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Abstract: Small molecular weight GTPase Rab2 has been shown to be a resident of  
pre-Golgi intermediates and required for protein transport from the ER to the Golgi 
complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. 
Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively 
active (CA), and dominant negative (DN) forms of the GTPase, we report a functional role 
in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like 
other GTPases cycles between an active GTP-bound and an inactive GDP-bound state.  
We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium 
development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found 
that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of 
apoptotic corpses. 
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1. Introduction 

The Rab family of small GTPases plays an important role in the regulation of vesicle trafficking 
between intracellular organelles [1]. Rabs cycle between an active GTP-bound state and an inactive 
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GDP-bound state, and associate with transport vesicles through C-terminal lipid modifications [2,3]. 
After vesicle docking at target membranes, GTP hydrolysis, via the intrinsic GTPase activity of the 
Rab, converts the Rab to its GDP-bound form [3]. Rabs play an important role in endocytic and exocytic 
membrane trafficking and have been implicated in the control of both fusion and fission events that  
are required for the proper maturation of endosomes as well as phagocytic compartments [4–6].  
For instance, Rab4, Rab5, and Rab11 associate with early endosomes [6,7], Rab7 and Rab9 associate 
with late endosomes [8–10]. At least four members of the Rab family associate with the secretory 
pathway including Rab1, Rab3, Rab6, and Rab11 [7,11–13]. This Rab mediated control of vesicular 
trafficking seems to be conserved across many species including Dictyostelium discoideum [5]. 

There are 54 Rab related GTPases that have been identified in Dictyostelium. Of them, few have 
been characterized. Rab7 regulates phagosome-lysosome membrane traffic [14], Rab11 has been 
implicated in the internalization of particles [7], and RabD has been shown to regulate macropinocytosis 
and endo-lysosomal fusion [15]. Several Rabs have also been implimented in development including 
Rab8 [3,16–19], Rab13 [3,20–22], Rab10 [3,23], and Rab3A [3,24]. 

Dictyostelium offers numerous advantages as an experimental model system in which to study 
development. It possesses a simple and well-defined life cycle consisting of a vegetative phase and  
a developmental phase (reviewed by Loomis 1975 [25]). Dictyostelium is an amoeba for most of its 
life, upon starvation a very interesting developmental program is induced during which individual cells 
stream together by chemotaxis to form a multicellular tissue [26]. During a morphogenetic process 
involving cell migration and cellular morphogenesis a simple mound is transformed into a slug or 
pseudoplasmodium which establishes a simple developmental pattern. The slug then develops into a 
fruiting body which consists of multiple cell types to include spores and stalk cells called a sporocarp [27]. 
The stalk cells are a result of cell death [28]. Dictyostelium cell death is similar to classical apoptosis in 
that some cytoplasmic and chromatin condensation occurs but differs from apoptosis because it involves 
massive vacuolization and, interestingly, lacks DNA fragmentation [28,29]. 

In this study we explore the role of Dictyostelium GTPase Rab2 which is 81% identical to human 
Rab2. To explore the role of Rab2 in Dictyostelium, we analyzed cells overexpressing DdRab2, as well 
as cells expressing constitutively active (CA), and dominant negative (DN) forms of the GTPase.  
We demonstrate that DdRab2: (1) has an effect on the rate of endocytosis; (2) plays a role in  
multi-cellular development; and (3) may play a role in induced cell death. 

2. Experimental 

2.1. Cells and Culture Conditions 

For all experiments, D. discoideum, wild-type strain AX4, pDneo2a-GFP, Rab2-GFP, Rab2(CA)-GFP, 
and Rab2(DN)-GFP expressing cell lines were grown axenically at 21 °C in shaking culture at 150 rpm 
in HL5 medium:1% oxoid proteose peptone, 1% glucose, 0.5% yeast extract (Fisher Biotech, Fair Lawn, 
NJ, USA), 2.4 mM Na2HPO4, and 8.8 mM KH2PO4, pH 6.5. This media was supplemented with  
300 mg/mL of streptomycin sulfate and 100 mg/mL of ampicillin (Sigma, St. Louis, MO, USA). 
Additionally, for the transfected cells, HL5 medium was supplemented with 10 mg/mL of G418 
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(Invitrogen, Carlsbad, CA, USA). To minimize background fluorescence from the HL5 medium, cells 
were incubated in “Loflo” medium for 24 h before the experiments [30]. 

2.2. Creation of GFP Tagged Rab2 Cell Lines 

Dictyostelium Rab2 cDNA was subjected to PCR using primers that had a SalI restriction enzyme 
to the sense primer, and an XhoI restriction enzyme to the anti-sense primer. The resulting PCR 
products were ligated into the TA vector (Invitrogen) and sequenced for both errors and the presence 
of the SalI and XhoI sites. The Rab2 PCR TA product was then digested with SalI and XhoI, purified 
and ligated into the pDneo2a-GFP vector (N-terminus GFP tag) previously cut with SalI and XhoI. The 
resulting construct (Rab2-GFP) was sequenced for errors and reading frame confirmation. The constructs 
were then electrotransfected into Dictyostelium AX4 cells and selected with G418 antibiotic (Invitrogen). 

Dominant negative (DN), and constitutively active (CA) forms of the Rab2 protein were created by 
changing a key amino acid asparagine (N) to isoleucine (I) at amino acid position 118 (dominant 
negative) and by changing amino acid glutamine (Q) to leucine (L) at amino acid 64 (constitutively active) 
using the Stratagene QuickChange® II Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA). 
The resulting mutant constructs were then sequenced to confirm the single change in the Rab2 protein. 

2.3. Western Blotting 

For western blotting to verify expression of all constructs at comparable levels, 5 × 106 cells were 
harvested, re-suspended in 1 mL of double distilled water, and transferred to a 1.5 mL tube. 150 µL of 
fresh lysis buffer with 0.3 gm of glass beads was added and centrifuged for 10 min at 2200 rpm. 50 µL 
of the supernatant was transferred to a fresh 1.5 mL tube and 50 µL of fresh 2 X SDS-loading dye  
was added. The sample was heat treated for 10 min at 99 °C, subjected to 10% SDS-PAGE, and 
transferred to PVDF membrane (Millipore Cor. Bedford, Cat. no IPVH00010) using a Hoefer Transfer 
Unit as described by Bush et al. 1994 [31]. Blots were incubated with primary antibodies (1:2000 
dilution of a mouse monoclonal anti-GFP antibody) in antibody buffer (20 mM Tris, pH 7.5, 140 mM NaCl, 
0.05% Tween 20, 1% powdered milk). Samples were then washed; incubated with goat anti-mouse 
secondary antibody conjugated to horse radish peroxidase (Phototope®-HRP Western Blot Detection 
Kit, New England Biolabs, Ipswich, MA, USA); and visualized by exposing the membrane to X-ray 
film for 60 s and the film was developed using standard developing methods. 

2.4. Phagocytosis, Pinocytosis, Exocytosis, and Recycling Assays 

Phagocytosis was measured using fluorescent rhodamine isothiocynate latex beads (RITC-latex 
beads, Sigma Aldrich). Fluid phase pinocytosis, exocytosis, and recycling rates were measured using 
rhodamine isothiocynate-dextran (RITC-dextran, Sigma Aldrich) as described by Rivero and Maniak, 
2006 [32]. Data was run through a one-way ANOVA to test for significance at p > 0.05. Cells were 
viewed and photographed using the BrightLine®TXRED Filter Set on a Nikon 2000SE microscope 
with IPLab 3.7 software (Scanalytics, Inc., Fairfax, VA, USA) with 1000 times magnification. 
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2.5. Lysosomal Visualization: LysoTracker Staining 

LysoTracker® (Molecular Probes) is a dye used in D. discoideum to mark acidic organelles, mainly 
lysosomes [33]. Cells were harvested and allowed to adhere on cover slips in HL5 medium. The 
medium was then replaced with fresh medium containing 100 nM LysoTracker® and incubated for 30 min 
at room temperature. Fluorescence was visualized using the BrightLine® DAPI filter set, where lysosomes 
fluoresced blue, and the BrightLine®GFP filter set for comparison with GFP localization. 

2.6. Endosome Visualization: RITC-Dextran Loading 

Rhodamineisothiocynate-dextran (RITC-dextran, Sigma Aldrich) is a fluid internalized in endosomes 
but not degraded [34]. In Dictyostelium, the red fluorescence of RITC was used to mark endosomes. 
First, cells were harvested and allowed to settle in a 35 × 10 mm Petri dish containing 2 mL of HL5 
medium. Next, 40 µL of 100 mg/mL RITC-dextran was added to the cells and incubated for 60 min. 
Cells were then collected, washed, and allowed to settle on a glass cover slip. All cell lines were 
photographed using the BrightLine® TXRED filter set to visualize endosomes, and the BrightLine® 
GFP filter set to visualize GFP fluorescence. 

2.7. Development Assay 

For developmental studies, cells were grow axenically in HL5 medium on a rotary shaker (160 rpm) 
to 1 × 109 cells/mL and harvested by centrifugation. After repeated washing with developing buffer  
(5 mM Na2HPO4, 5 mM Na2HPO4, 5 mM KH2PO4, 1 mM CaCl2, 2 mM MgCl2), cells were  
re-suspended in the same buffer at a density of 2 × 108 cells/mL. Then 200 mL of the cell suspension 
was spread evenly on a 100 mm KK2 agar plate using a sterile glass spreader. The plates were 
wrapped with plastic wrap including a wet paper towel, inverted and incubated at 22 °C for the desired 
time to monitor the different developmental stages. This method was adapted from Fey et al. 2007 [30]. 
Photographs of multicellular development were taken using a model AM 4201, 25× microscope 
(Lutron Instruments, Tamil Nadu, India). 

2.8. Cell Cohesion Assay 

Cell cohesion assays were performed as described by Wong et al. 2002, Secko et al. 2006, and 
Desbarats et al. 2004 [35–37]. To determine developmental cell cohesion, vegetative cells were 
centrifuged at 700 g for 4 min, washed in KK2, re-suspended in KK2 at 2 × 107 cells/mL and starved 
in rotary-agitated suspension (175 rpm) at 22 °C for 4 h. The cell suspension was diluted to a density 
of approximately 2.5 × 106 cells/mL and aggregates were dispersed by vigorously vortexing for 15 s. 
Aggregates were allowed to reform while rotating on a platform shaker at 180 rpm at room temperature.  
At the indicated times, the number of non-aggregated cells, including singlets and doublets, were 
scored using a haemocytometer and the number of aggregating cells was determined by subtracting 
this number from the total number of cells and was expressed as a percentage of the total. 

To assess the EDTA-resistant cell–cell adhesion, cells were harvested and re-suspended in KK2  
and starved in a rotary shaker at 22 °C for 4 h. Cells were then collected and re-suspended in  
KK2 + 10 mM EDTA to inhibit EDTA-sensitive cohesion. Aggregates were dissociated by brief 
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vortexing, and samples (0.2 mL) were placed in plastic tubes and rotated vertically at 180 rpm at room 
temperature for cell re-association. The percentage of cell aggregation was monitored at regular 
intervals for 60 min. Experiments were generally repeated three or more times. 

2.9. Flow Cytometry Assay 

To induce cell death, vegetative cells in late exponential growth phase were harvested and washed 
twice with SB (soerensen phosphate buffer: 14.5 mM KH2PO4, 2.5 mM Na2HPO4, pH 6). 
Approximately 5 × 105 cell/ mL were suspended in 1 mL of SB containing 3 mM cAMP (Sigma) in a 
flask and incubated for 8 h at 22 °C. Cells were washed with 1 mL of SB which was replaced 
afterward with either 1 mL of SB or 1 mL of SB containing 0.1 mM differentiation inducing factor 
DIF (1-(3-Chloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone, Sigma) and incubated for 30 h at 22 °C. 
The cells were re-suspended with a titer of 1× 106 cell/ mL in SB in 300 µL aliquots. Test tubes  
for 1 µg/mL Propidium Iodide (PI) staining were used and incubated for 10 min at 22 °C with no wash. 
Cytometry analysis was then performed on a FACSCalibur cytometer from Becton Dickinson using 
CellQuest software [31]. 

2.10. Determining Cell Viability Due to ATP Levels 

The number of viable cells in culture was determined based on measuring the quantity of ATP, 
which is a signal of the presence of active cells [37]. The CellTiter-Glo® Luminescent Cell Viability 
Assay kit (Promega) was used for this test. Approximately 5 × 105 vegetative cells were harvested and 
re-suspended in 100 µL of 10 mM MES (Sigma). Next, the cells were transferred into opaque-walled 
96-well plates [38]. Cells were then lysed by adding 100 µL of the CellTiter-Glo reagent and mixing 
on a shaker for 2 min. Microtiter® Plate Illuminometer B36580 with Revelation MLX software measured 
the plates after incubation at room temperature for 10 min for ATP levels present in the cellular 
extracts [39]. 

2.11. Cellular Re-Growth Assay 

Vegetative cells in the late exponential growth phase were harvested and washed twice with SB. 
Approximately 5 × 105 cells/mL were added in 1 mL of SB containing 3 mM cAMP in a two Lab-Tek 
chamber and incubated for 8 h at 22 °C. The cells were then washed with 1 mL of SB that was later 
replaced with either 1 mL of SB or 1 mL of SB containing 0.1 mM DIF and incubated for 30 h  
at 22 °C. From each chamber, 0.5 mL of SB was removed and replaced with 1 mL of HL-5 medium 
and incubated for 72 h at 22 °C. Cells were detached and counted using hemocytometer and phase 
contrast optics. Finally, the ratio of the number of cells re-growing in the DIF chamber to the number 
of cells in the control chamber was calculated [32]. 

2.12. Cell Growth Rate 

All cell lines were grown in HL5 medium until a density of 1–3 × 104 cells/ mL was obtained. 
Cellular growth was determined by counting the cells every 24 h over five days using a hemacytometer 
(Hausser Scientific, Horshman, PA, USA). 
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3. Results and Discussion 

3.1. Results 

3.1.1. DdRab2 Plays a Role in the Regulation of Vesicular Trafficking 

Dictyostelium discoideum has proven to be a useful system in which to investigate the molecular 
mechanisms regulating endosomal and lysosomal membrane trafficking. Rab GTPases have been 
implemented in playing an important role in the regulation in vesicle trafficking between intracellular 
organelles [10]. The following experiment was performed in order to determine the role of DdRab2  
in the endocytic pathway. For all experiments, cell lines were constructed to over-express DdRab2, 
DdRab2(CA), and DdRab2 (DN). Western blot analysis confirmed that all constructs were expressed 
at comparable levels (data not shown). The rate of phagocytosis was measured by assaying DdRab2 
over-expressing, DdRab2(CA), and DdRab2(DN) cell lines for their ability to internalize latex beads 
compared to the parent strain AX4 cell line. Graphical representation shown in Figure 1A shows  
a decrease in the internalization of latex beads in the DdRab2 over-expressing cell line. At the 60 min 
time point when the parent strain AX4 cells have a phagocytosis rate of 100%, the DdRab2  
over-expressing cell line has a phagocytosis rate of only 30%, a 70% decrease. Conversely, in the 
DdRab2(CA) cell line (Figure 1B) the rate of phagocytosis was increased. At the 60 min time point, 
the rate of phagocytosis shows an increase of 100% in the DdRab2(CA) cell line. The parent strain 
AX4 cells reach 100% phagocytosis at 60 min while the DdRab2(CA) cell line reach their maximum 
rate of phagocytosis after 90 min. Similar to the DdRab2 over-expressing cell line, the DdRab2(DN) 
cell line (Figure 1C) shows a decrease in the rate of phagocytosis. Up to the 60-min time point, 
DdRab2(DN) cells show as much of an 80% decrease compared to the AX4 cells. While the AX4 cells 
reach 100% phagocytosis after 60 min, the DdRab2(DN) cell line does not reach its maximum rate of 
phagocytosis until 90 min, similar to that of the DdRab2(CA) cell line. Figure 1D shows a photographic 
representation of the graphical results. The increase in the internalization of latex beads in the 
DdRab2(CA) cell line, and decrease in the internalization of latex beads in the DdRab2 over-expressing 
and DdRab2(DN) cell lines is apparent confirming the graphical evidence. 

Given the dramatic effect of wild type and mutant DdRab2 overexpression on phagocytosis,  
further study into the role of DdRab2 in the endocytic pathway was done. The ability of the DdRab2 
over-expressing, and DdRab2 mutant cell lines to internalize the fluid phase marker rhodamine 
isothiocyanate-dextran (RITC-dextran) was measured as a way to study pinocytosis. Analysis of the 
data shown in Figure 2A shows a decrease of 55% in the internalization of RITC-dextran by the wild 
type DdRab2 overexpressing cell line as compared to the parent strain AX4 cells. Interestingly,  
the DdRab2(CA) cell line shows a slight increase of approximately 20% while the DdRab2(DN) cell 
line showed a slight decrease of approximately 35% in the internalization of RTIC-dextran compared 
to the AX4 cells (Figure 2B). 
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Figure 1. Phagocytosis is altered in DdRab2 over-expressing and DdRab2(CA) cell lines. 
(A–C) Graphical representation with standard error of the internalization of latex beads to 
quantify phagocytosis over 180 min showing significant differences (p > 0.05) in internal 
fluorescence in the Rab2 (▲) and Rab2(CA) (×) cell lines over the AX4 (♦) parent strain. 
Data is presented as the average of three individual experiments with relative fluorescence 
to AX4 which is being considered 100% at 60 min. (A) The Rab2 over-expressing cell line 
showed a significant decrease in internal fluorescence representing phagocytosis compared 
to the WT-AX4 cell line; (B) The Rab2(CA) expressing cell line showed a significant increase 
in internal fluorescence representing phagocytosis compared to WT-AX4 cells. Rab2(CA) 
expressing cells interestingly showed a decrease in the rate of phagocytosis compared to 
WT-AX4 cells, not reaching their maximum internalization until the 90 min time point 
compared to the WT-AX4 cells reaching maximum internalization at 60 min; (C) Rab2(DN) 
expressing cell lines showed no significant difference in the internal fluorescence 
representing phagocytosis as compared to AX4 cells, however, the rate of phagocytosis in 
this cell line was decreased reaching maximum phagocytosis at 90 min compared to the 
WT-AX4 cells reaching maximum phagocytosis at 60 min; (D) Overlaid images of bright 
field with visualization of red latex beads in AX4, Rab2 over-expressing, Rab2(CA), and 
Rab2(DN) cell lines. The image shows a decrease in the amount of beads compared to the 
AX4 in the Rab2 over-expressing cell line, and an increase in the amount of beads in the 
Rab2(CA) expressing cell line confirming the amount of internal fluorescence representing 
phagocytosis observed in the graphical representation. Scale Bar: 5 µm. 
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Figure 2. Pinocytosis and Exocytosis are altered in DdRab2 over-expressing, DdRab2(CA), 
and DdRab2(DN) cells. (A,B) Graphical representation with standard error of the rate of 
pinocytosis in Rab2 over-expressing, Rab2(CA), and Rab2 (DN) cell lines compared to the 
parent strain AX4 cells. Data for pinocytosis, exocytosis, and recycling is the average of 
three independent experiments with a p-value > 0.05. Cell lines were incubated in HL5 
medium containing RITC-dextran (100 mg/mL) over 180 min. Data are presented as 
relative fluorescence to AX4 which is considered 100% RITC-dextran internalization at 
120 min. At the indicated times, cells were washed by centrifugation and accumulated 
RITC-dextran was measured using a fluorimeter. (A) The intercellular fluorescence 
representing pinocytosis in the Rab2 over-expressing cell line is decreased compared to 
AX4 cells, however, this decrease was not significantly significant; (B) The intercellular 
fluorescence representing pinocytosis in the Rab2(CA), and Rab2(DN) cell lines. The 
Rab2(CA) cell line shows a slight increase in pinocytosis at the 120-min time  
point while the Rab2(DN) cell line shows a slight decrease in the rate of pinocytosis after 
120 min compared to the AX4 cells (increase and decrease not statistically significant); (C) 
Graphical representation with standard error of the rate of exocytosis. After 180 min of 
RITC-dextran accumulation, cells were washed and re-suspended in growth medium.  
At the indicated times, the remaining intracellular RITC- dextran was measured. Rab2, 
Rab2(CA), and Rab2(DN) cells did not show a significant change in intercellular fluorescence 
representing exocytosis; (D) Graphical representation with standard error of RITC-Dextran 
recycling over 120 min showed no significant difference in recycling amongst all cell lines. 
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The rates of exocytosis and fluid phase recycling of RITC-dextran were also quantified. The ability 
of the DdRab2 over-expressing, and DdRab2 mutant cell lines to release the marker was slightly 
decreased compared to the AX4 cell line; however this difference was at its greatest with just a 20% 
decrease. The rate of fluid phase recycling of RITC-dextran showed no difference in any of the cell 
lines compared to the AX4 parent strain (Figure 2C,D). 

Figure 3. DdRab2(DN) associates with lysosomes and endosomes. (A–D top panel) 
Distribution of LysoTracker® dye in the AX4 cell line (A) and overlaid images of 
LysoTracker® blue (DAPI) with GFP visualization in the Rab2-GFP (B) over-expressing, 
Rab2(CA)-GFP (C), Rab2(DN)-GFP (D) cell lines. The Rab2-GFP over-expressing (B), 
and Rab2(CA)-GFP (C) cell lines do not show association with the lysosomes. Rab2(DN)-GFP 
cells show co-localization with the lysosomes. (A–D bottom panel) The vesicles of the 
endocytic system from endosome to lysosome are shown as red staining membranes due to 
the uptake of RITC-dextran after 60 min of treatment. (A) WT-AX4 cells with  
the endosomes shown in red. (B) Rab2-GFP over-expressing, and Rab2(CA)-GFP (C),  
cells show partial association with the endosomal system (indicated by arrows). The 
Rab2(DN)-GFP (D) cells show complete association with the endosomal system. These 
images support a role for Rab2 in vesicular trafficking. Scale Bar: 5 µm. 

 

Next, a microscopic approach was taken to investigate the role of DdRab2 in vesicular trafficking. 
Using GFP tagged DdRab2, DdRab2(CA), and DdRab2(DN) proteins, cells were observed and 
subjected to fluorescence microscopy to visualized and determine possible association of DdRab2 with 
lysosomes and endosomes. Cells expressing DdRab2-GFP, DdRab2(CA)-GFP, and DdRab2(DN)-GFP 
were stained with LysoTracker (Molecular Probes) which stains acidic organelles including  
lysosomes [33] or cells were allowed to internalize endosomal marker RITC-dextran followed by 
photography to observe the overlap of the GFP tagged proteins with the lysosomes or endosomes. 
Figure 3 (top) shows cells stained with LysoTracker blue, Figure 3 (bottom) shows cells after the 
internalization of RITC-dextran. DdRab2-GFP over-expressing, and DdRab2(CA)-GFP cells do not 
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appear to co-localize with lysosomes (Figure 3B,C top) however, they do appear to partially  
co-localize with endosomes (Figure 3B,C bottom). Interestingly, DdRab2(DN)-GFP cells (Figure 3D) 
appear to co-localize with both the lysosomes and the endosomes. This microscopic and graphical 
evidence suggest that DdRab2 is involved in the regulation of vesicular trafficking. 

3.1.2. Rab2 Mutants Display Defects in Development and Adhesion 

Since analysis of data previously described suggest that DdRab2 plays a role in the regulation of 
endocytosis, a look into the effect of DdRab2 on development was next examined. This investigation 
was initiated because several GTPases including Rac1A [40], Rac1B [41], Rac1C [40], and RasGEFB [42] 
that were defective in endocytosis also displayed defects in development. Furthermore, Rab2 has been 
identified as an essential protein for intracellular proliferation of B. abortus [43,44]. In mice, neurons 
treated with Rab2 show enhanced adhesion followed by a dramatic increase in neurite growth suggesting 
that Rab2 plays an important role in neuronal differentiation [45]. 

The initial experiments focused on the phases of development that were observed following 
incubation at 22 °C on KK2 agar plates after 8 h (aggregation), 16 h (mound formation), and 24 h 
(culmination). Control cells expressing GFP alone were identical to the AX4 cells in both timing and 
morphology of cell development (data not shown) as were DdRab2 over-expressing cells (Figure 4A–C). 
In contrast to these data, DdRab2(CA) expressing mutants formed aggregates that were slightly larger 
than the control and seemed to attract a greater number of cells into each aggregate mound (Figure 4A). 
These aggregates then appeared to dissociate into smaller groups giving rise to deformed mound 
structures that were very elongated and smaller in size compared to AX4 cells (Figure 4B). After 24 h, 
the DdRab2(CA) cell line had formed small fruiting body structures as well as a greater number of 
fruiting bodies correlating to the increase in mound formation (Figure 4C). 

On the other hand, DdRab2(DN) mutants also appear to be defective in its developmental program. 
After 8 h, DdRab2(DN) mutants had already completely aggregation, forming mound structures 
(Figure 4A). After 16 h, these mutants had formed fruiting body structures (Figure 4B). After 24 h,  
the fruiting bodies were still present in the DdRab2(DN) mutants although, the spore containing head 
appeared larger than that of the AX4 cells (Figure 4C). 

Defects in development particularly the aggregation stage caused by Rabs or Rab-like proteins have 
been previously linked to alterations with cell–cell adhesion [3,37,46]. Rab5, Rab7, and Rab11 have 
been implicated in the coordinated regulation of cell–cell adhesion [47]. We wanted to determine if the 
defects in development observed could be due to increased cell–cell adhesion. Adhesivety was 
measured as described previously by Wong, 2002, and Secko et al. 2006 [35,36]. Cells were washed 
free of antibiotics and starved in KK2 buffer for 4 h. Cells were dissociated by vigorous vortexing to 
break up existing aggregates and then allowed to re-associate on a rotary shaker [35,36]. Some  
re-association was detected in the AX4 cells after 20 min (approximately 30%) (Figure 5A,B). The  
re-association of the DdRab2(CA), and DdRab2(DN) cells was much greater after 20 min at approximately 
75% re-association. However, by 40 min, DdRab2(CA), DdRab2(DN), and AX4 cells were roughly 
equal in re-association (Figure 5A,B). It has been previously stated that early in the aggregation stage 
of development, Dictyostelium cells acquire EDTA-resistant cell binding sites [37]. To assess the 
EDTA-resistant cell–cell adhesion, cells were incubated in KK2 buffer + 10 mM EDTA following the 
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four hour KK2 buffer incubation to inhibit EDTA-sensitive cohesion, and aggregates were counted as 
described above. Both the DdRab2(CA), and DdRab2(DN) cells show a decrease in EDTA-sensitive 
adhesion after 20 min compared to the AX4 cells (Figure 5C,D). Cellular response to cAMP was also 
examined to explain the abnormal development observed in the DdRab2(CA), and DdRab2(DN) cells 
however, no detectable difference was seen in these cell lines compared to the AX4 cells (data not shown). 
This led us to believe that the initial increase in cell–cell adhesion observed plays a role in the 
increased rate of development in the DdRab2(DN) cell line, and the abnormal development in the 
DdRab2(CA) cell line. 

Figure 4. Over-expressing mutant forms of DdRab2 has an effect on the developmental 
process. (A) Representative photomicrographs of aggregation after 8 h of incubation at 22 °C 
on KK2 agar plates. Loose aggregates are visible in the AX4, Rab2, and Rab2(CA) cell 
lines after 8 h while the Rab2(DN) cells had already aggregated and formed a mound after 8 h; 
(B) Representative photomicrographs of mound formation after 16 h. After 16 h, wild type 
AX4, and Rab2 over-expressing cells show normal mound formation. Rab2(CA) cells have 
formed elongated mound structures. Rab2(DN) cells appear to have already formed fruiting 
bodies after 16 h; (C) Representative photomicrographs of fruiting body formation after  
24 h. WT-AX4 and Rab2 over-expressing cell lines developed into fruiting bodies in the 
absence of nutrition after 24 h. Rab2(CA) and Rab2(DN) cell lines had formed fruiting 
bodies after 16 h and were still present after 24 h. The Rab2(CA) cell line appears to have 
formed a larger number of fruiting bodies that were smaller in size. Scale Bar: 1 mm. 
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Figure 5. Mutant forms of DdRab2 show an initial increase in cell–cell adhesion. AX4, 
pDneo2a-GFP, Rab2, Rab2(CA), and Rab2(DN) cells were washed free of antibiotics and 
starved for 4 h in KK2 in a shaking suspension. Cells were then dissociated by vortexing, 
and cell re-association was monitored over time with or without the addition of 10 mM 
EDTA. Cells were not in aggregates at time zero and the percentage of cell re-association 
was calculated by scoring non-aggregated cells with a haemocytometer [percentage 
aggregation = (total number of cells − non-aggregating cells)/total number of cells].  
Data represent the mean of three independent experiments ± standard error with a p-value > 0.05. 
(A,B) cell adhesion of developing cells of the Rab2(CA) (A), and Rab2(DN) (B) cell lines 
in KK2 buffer. Both the Rab2(CA) and Rab2(DN) cell lines show an initial increase (not 
significant) in cell adhesion at the 20-min time point, after 20 min, cell adhesion is similar 
to that of the controls. (C,D) Cell adhesion of developing cells in the presence of 10 mM 
EDTA. Rab2(CA) (C), and Rab2(DN) (D) cell lines show a slight decrease (not significant) 
in cell–cell adhesion in the presence of EDTA. 

 

3.1.3. Cell Death Is Decreased in Rab2 Mutants 

The abnormalities observed in the development program in DdRab2 over-expressing and mutant 
cell lines (CA, and DN mutations) led us to investigate the role if any of the DdRab2 protein in 
Dictyostelium cell death. To investigate this hypothesis, all cell lines were starved, subjected to DIF 
treatment, PI staining and cell death quantification using flow-cytometry.  

Analysis of the results in Figure 6A–C show the percentage of induced cellular death in the parent 
AX4 cells and DdRab2 over-expressing cells are roughly equivalent. Interestingly, the DdRab2(CA) 
mutant in cells appears to protect those cells from cell death. The measured cell death in those cells 
was 20% less than that of the AX4. The mutation of the DdRab2(DN) cells appeared to protect those 
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mutant cells from death only 12% less than the wild typeAX4 cells. Furthermore, the viability of the 
cells was determined by measuring the amount of ATP, an indicator of cellular metabolic activity [38]. 
Figure 7 shows that the DdRab2 over-expressing cell line has a slight decrease in metabolic activity 
correlating with its cell death levels. DdRab2(CA) show an increase in metabolic activity correlating to 
the decrease in cell death shown in Figure 6. Interestingly, in DdRab2(DN) cells we observed a 
decrease in metabolic activity and a decrease in cellular apoptosis indicating that although cell death 
has been decreased, these cells are not as metabolically active and are not healthy cells.  

Figure 6. Cell death levels are reduced in cells over-expressing mutant forms of DdRab2. 
(A–C) Cell death quantification using flow cytometry analysis. Data are the result of three 
independent experiments with a p-value > 0.05 (A) WT-Ax4, Rab2 over-expressing, 
Rab2(CA), and Rab2(DN) cells were subjected to starvation and cAMP, and incubated with 
or without DIF for 6 h. Cells were then stained with 1 µg/mL Propidium Iodide for 10 min. 
Fluorescent PI-positive cells were quantified using flow cytometry. Dot plot data with side 
scatter and forward scatter showed dead cells distinct from living cells. Rab2(CA) cell line 
shows a significant decrease, and Rab2(DN) cell lines show a slight decrease (not significantly 
different) in the levels of cellular apoptosis as compared to the WT-AX4 cells. (B) Histogram 
of the dot plot data; (C) Quantification for DIF treatment cells undergoing apoptosis. 
Rab2(CA) showed a significant decrease, and Rab2(DN) cell lines showed a slight decrease 
(not significant) in the rate of apoptosis as compared to the WT-AX4 cell line. 
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Figure 7. ATP levels are affected in DdRab2 over-expressing, and mutant cell lines.  
To measure the ATP levels, luminescence was recorded 10 min after CellTiter-Glo® reagent 
was added to cells in a 96-well plate. Data represent the average of three independent 
experiments with a p-value > 0.05. There was a decrease (not significant) in the luminescent 
signal from the Rab2 over-expressing, and Rab2(DN) cells, and an increase in Rab2(CA) 
cells as compared to the AX4 cell lines. 

 

3.1.4. Rab2 Has an Increased Growth Rate and Ability to Re-Grow after Induced Differentiation 

The functional role of DdRab2 in protecting cells from cellular death as determined by the previous 
data analysis using the mutants leads to further investigations into the role of DdRab2 on re-growth of 
cells after treatment with DIF-1. DIF-1 is a putative morphogen that induces stalk cell formation in 
Dictyostelium [48]. Cells were treated as described by Rivero and Maniak, 2006 [32]. 

First, the ratio of the number of re-growing cells compared to the control was calculated. As shown 
in Figure 8A, DdRab2, DdRab2(CA), and DdRab2(DN) expressing cells have an increased re-growth 
rate than the control AX4 cells. Interestingly, the DdRab2 over-expressing cells have an increased  
re-growth rate however, these cells were not shown to protect from cell death and they had a decrease 
in metabolic activity so the increase in re-growth could be due to an increased growth rate. The 
DdRab2(CA), and DdRab2(DN) cell lines increase in re-growth was to be expected given their 
decrease in cellular apoptosis and increase in metabolic activity. 

To test the idea that the increase in the re-growth observed was due in part to an increased growth 
rate of the cells, the growth rate was then calculated. Cells were suspended at a density of 2 × 104 and 
counted each day at the same time for 5 days and then the growth rate was graphed (Figure 8B–D). All 
cell lines had an increased growth rate as compared to the AX4 cells. The increase in growth rate 
correlates to the increase in re-growth shown in Figure 8A. Interestingly, the DdRab2(DN) cell line has 
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the fastest growth rate at almost 10X that of the AX4 cells and their ability to re-grow after treatment 
with DIF-1 reached above 100% indicating that they not only completely re-grew after treatment but 
they had begun to proliferate. 

Figure 8. DdRab2 over-expressing, DdRab2(CA), and DdRab2(DN) cells have increased 
re-growth and growth rates compared to controls. (A) Percentage of re-growth of the 
mutant cells after 30 h of treatment with DIF followed by 72 h incubation with HL5.  
The ratio of the number of cells re-growing in the DIF chamber to the number of cells in 
the control chamber was calculated. Data are the average of three indepent experiments 
with a p-value > 0.05. Rab2 over-expressing, Rab2(CA), and Rab2(DN) cell lines had  
a significantly increased level of re-growth compared to the AX4 and pDneo2a-GFP cell 
lines. (B–D) Growth rate of Rab2 over-expressing, Rab2(CA), and Rab2(DN) cell lines. 
Cells were incubated in HL5 medium. At the same time each day cells were counted.  
Data are the average of three independent experiments with a p-value > 0.05. All cell lines 
have a significant increase in growth rate compared to the AX4 and pDneo2a-GFP  
(not shown). The increase in growth rate correlates to the increase in re-growth. 

 

 

3.2. Discussion 

3.2.1. Alterations in Endocytosis 

The Rab family of small GTPase proteins plays an important role in trafficking of vesicles and in 
determining specificity of vesicle fusion within the cell [4,49,50]. Human Rab2 has been implicated in 
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Golgi-ER retrograde transport [51,52], but the mechanism by which Rab2 controls this transport is 
unknown. In addition, it is not clear whether Rab2 is involved in other aspects of endocytosis or 
vesicle trafficking. In this study we show that Dictyostelium Rab2 plays a role in vesicular trafficking, 
specifically, CA forms of DdRab2 increase the rate of phagocytosis, and pinocytosis while the 
opposite effect is seen in DN forms of the protein. We also show through microscopy of the GFP 
tagged proteins that DdRab2 partially associates with endosomes and lysosomes. Interestingly, the DN 
version of the DdRab2 protein shows complete association with the endosomes and lysosomes. This 
may be due to the GDP-bound Rab being unable to leave the membranes. Our findings implicating 
DdRab2 in vesicular trafficking are similar to the study by Lu, et al. 2008 [52] in which they suggest 
that C. elegans UNC-108 (the mamalian Rab2 homolog) is envolved in endocytosis, specifically 
endosomal trafficking and lysosome maturation [52]. Another study also performed in C. elegans by 
Chun, et al. 2008 [50], demonstrates that Rab2 is envolved in postendocytic trafficking [50]. Rab2 has 
also been implicated in phagosome maturation in both C. elegans, and mammalian cells [44,53]. While 
our results show that DdRab2 is involved in the regulation of the rate of pinocytosis and phagocytosis, 
and this protein also localizes to the endosomes and lysosomes during these processes more studies 
will need to be done to understand the exact function of DdRab2 during these processes. 

3.2.2. Alterations in Development and Cell–Cell Cohesion 

Several GTPases such as Rac1A [40], Rac1B [41], Rac1C [40], and RasGEFB [42] that have been 
implicated in vesicular trafficking have also shown to play a role in development. Rab2 has been 
identified as an essential protein for intracellular proliferation of B. abortus [43,44]. In mice, neurons 
treated with Rab2 show enhanced adhesion followed by a dramatic increase in neurite growth 
suggesting that Rab2 plays an important role in neuronal differentiation [45]. This led us to investigate 
the role of DdRab2 in development. 

DdRab2(CA) and DdRab2(DN) expressing cells both displayed alterations in the developmental 
process and cell–cell adhesion. Both mutants were able to complete the developmental cycle however, 
they displayed an increase in the rate of development, forming fruiting bodies after only 16 h.  
The morphology of the fruiting bodies also differed from the AX4 cells. DdRab2(CA) cells had 
smaller fruiting bodies while the DN version had larger fruiting bodies compared to AX4 cells. Upon 
starvation, Dictyostleium cells will signal each other by releasing cAMP and aggregate together via 
chemotaxis to form a mound. An increased response to cAMP upon starvation would be a logical 
hypothesis to explain the increased rate of development in the DdRab2 mutants however, surprisingly, 
both DdRab2(CA), and DdRab2(DN) cells displayed a normal chemotactic response to cAMP (data 
not shown). Some Dictyostelium mutants are unable to aggregate normally by chemotaxis and do so  
by random motion and adhesion [42,54,55]. In most cases, although the resultant aggregates are 
smaller than normal, the time-scale of development is similar to that of the parental cells [42]. Another 
possible explanation for the increased rate of development observed in the CA and DN cells was due to 
altered cell–cell adhesion. We observed an initial increase in cell–cell adhesion of almost 40% after  
20 min DdRab2(CA), and DdRab2(DN) cell lines. This increase in cell–cell adhesion leveled off after 
40 min and was similar to AX4 cells. Interestingly, DdRab2(CA), and DdRab2(DN) cells showed a 
decrease after 20 min in EDTA-resistant cell–cell adhesion. Appearance of EDTA-resistant cell adhesion 
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is due to the expression on the cell surface of the glycoprotein contact site A (csA). Failure to form 
EDTA-resistant adhesion is due to impaired expression on the cell surface of the csA glycoprotein [56]. 
It has been shown by Bozzaro 2006 [56], that a mutant defective in EDTA-stable adhesion, but 
displaying rather normal aggregation on agar, is, with very high probability, defective in functional csA. 
We believe that the defects in cell–cell adhesion seen in the CA and DN cell lines is due to improper 
signaling of downstream effectors. Perhaps one of the most surprising results of our developmental 
studies was the lack of differences seen in the CA and DN cell lines. In other GTPase family proteins, 
DN mutations have been shown to enhance binding to GTP exchange factors [41,57,58], a possible 
explanation for this is that DdRab2(CA), and DdRab2(DN) may act by primarily sequestering or 
mislocalizing DdRab2 associated proteins, in turn downregulating DdRab2 signaling pathways 
accounting for the similarity in CA and DN cells this is similar to results found by Palmieri, et al. 2000 [41] 
on GTPase Rac1. Endogenous DdRab2 is unable to access common effector molecules, therefore the 
inability to properly signal leads to the defects observed in the cells. We propose that for DdRab2 the 
ability to cycle between the active GTP-bound form and the inactive GDP-bound form is crucial for 
proper signaling of downstream effectors for cell–cell adhesion. The increased rate of development 
observed may be due to the cells being initially more cohesive allowing for quicker aggregation and 
mound formation and thus fruiting body formation. The slight phenotypic differences seen in the CA 
and DN cells during the different developmental phases may also be due to improper signaling to 
downstream effectors. DdRab2 over-expressing cells developed at the same rate and phenotypically 
similar to AX4 cells indicating that GTP/GDP hydrolysis of DdRab2 is required for proper 
Dictyostelium development. 

3.2.3. DdRab2 Plays a Role in Cell Death 

Our findings that DdRab2 plays a role in development, specifically the very small fruiting bodies 
observed in the CA cell line, led us to investigate the role of DdRab2 in cell death. The fruiting body is 
composed of spore and stalk cells. The stalk cells are dead as the result of programmed cell death [59]. 
Dictyostelium is ideal for studying the mechanisms for autophagic cell death because the genome does 
not encode components of the apoptotic pathway [60]. In Dictyostelium, caspase activation is not 
required for cell death [28]. Apoptosis does not interfere with autophagic cell death in Dictyostelium; 
the organism instead displays developmental cell death [61]. Based on the phenotypes of the fruiting 
bodies displayed in the DdRab2 mutants, as well as the increased rate of development, we were 
curious if DdRab2 may contribute to developmental cell death. 

Cell death was quantified in DdRab2 over-expressing, DdRab2(CA), and DdRab2(DN) cells using 
flow cytometry analysis as described previously. We found the DdRab2(CA) cells had a significantly 
reduced level of cell death of almost 20% less as compared to AX4 cells. DdRab2(DN) cells also 
showed a reduction in cell death of approximately 12%. We also measured the ATP levels of the cells 
as an indicator of metabolically active cells and found that DdRab2(CA) cells had an increased amount 
of metabolically active cells compared to AX4 cells correlating with the decrease in dead cells shown 
in Figure 6. Interestingly, DdRab2(DN) cells showed a decrease in metabolically active cells even though 
they showed a decrease in cell death. DdRab2(DN) cells also have a reduced rate of phagocytosis and 
pinocytosis so this may be the reason for the reduced metabolic activity. Over-expression of DdRab2 
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showed no significant difference in cell death compared to AX4 cells, however, it did have a slightly 
lower metabolic activity, also correlating to a decrease in phagocytosis and endocytosis. It appears that 
it is important for DdRab2 to maintain its GTP/GDP cycle for normal cell death as over-expression of 
DdRab2 appears not to have a significant effect on these cellular processes in Dictyostelium. 

Mammalian Rab2 and the C.elegans UNC-108 (the mammalian Rab2 homolog) play important 
roles in the removal of apoptotic cells and promote phagosome maturation [53]. It is a possibility that a 
contributing factor to the reduction in apoptosis observed in DdRab2(CA) cells is due to these mutant 
cells having a better ability to remove apoptotic cells, thus less dead cells would be available for 
quantification. In a study by Lu, et al. 2008 [52] it was found that UNC-108/Rab2 in C. elegans had  
an increased number of cell corpses in rab-2(RNAi) animals. We do not however believe that this is 
the only factor, as DdRab2(DN) cells also show a decrease in cell death and they show a decrease in 
the rate of phagocytosis and pinocytosis. This indicates that DdRab2 may be indirectly involved in  
the process of cell death in Dictyostelium. When cells were assayed for their ability to re-grow after 
induced death, all cell lines showed an increase in re-growth. DdRab2 over-expressing, CA, and DN 
cell lines also showed an increase in growth rate in axenic media, directly correlating with their ability 
to re-grow after induced death. This data suggests that these cells may not have more cells surviving 
after induced death, but the cells that do survive are able to proliferate at a faster rate. More studies are 
needed to determine the exact role of DdRab2 in the process of cell death in Dictyostelium. 

4. Conclusions 

This is the first report describing a function for Dictyostelium Rab2 in vesicular trafficking, cell 
adhesion, development, and possibly cell death. These studies identify an envolvement for Rab 
protiens far more diverse than initially thought. While an increased rate of pinocytosis and 
phagocytosis was observed in the CA cell line, the DN version of the protien displayed the opposite 
effect. During the development and cell death studies, the results for the CA and DN cell lines 
appeared similar. We suggest that DdRab2 may be directly envolved in the processes of vesicluar 
trafficking, however it may be indirectly involved or unable to signal in the developmental processes 
and cell death. More studies will need to be done to understand the exact role for DdRab2. 

Acknowledgments 

First and foremost we would like to thank The University of Arkansas at Little Rock, and the lab of 
John Bush at The University of Arkansas at Little Rock for their support of this project. We would like 
to thank Maurice Kleve for his expert technical assistance. We would also like to thank Richard 
Connor, and Sanaa Jawed for their technical and laboratory assistance. 

Author Contributions 

Katherine Maringer conceived, designed, and coordinated the study, as well as draft the manuscript. 
Entsar Saheb participated in experimental design and implementation. John Bush assisted in the 
design, and coordination of the study. All authors read and approved the final manuscript.  
  



Biology 2014, 3 532 
 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Pfeffer, S.R. Rab GTPases: Master regulators of membrane trafficking. Curr. Opin. Cell Biol. 
1994, 6, 522–526. 

2. Schafer, W.R.; Rine, J. Protein prenylation: Genes, enzymes, targets, and functions. Annu. Rev. 
Genet. 1992, 26, 209–237. 

3. Powell, R.A.; Temesvari, L.A. Involvement of a Rab8-like protein of Dictyostelium discoideum, 
Sas1, in the formation of membrane extensions, secretion and adhesion during development. 
Microbiology 2004, 150, 2513–2525. 

4. Grosshans, B.L.; Ortiz, D.; Novick, P. Rabs and their effectors: Achieving specificity in 
membrane traffic. Proc. Natl. Acad. Sci. USA 2006, 103, 11821–11827. 

5. Kypri, E.; Falkenstein, K.; de Lozanne, A. Antagonistic control of lysosomal fusion by Rab14 and 
the Lyst-related protein LvsB. Traffic 2013, 14, 599–609. 

6. Harris, E.; Cardelli, J. RabD, a Dictyostelium Rab14-related GTPase, regulates phagocytosis and 
homotypic phagosome and lysosome fusion. J. Cell Sci. 2002, 115, 3703–3713. 

7. Harris, E.; Yoshida, K.; Cardelli, J.; Bush, J. Rab11-like GTPase associates with and regulates the 
structure and function of the contractile vacuole system in Dictyostelium. J. Cell Sci. 2001, 114, 
3035–3045. 

8. Chavrier, P.; Parton, R.G.; Hauri, H.P.; Simons, K.; Zerial, M. Localization of low molecular 
weight GTP-binding proteins to exocytic and endocytic compartments. Cell 1990, 62, 317–329. 

9. Lombardi, D.; Soldati, T.; Riederer, M.A.; Goda, Y.; Zerial, M.; Pfeffer, S. Rab9 functions in 
transport between late endosomes and the trans Golgi network. EMBO J. 1993, 12, 677–682. 

10. Buczynski, G.; Bush, J.; Zhang, L.; Rodriguez-Paris, J.; Cardelli, J. Evidence for a recycling role 
for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in 
Dictyostelium discoideum. Mol. Biol. Cell 1997, 8, 1343–1360. 

11. Nouffer, C.; Balch, W.E. GTPases: Multifunctional molecular switches regulating vesicular traffic. 
Annu. Rev. Biochem. 1994, 63, 949–990. 

12. Green, E.G.; Ramm, E.; Riley, N.M.; Spiro, D.J.; Golenring, J.R.; Wesling-Rensick, M. DdRab11 
is associated with transferrin-containing recycling compartments in K562 cells. Biochem. Biophys. 
Res. Commun. 1997, 239, 612–616. 

13. Ren, M.; Xu, G.; Zeng, J.; DeLemos-Chiarandini, C.; Adesnik, M.; Sabatimi, D.D. Hydrolysis of 
GTP on Rab11 is required for the direct delivery of transferrin from the pericentriolar recycling 
compartment to the cell surface but not from sorting endosomes. Proc. Natl. Acad. Sci. USA 1998, 
95, 6187–6192. 

14. Rupper, A.; Cardelli, J. Regulation of phagocytosis and endo-phagosomal trafficking pathways in 
Dictyostelium discoideum. Biochem. Biophys. Acta 2001, 1525, 205–216. 



Biology 2014, 3 533 
 

 

15. Bush, J.; Temesvari, L.; Rodriguez-Paris, J.; Buczynski, G.; Cardelli, J. A role for a Rab4-like 
GTPase in endocytosis and in regulation of contractile vacuole structure and function in 
Dictyostelium discoideum. Mol. Biol. Cell 1996, 7, 1623–1638. 

16. Peranen, J.; Auvinen, P.; Virta, H.; Wepf, R.; Simons, K. Rab8 promotes polarized membrane 
transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 1996, 135, 
153–167. 

17. Imamura, H.; Takaishi, K.; Nakano, K.; Kidama, A.; Oishi, H.; Shiozaki, H.; Monden, M.;  
Sasaki, T.; Takai, Y. Rho and Rab small G proteins coordinately reorganize stress fibers and focal 
adhesions in MDCK cells. Mol. Biol. Cell 1998, 9, 2561–2575. 

18. Hattula, K.; Furuhjelm, J.; Arffman, A.; Peranen, J. A Rab8 specific GDP/GTP exchange factor is 
involved in actin remodeling and polarized membrane transport. Mol. Biol. Cell 2002, 13,  
3268–3280. 

19. Lau, A.S.; Mruk, D.D. Rab8B GTPase and junction dynamics in the testis. Endocrinology 2003, 
144, 1549–1563. 

20. Zahraoui, A.; Joberty, G.; Arpin, M.; Fontaine, J.J.; Hellio, R.; Tavitian, A.; Louvard, D. A small 
rab GTPase is distributed in cytoplasmic vesicles in non polarized cells but colocalizes with the 
tight junction marker ZO-1 in polarized epithelial cells. J. Cell Biol. 1994, 124, 101–115. 

21. Sheth, B.; Fontain, J.J.; Ponza, E.; McCallum, A.; Page, A.; Citi, S.; Louvard, D.; Zahraoui, A.; 
Fleming, T.P. Differentiation of the epithelial apical junctional complex during mouse 
preimplantation development: A role for Rab13 in the early maturation of the tight junction.  
Mech. Dev. 2000, 97, 93–104. 

22. Marzesco, A.M.; Dunia, I.; Pandjaitan, R.; Recouvreur, M.; Dauzonne, D.; Benedetti, E.L.; 
Louvard, D.; Zahraoui, A. The small GTPase Rab13 regulates assembly of functional tight 
junctions in epithelial cells. Mol. Biol. Cell 2002, 13, 1819–1831. 

23. Chen, Y.T.; Holcomb, C.; Moore, H.P. Expression and localization of two low molecular weight 
GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc. Natl. Acad. Sci. USA 1993, 90, 
6508–6512. 

24. Vadlamudi, R.K.; Wang, R.A.; Talukder, A.H.; Adam, L.; Johnson, R.; Kumar, R. Evidence of 
Rab3A expression, regulation of vesicle trafficking, and cellular secretion in response to heregulin 
in mammary epithelial cells. Mol. Cell Biol. 2000, 20, 9092–9101. 

25. Loomis, W.F. Dictyostelium Discoideum: A Developmental System; Academic Press: New York, 
NY, USA, 1975. 

26. Chisholm, R.; Firtel, R.A. Insights into morphogenesis from a simple developmental system.  
Nat. Rev. Mol. Cell Biol. 2004, 5, 531–541. 

27. Raper, K. Dictyostelium discoideum, A new species of slime mold from decaying forest leaves.  
J. Agr. Res. 1935, 50, 135–147. 

28. Ollie, R.A.; Durrieu, F.; Cornillon, S.; Loughran, G.; Gross, J.; Earnshaw, W.C.; Golstein, P. 
Apparent caspase independence of programmed cell death in Dictyostelium. Curr. Biol. 1998, 8, 
955–958. 

29. Cornillon, S.; Foa, C.; Davoust, J.; Buonavista, N.; Gross, J.D.; Golstein, P. Programmed cell 
death in Dictyostleium. J. Cell Sci. 1994, 107, 2691–2704. 



Biology 2014, 3 534 
 

 

30. Fey, P.; Kowal, A.S.; Gaudet, P.; Pilcher, K.E.; Chisholm, R.L. Protocols for growth and 
development of Dictyostelium discoideum. Nat. Protoc. 2007, 2, 1307–1316. 

31. Bush, J.; Nolta, K.; Rodriguez-Paris, J.; Kaufmann, N.; O’Halloran, T.; Ruscetti, T.; Temesvari, L.; 
Steck, T.; Cardelli, J. A Rab4-like GTPase colocalizes with V-H+-ATPases in extensive reticular 
elements of the contractile vacuoles and lysosomes in Dictyostelium discoidem. J. Cell Sci. 1994, 
107, 2801–2812. 

32. Rivero, F.; Maniak, M. Quantitative and microscopic methods for studying the endocytic pathway. 
Methods Mol. Biol. 2006, 346, 423–438. 

33. Rodriguez-Paris, J.M.; Nolta, K.V.; Steck, T.L. Characterization of lysosomes isolated from 
Dictyostelium discoideum by magnetic fractionation. J. Biol. Chem. 1993, 268, 9110–9116. 

34. Klein, G.; Satre, M. Kinetics of fluid-phase pinocytosis in Dictyostelium discoideum amoebae. 
Biochem. Biophys. Res. Commun. 1986, 138, 1146–1152. 

35. Wong, E.; Yang, C.; Wang, J.; Fuller, D.; Loomis, W.F.; Siu, C.H. Disruption of the gene 
encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type 
proportioning during Dictyostelium development. Development 2002, 129, 3839–3850. 

36. Secko, D.M.; Siu, C.H.; Spiegelman, G.B.; Weeks, G. An activated Ras protein alters cell 
adhesion by dephosphorylating Dictyostelium DdCAD-1. Microbiology 2006, 152, 1497–1505. 

37. Desbarats, L.; Brar, S.K.; Siu, C.H. Involvement of cell-cell adhesion in the expression of the cell 
cohesion moelcule GP80 in Dictyostelium discoideum. J. Cell Sci. 1994, 107, 1705–1712. 

38. Hannah, R.; Micheal, B.; Moravec, R. Cell-Titer-GLO luminescent cell viability: A sensitive and 
rapid method for determining cell viability. Promega Cell Notes 2001, 2, 11–13. 

39. Lam, D.; Levraud, J.P.; Luciani, M.F.; Golstein, P. Autophagic or necrotic cell death in the 
absence of caspase and Bcl-2 family members. Biochem. Biophys. Res. Commun. 2007, 363, 536–541. 

40. Dumontier, M.; Höcht, P.; Mintert, U.; Faix, J. Rac1 GTPases control filopodia formation, cell 
motility, endocytosis, cytokinesis and development in Dictyostelium. J. Cell Sci. 2000, 113, 2253–2265. 

41. Palmieri, S.J.; Nebl, T.; Pope, R.K.; Seastone, D.J.; Lee, E.; Hinchcliffe, E.H.; Sluder, G.; Knecht, D.; 
Cardelli, J.; Luna, E.J. Mutant Rac1B expression in Dictyostelium: Effects on morphology, 
growth, endocytosis, development, and the actin cytoskeleton. Cell Motil. Cytoskeleton 2000, 46, 
285–304. 

42. Wilkins, A.; Chubb, J.R.; Insall, R.H. A novel Dictyostelium RasGEF is required for normal 
endocytosis, cell motility and multicellular development. Curr. Biol. 2000, 10, 1427–1437. 

43. Fugier, E.; Salcedo, S.P.; de Chastellier, C.; Pophillat, M.; Muller, A.; Arce-Gorvel, V.; Fourquet, P.; 
Gorvel, J.P. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are 
crucial for Brucella replication. PLoS Pathog. 2009, 5, e1000487. 

44. deBarsy, M.; Jamet, A.; Filopon, D.; Nicolas, C.; Laloux, G.; Rual, J.F.; Muller, A.; Twizere, J.C.; 
Nkengfac, B.; Vandenhaute, J.; et al. Identification of a Brucellaspp. secreted effector specifically 
interacting with human small GTPase Rab2. Cell Microbiol. 2011, 13, 1044–1058. 

45. Ayala, J.; Touchot, N.; Zahraouit, A.; Tavitian, A.; Prochiantz, A. The product of Rab2, a small 
GTP binding protein, increases neuronal adhesion, and neurite growth in vitro. Neuron 1990, 4, 
797–805. 

46. Norian, L.; Dragoi, I.A.; O’Halloran, T. Molecular characterization of RabE, a developmentally 
regulated Dictyostelium homolog of mammalian Rab GTPases. DNA Cell Biol. 1999, 18, 59–64. 



Biology 2014, 3 535 
 

 

47. Kawauchi, T. Regulation of cell adhesion and migration in cortical neurons: Not only Rho but 
also Rab family small GTPases. Small GTPases 2011, 2, 36–40. 

48. Kay, R.R.; Berks, M.; Trayner, D. Morphongen hunting in Dictyostelium discoideum. 
Development 1989, 107, 81–90. 

49. Zerial, M.; McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2001, 2, 
107–117. 

50. Chun, D.K.; McEwen, J.M.; Burbea, M.; Kaplan, J.M. UNC-108/Rab2 regulates postendocytic 
trafficking in Caenorhabditis elegans. Mol. Biol. Cell 2008, 19, 2682–2695. 

51. Stenmark, H.; Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2001, doi:10.1186/gb-
2001-2-5-reviews3007. 

52. Lu, Q.; Zhang, Y.; Hu, T.; Guo, P.; Li, W.; Wang, X. C. elegans Rab GTPase 2 is required for the 
degradation of apoptotic cells. Devlopment 2008, 135, 1069–1080. 

53. Mangahas, P.M.; Yu, X.; Miller, K.G.; Zhou, Z. The small GTPase Rab2 functions in the removal 
of apoptotic cells in Caenorhabditis elegans. J. Cell Biol. 2008, 180, 357–373. 

54. Ma, H.; Gamper, M.; Parent, C.; Firtel, R.A. The Dictyostelium MAP kinase kinase DdMEK1 
regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase. 
EMBO J. 1997, 16, 4317–4332. 

55. Vithalani, K.K.; Parent, C.A.; Thorn, E.M.; Penn, M.; Larochelle, D.A.; Devreotes, P.N.;  
de Lozanne, A. Identification of darlin, a Dictyostelium protein with armadillo-like repeats that 
binds to small GTPases and is important for the proper aggregation of developing cells. Mol. Biol. 
Cell 1998, 9, 3095–3106. 

56. Bozzaro, S. Assaying cell-cell adhesion. In Dictyostelium Discoideum Protocols; Ludwig, E., 
Rivero, F., Eds.; Humana Press Inc: Totowa, NJ, USA, 2006; pp. 449–467. 

57. Fransworth, C.L.; Feig, L.A. Dominant inhibitory mutations in the Mg2+-binding site of RasH 
prevent its activation by GTP. Mol. Cell Biol. 1991, 11, 4822–4829. 

58. Burstein, E.S.; Brondyk, W.H.; Macara, I.G. Amino acid residues in the Ras-like GTPase Rab3A 
that specify sensitivity to factors that regulate the GTP/GDP cycling of Rab3A. J. Biol. Chem. 
1992, 267, 22715–22718. 

59. Kosta, A.; Laporte, A.; Lam, D.; Tresse, E.; Luciani, M.F.; Golstein, P. How to asses and study 
cell death in Dictyostelium discoideum. In Dictyostelium Discoideum Protocols; Eichinger, L., 
Rivero, F., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2006; pp. 535–550. 

60. Kourtis, N.; Tevernarakis, N. Autophagy and cell death in model organisms. Cell Death Differ. 
2009, 16, 21–30. 

61. Whittingham, W.F.; Raper, K.B. Non-viability of stalk cells in dictyostelium. Proc. Natl. Acad. 
Sci. USA 1960, 46, 642–649. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


