely LifeSpan

Here we demonstrate in two simple cases how apparent interaction for mean or median lifespan,
defined as a deviation from the multiplicative expectation, can arise from the validity of a CP.
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Appendix A.1. CR-CP Applied to Weibull Survival Curves

We assume that the baseline survival curve S0 and the two single intervention survival curves
S1,2(x) are all of Weibull form with the same index n. Then the combined survival curve is of the same
form and the median lifespan of the combined intervention is predicted by the CR-CP to be given by
Equation (11) of the main text, which reads

m12 =
(
m−n

1 + m−n
2 −m−n

0
)−1/n . (A1)

To prove that this implies ε > 0, we multiply both sides by m0/(m1m2) yielding

ε + 1 =
m12m0

m1m2
=

[(
m1

m0

)n
+

(
m2

m0

)n
−
(

m1m2

m2
0

)n]−1/n

. (A2)

Setting (m1/m0)
n = 1 + a and (m2/m0)

n = 1 + b with a, b > 0, the expression inside the square
brackets becomes

1 + a + 1 + b− (1 + a)(1 + b) = 1− ab < 1. (A3)

Thus the right hand side of (A2) is greater than unity and ε > 0. Since mean and median lifespan
for the Weibull function (6) only differ by an n-dependent factor, these results hold for mean lifespan
as well.

Appendix A.2. GS-CP Applied to Gompertz Survival Curves

Here we assume that all survival curves are of Gompertz form [24]

S(x) = exp
[
−A

G
(eGx − 1)

]
(A4)

with parameters A, G > 0. The corresponding hazard rate is h(x) = AeGx. The rescaling transformation
defined in Equation (13) of the main text changes the parameters A0, G0 of the baseline survival
curve into

Ai = qibi A0, Gi = biG0, i = 1, 2. (A5)

For calculational convenience, we use the most likely life span m̃ rather than the median life span to
characterize the effect of this transformation on longevity. Since −dS/dx is the probability density of
lifespan, the most likely lifespan satisfies the equation d2S/dx2 = 0, which in the case of Gompertz
survival curves implies

m̃ = G−1 ln (G/A) . (A6)

Under the transformation (A5) the most likely lifespan changes from m̃0 into

m̃i =
1
bi

m̃0 +
1

biG0
ln (1/qi) . (A7)

Thus the temporal rescaling by a factor of 1/bi is complemented by an additive correction, the sign
of which depends on whether qi > 1 or qi < 1. Under the GS-CP, the parameters of the combined
longevity transformation are b12 = b1b2 and q12 = q1q2. It follows that the deviation of the combined
most likely lifespan from the multiplicative expectation is given by

ε̃ ≡ m̃12m̃0 − m̃1m̃2 = − 1
b1b2G2

0
ln (1/q1) ln (1/q2) , (A8)

which can be positive or negative depending on the relative signs of ln(1/q1) and ln(1/q2).
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Appendix B. Alternative Fits Using a Logistic Model

To show that the quality of the fits is independent of the model used to fit the data, in Figure A1
we compare the best combined fits obtained using the three-parameter survival function of Equation
(15) of the main text to the best combined fits using a three-parameter logistic model [24]. The logistic
model is defined by the survival function

S(x) =
[
1 + s

A
G
(eGx − 1)

]−1/s
. (A9)

For s → 0 this reduces to the standard Gompertz law with exponentially growing mortality
h(x) = AeGx, and the parameter s > 0 induces a saturation of mortality at a limiting value of G/s.
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Figure A1. The upper row of panels shows the optimal fits for the quadruples 1000–1011, 0010–1011
and 1010–1111 that are also displayed in the panels (a1), (b2) and (c3) of Figure 1. The lower row shows
the corresponding optimal fits using the logistic function (A9) in conjuction with the same three CPs
(CR, GM and GS).

Appendix C. Interaction Analysis for a Single Set of Survival Curves

The survival curves used for the analysis in the main text were obtained by pooling the
survivorship data from three independent replicates of the experiment carried out by Yen and Mobbs
[10]. The following Figure A2 shows the corresponding result (analogous to Figure 2) obtained by
using a single replicate with the largest cohort size of 150 individuals.
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Figure A2. The sum of squared deviations D of survival curves satisfying a composition principle (CP)
is divided by the SSD Dind of independently fitted curves and shown in dependence on the median
interaction coefficient ε defined in Equation (18). Each symbol corresponds to a combination of a data
quadruple and a CP. The CP yielding the best result for a given quadruple is marked by a black circle.
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