Next Issue
Volume 7, March
Previous Issue
Volume 6, September
 
 

Biology, Volume 6, Issue 4 (December 2017) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
961 KiB  
Review
Was the Watchmaker Blind? Or Was She One-Eyed?
by Raymond Noble and Denis Noble
Biology 2017, 6(4), 47; https://doi.org/10.3390/biology6040047 - 20 Dec 2017
Cited by 41 | Viewed by 10857
Abstract
The question whether evolution is blind is usually presented as a choice between no goals at all (‘the blind watchmaker’) and long-term goals which would be external to the organism, for example in the form of special creation or intelligent design. The arguments [...] Read more.
The question whether evolution is blind is usually presented as a choice between no goals at all (‘the blind watchmaker’) and long-term goals which would be external to the organism, for example in the form of special creation or intelligent design. The arguments either way do not address the question whether there are short-term goals within rather than external to organisms. Organisms and their interacting populations have evolved mechanisms by which they can harness blind stochasticity and so generate rapid functional responses to environmental challenges. They can achieve this by re-organising their genomes and/or their regulatory networks. Epigenetic as well as DNA changes are involved. Evolution may have no foresight, but it is at least partially directed by organisms themselves and by the populations of which they form part. Similar arguments support partial direction in the evolution of behavior. Full article
(This article belongs to the Special Issue Biology in the Early 21st Century: Evolution Beyond Selection)
Show Figures

Figure 1

4056 KiB  
Article
Stability of Signaling Pathways during Aging—A Boolean Network Approach
by Julian Daniel Schwab, Lea Siegle, Silke Daniela Kühlwein, Michael Kühl and Hans Armin Kestler
Biology 2017, 6(4), 46; https://doi.org/10.3390/biology6040046 - 18 Dec 2017
Cited by 13 | Viewed by 5146
Abstract
Biological pathways are thought to be robust against a variety of internal and external perturbations. Fail-safe mechanisms allow for compensation of perturbations to maintain the characteristic function of a pathway. Pathways can undergo changes during aging, which may lead to changes in their [...] Read more.
Biological pathways are thought to be robust against a variety of internal and external perturbations. Fail-safe mechanisms allow for compensation of perturbations to maintain the characteristic function of a pathway. Pathways can undergo changes during aging, which may lead to changes in their stability. Less stable or less robust pathways may be consequential to or increase the susceptibility of the development of diseases. Among others, NF- κ B signaling is a crucial pathway in the process of aging. The NF- κ B system is involved in the immune response and dealing with various internal and external stresses. Boolean networks as models of biological pathways allow for simulation of signaling behavior. They can help to identify which proposed mechanisms are biologically representative and which ones function but do not mirror physical processes—for instance, changes of signaling pathways during the aging process. Boolean networks can be inferred from time-series of gene expression data. This allows us to get insights into the changes of behavior of pathways such as NF- κ B signaling in aged organisms in comparison to young ones. Full article
(This article belongs to the Special Issue Systems Biology of Aging)
Show Figures

Figure 1

3323 KiB  
Article
Exploring the Glycans of Euglena gracilis
by Ellis C. O’Neill, Sakonwan Kuhaudomlarp, Martin Rejzek, Jonatan U. Fangel, Kathirvel Alagesan, Daniel Kolarich, William G. T. Willats and Robert A. Field
Biology 2017, 6(4), 45; https://doi.org/10.3390/biology6040045 - 15 Dec 2017
Cited by 30 | Viewed by 6985
Abstract
Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting [...] Read more.
Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting an unexpectedly high capacity for the synthesis of complex carbohydrates for a single-celled organism. Here, we present an analysis of some of the carbohydrates synthesised by Euglena gracilis. Analysis of the sugar nucleotide pool showed that there are the substrates necessary for synthesis of complex polysaccharides, including the unusual sugar galactofuranose. Lectin- and antibody-based profiling of whole cells and extracted carbohydrates revealed a complex galactan, xylan and aminosugar based surface. Protein N-glycan profiling, however, indicated that just simple high mannose-type glycans are present and that they are partially modified with putative aminoethylphosphonate moieties. Together, these data indicate that Euglena possesses a complex glycan surface, unrelated to plant cell walls, while its protein glycosylation is simple. Taken together, these findings suggest that Euglena gracilis may lend itself to the production of pharmaceutical glycoproteins. Full article
(This article belongs to the Special Issue Microalgal Biotechnology)
Show Figures

Figure 1

7264 KiB  
Article
Simulation of Cellular Energy Restriction in Quiescence (ERiQ)—A Theoretical Model for Aging
by David Alfego and Andres Kriete
Biology 2017, 6(4), 44; https://doi.org/10.3390/biology6040044 - 12 Dec 2017
Cited by 2 | Viewed by 4570
Abstract
Cellular responses to energy stress involve activation of pro-survival signaling nodes, compensation in regulatory pathways and adaptations in organelle function. Specifically, energy restriction in quiescent cells (ERiQ) through energetic perturbations causes adaptive changes in response to reduced ATP, NAD+ and NADP levels in [...] Read more.
Cellular responses to energy stress involve activation of pro-survival signaling nodes, compensation in regulatory pathways and adaptations in organelle function. Specifically, energy restriction in quiescent cells (ERiQ) through energetic perturbations causes adaptive changes in response to reduced ATP, NAD+ and NADP levels in a regulatory network spanned by AKT, NF-κB, p53 and mTOR. Based on the experimental ERiQ platform, we have constructed a minimalistic theoretical model consisting of feedback motifs that enable investigation of stress-signaling pathways. The computer simulations reveal responses to acute energetic perturbations, promoting cellular survival and recovery to homeostasis. We speculated that the very same stress mechanisms are activated during aging in post-mitotic cells. To test this hypothesis, we modified the model to be deficient in protein damage clearance and demonstrate the formation of energy stress. Contrasting the network’s pro-survival role in acute energetic challenges, conflicting responses in aging disrupt mitochondrial maintenance and contribute to a lockstep progression of decline when chronically activated. The model was analyzed by a local sensitivity analysis with respect to lifespan and makes predictions consistent with inhibitory and gain-of-function experiments in aging. Full article
(This article belongs to the Special Issue Systems Biology of Aging)
Show Figures

Figure 1

194 KiB  
Opinion
Natural Knockouts: Natural Selection Knocked Out
by Peter Borger
Biology 2017, 6(4), 43; https://doi.org/10.3390/biology6040043 - 12 Dec 2017
Cited by 3 | Viewed by 4484
Abstract
In functional genomics studies, research is dedicated to unveiling the function of genes using gene-knockouts, model organisms in which a gene is artificially inactivated. The idea is that, by knocking out the gene, the provoked phenotype would inform us about the function of [...] Read more.
In functional genomics studies, research is dedicated to unveiling the function of genes using gene-knockouts, model organisms in which a gene is artificially inactivated. The idea is that, by knocking out the gene, the provoked phenotype would inform us about the function of the gene. Still, the function of many genes cannot be elucidated, because disruption of conserved sequences, including protein-coding genes, often does not directly affect the phenotype. Since the phenomenon was first observed in the early nineties of the last century, these so-called ‘no-phenotype knockouts’ have met with great skepticism and resistance by died-in-the-wool selectionists. Still, functional genomics of the late 20th and early 21st centuries has taught us two important lessons. First, two or more unrelated genes can often substitute for each other; and second, some genes are only present in the genome in a silent state. In the laboratory, the disruption of such genes does not negatively influence reproductive success, and does not show measurable fitness effects of the species. The genes are redundant. Genetic redundancy, one of the big surprises of modern biology, can thus be defined as the condition in which the inactivation of a gene is selectively neutral. The no-phenotype knockout is not just a freak of the laboratory. Genetic variants known as homozygous loss-of-function (HLOF) variants are of considerable scientific and clinical interest, as they represent experiments of nature qualifying as “natural knockouts”. Such natural knockouts challenge the conventional NeoDarwinian appraisal that genetic information is the result of natural selection acting on random genetic variation. Full article
(This article belongs to the Special Issue Biology in the Early 21st Century: Evolution Beyond Selection)
664 KiB  
Review
Living Organisms Author Their Read-Write Genomes in Evolution
by James A. Shapiro
Biology 2017, 6(4), 42; https://doi.org/10.3390/biology6040042 - 06 Dec 2017
Cited by 51 | Viewed by 12849
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species [...] Read more.
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with “non-coding” DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called “non-coding” RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations. Full article
(This article belongs to the Special Issue Biology in the Early 21st Century: Evolution Beyond Selection)
2171 KiB  
Communication
Identification of a Raloxifene Analog That Promotes AhR-Mediated Apoptosis in Cancer Cells
by Hyo Sang Jang, Martin Pearce, Edmond F. O’Donnell, Bach Duc Nguyen, Lisa Truong, Monica J. Mueller, William H. Bisson, Nancy I. Kerkvliet, Robert L. Tanguay and Siva Kumar Kolluri
Biology 2017, 6(4), 41; https://doi.org/10.3390/biology6040041 - 01 Dec 2017
Cited by 17 | Viewed by 5925
Abstract
We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure–activity studies with seven raloxifene analogs to better understand the [...] Read more.
We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure–activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR. Full article
Show Figures

Figure 1

5550 KiB  
Article
Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development
by Emily M. Dunn, Elizabeth J. Billquist, Amy L. VanderStoep, Phillip G. Bax, Laura M. Westrate, Lisa K. McLellan, Shelby C. Peterson, Jeffrey P. MacKeigan and Aaron P. Putzke
Biology 2017, 6(4), 40; https://doi.org/10.3390/biology6040040 - 23 Nov 2017
Cited by 1 | Viewed by 4858
Abstract
Fer kinase, a protein involved in the regulation of cell-cell adhesion and proliferation, has been shown to be required during invertebrate development and has been implicated in leukemia, gastric cancer, and liver cancer. However, in vivo roles for Fer during vertebrate development have [...] Read more.
Fer kinase, a protein involved in the regulation of cell-cell adhesion and proliferation, has been shown to be required during invertebrate development and has been implicated in leukemia, gastric cancer, and liver cancer. However, in vivo roles for Fer during vertebrate development have remained elusive. In this study, we bridge the gap between the invertebrate and vertebrate realms by showing that Fer kinase is required during zebrafish embryogenesis for normal hematopoiesis and vascular organization with distinct kinase dependent and independent functions. In situ hybridization, quantitative PCR and fluorescence activated cell sorting (FACS) analyses revealed an increase in both erythrocyte numbers and gene expression patterns as well as a decrease in the organization of vasculature endothelial cells. Furthermore, rescue experiments have shown that the regulation of hematopoietic proliferation is dependent on Fer kinase activity, while vascular organizing events only require Fer in a kinase-independent manner. Our data suggest a model in which separate kinase dependent and independent functions of Fer act in conjunction with Notch activity in a divergent manner for hematopoietic determination and vascular tissue organization. Full article
Show Figures

Figure 1

263 KiB  
Review
Impacts of Low Temperature on the Teleost Immune System
by Quinn H. Abram, Brian Dixon and Barbara A. Katzenback
Biology 2017, 6(4), 39; https://doi.org/10.3390/biology6040039 - 22 Nov 2017
Cited by 129 | Viewed by 7978
Abstract
As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an [...] Read more.
As poikilothermic vertebrates, fish can experience changes in water temperature, and hence body temperature, as a result of seasonal changes, migration, or efflux of large quantities of effluent into a body of water. Temperature shifts outside of the optimal temperature range for an individual fish species can have negative impacts on the physiology of the animal, including the immune system. As a result, acute or chronic exposure to suboptimal temperatures can impair an organisms’ ability to defend against pathogens and thus compromise the overall health of the animal. This review focuses on the advances made towards understanding the impacts of suboptimal temperature on the soluble and cellular mediators of the innate and adaptive immune systems of fishes. Although cold stress can result in varying effects in different fish species, acute and chronic suboptimal temperature exposure generally yield suppressive effects, particularly on adaptive immunity. Knowledge of the effects of environmental temperature on fish species is critical for both the optimal management of wild species and the best management practices for aquaculture species. Full article
1269 KiB  
Article
The Dynamics of Arrivals of Maine Migratory Breeding Birds: Results from a 24-Year Study
by W. Herbert Wilson, Jr.
Biology 2017, 6(4), 38; https://doi.org/10.3390/biology6040038 - 12 Nov 2017
Cited by 1 | Viewed by 3988
Abstract
This citizen-science project is the first systematic study of patterns of spring migration of Maine migratory birds. A comparison of arrival data from the Maine Ornithological Society from 1899–1911 with the modern data (1994–2017) collected for this study indicated that most species are [...] Read more.
This citizen-science project is the first systematic study of patterns of spring migration of Maine migratory birds. A comparison of arrival data from the Maine Ornithological Society from 1899–1911 with the modern data (1994–2017) collected for this study indicated that most species are now not arriving earlier, contrary to the predictions of earlier arrivals in the face of global warming. Arrival was synchronous across the lower two-thirds of the state for most species, although some species showed delayed arrivals along the northeastern coast compared to southern coastal areas. Only thirteen of 81 species are now arriving earlier and seven arriving later. Using quantile regression analysis with three levels of tau, the effect of year, temperature-departure from mean monthly temperature and the North Atlantic Oscillation Index were weak. Most species did not respond to any of these explanatory variables using the modern data. Leaf-gleaners showed the strongest responses. Only four species showed increasing abundance in recent years, an effect that influences detectability and hence could confound interpretation of changes in arrival date. Full article
Show Figures

Figure 1

1615 KiB  
Article
Artificial RNA Motifs Expand the Programmable Assembly between RNA Modules of a Bimolecular Ribozyme Leading to Application to RNA Nanostructure Design
by Md. Motiar Rahman, Shigeyoshi Matsumura and Yoshiya Ikawa
Biology 2017, 6(4), 37; https://doi.org/10.3390/biology6040037 - 30 Oct 2017
Cited by 9 | Viewed by 4338
Abstract
A bimolecular ribozyme consisting of a core ribozyme (ΔP5 RNA) and an activator module (P5abc RNA) has been used as a platform to design assembled RNA nanostructures. The tight and specific assembly between the P5abc and ΔP5 modules depends on two sets of [...] Read more.
A bimolecular ribozyme consisting of a core ribozyme (ΔP5 RNA) and an activator module (P5abc RNA) has been used as a platform to design assembled RNA nanostructures. The tight and specific assembly between the P5abc and ΔP5 modules depends on two sets of intermodule interactions. The interface between P5abc and ΔP5 must be controlled when designing RNA nanostructures. To expand the repertoire of molecular recognition in the P5abc/ΔP5 interface, we modified the interface by replacing the parent tertiary interactions in the interface with artificial interactions. The engineered P5abc/ΔP5 interfaces were characterized biochemically to identify those suitable for nanostructure design. The new interfaces were used to construct 2D-square and 1D-array RNA nanostructures. Full article
Show Figures

Figure 1

1798 KiB  
Article
In Vivo Effects of Lipopolysaccharide on Peroxisome Proliferator-Activated Receptor Expression in Juvenile Gilthead Seabream (Sparus Aurata)
by Efthimia Antonopoulou, Elisavet Kaitetzidou, Barbara Castellana, Nikolas Panteli, Dimitrios Kyriakis, Yoryia Vraskou and Josep V. Planas
Biology 2017, 6(4), 36; https://doi.org/10.3390/biology6040036 - 25 Sep 2017
Cited by 7 | Viewed by 3807
Abstract
Fish are constantly exposed to microorganisms in the aquatic environment, many of which are bacterial pathogens. Bacterial pathogens activate the innate immune response in fish involving the production of pro-inflammatory molecules that, in addition to their immune-related role, can affect non-immune tissues. In [...] Read more.
Fish are constantly exposed to microorganisms in the aquatic environment, many of which are bacterial pathogens. Bacterial pathogens activate the innate immune response in fish involving the production of pro-inflammatory molecules that, in addition to their immune-related role, can affect non-immune tissues. In the present study, we aimed at investigating how inflammatory responses can affect metabolic homeostasis in the gilthead seabream (Sparus aurata), a teleost of considerable economic importance in Southern European countries. Specifically, we mimicked a bacterial infection by in vivo administration of lipopolysaccharide (LPS, 6 mg/kg body weight) and measured metabolic parameters in the blood and, importantly, the mRNA expression levels of the three isotypes of peroxisome proliferator activated receptors (PPARα, β, and γ) in metabolically-relevant tissues in seabream. PPARs are nuclear receptors that are important for lipid and carbohydrate metabolism in mammals and that act as biological sensors of altered lipid metabolism. We show here that LPS-induced inflammatory responses result in the modulation of triglyceride plasma levels that are accompanied most notably by a decrease in the hepatic mRNA expression levels of PPARα, β, and γ and by the up-regulation of PPARγ expression only in adipose tissue and the anterior intestine. In addition, LPS-induced inflammation results in an increase in the hepatic mRNA expression and protein activity levels of members of the mitogen-activated protein kinase (MAPK) family, known in mammals to regulate the transcription and activity of PPARs. Our results provide evidence for the involvement of PPARs in the metabolic response to inflammatory stimuli in seabream and offer insights into the molecular mechanisms underlying the redirection of metabolic activities under inflammatory conditions in vertebrates. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop