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Simple Summary: Corticotropin-releasing factor or hormone (CRF or CRH) belongs to the family
of CRF peptide and non-peptide analogs (or CRF ligands), which play important roles in many
physiologic and pathophysiologic conditions. Several of the CRF ligands have shown considerable
therapeutic potential in the treatment of various diseases. The CRF ligands act by interacting with
two types of receptors. This work describes the structure of CRF ligands and their receptors, as
well as the mode of CRF ligand binding to receptors and the activation mechanism of the latter.
Understanding the structural basis of CRF ligand binding and activation of their receptors opens
avenues for the development of novel drugs targeting CRF receptors.

Abstract: Corticotropin-releasing factor or hormone (CRF or CRH) and the urocortins regulate a
plethora of physiological functions and are involved in many pathophysiological processes. CRF and
urocortins belong to the family of CRF peptides (CRF family), which includes sauvagine, urotensin,
and many synthetic peptide and non-peptide CRF analogs. Several of the CRF analogs have shown
considerable therapeutic potential in the treatment of various diseases. The CRF peptide family act by
interacting with two types of plasma membrane proteins, type 1 (CRF1R) and type 2 (CRF2R), which
belong to subfamily B1 of the family B G-protein-coupled receptors (GPCRs). This work describes
the structure of CRF peptides and their receptors and the activation mechanism of the latter, which is
compared with that of other GPCRs. It also discusses recent structural information that rationalizes
the selective binding of various ligands to the two CRF receptor types and the activation of receptors
by different agonists.

Keywords: CRF-peptides; CRF-receptors; structure; activation; binding; agonists; antagonists

1. Introduction

The human corticotropin-releasing factor or hormone (CRF or CRH), also known as
h/r CRF, because the human sequence (hCRF) is identical to that of its rat counterpart
(rCRF), is a peptide consisting of 41 amino acids. h/rCRF (or in general CRF) belongs
to a family of peptides (CRF peptide family) from several species, such as mammals,
amphibians, and fish, which includes ovine CRF (oCRF), Sauvagine (SVG), Urotensin (UI),
Urocortin I (UcnI), Urocortin II (UcnII) and Urocortin III (UcnIII) [1–7]. The peptides of the
CRF family act by interacting with two types of G-protein-coupled CRF receptors (GPCRs),
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type 1 (CRF1R) and type 2 (CRF2R), and their action is modulated by the CRF-binding
protein (CRF-BP), which binds and inactivates them [1,8,9].

The peptide is secreted by the hypothalamus and it is transported to the pituitary,
where it is responsible for the release of adrenocorticotropic hormone (ACTH) [10,11].
Subsequently, ACTH stimulates the release of glucocorticoids from the adrenals [10,11].
Hypothalamic CRF is essential for homeostatic maintenance by regulating the function
of the hypothalamic–pituitary–adrenal (HPA) axis and orchestrating various responses to
stress, including autonomic, neuroendocrine, immunologic, and behavioral ones [10,11].
Moreover, CRF plays a role in stress and other physiological processes by regulating the
cardiovascular, gastrointestinal, reproductive, and central nervous (CNS) systems [12–37].

CRF is implicated in the pathophysiology of many psychiatric disorders, including de-
pression, anxiety, post-traumatic stress disorder (PTSD), and substance/alcohol abuse [34].
The effects of CRF on anxiety and depression are predominately mediated through its
interaction with CRF1R [15,38–40]. Several non-peptide CRF1R-selective analogs have been
used to treat psychiatric diseases in preclinical studies and clinical trials [34,41–43]. In gen-
eral, CRF2R acts in a manner that counteracts the effects of CRF1R, having anxiolytic-like
effects following administration of the CRF2R-selective UcnII or UcnIII in experimental
animals [44–46]. However, activation of CRF2R could differentially affect depression and
anxiety, depending on the region of the CNS [33]. In addition to their CNS effects, preclinical
studies have shown that CRF1R-selective antagonists could be possibly effective in the treat-
ment of abdominal and pelvic diseases, whereas previous studies have shown that UcnI
has cardioprotective properties and UcnII and UcnIII are potent vasodilators [36,37,47–50].
Moreover, the CRF1R-selective antagonists, antalarmin and tildacerfont (or LY2371712),
have been shown to decrease the progression of endometriosis and the excessive androgen
production in congenital adrenal hyperplasia (allowing for glucocorticoid dose reduction),
respectively [51,52].

The CRF receptors belong to the subfamily B1 of family B GPCRs [53]. Like all
GPCRs, CRF receptors are plasma membrane proteins that contain seven alpha-helical
transmembrane domains (TMs), and three extracellular (ELs) and three intracellular loops
(ILs), as well as an extracellular amino-terminal domain (ECD) and an intracellular carboxyl–
terminal region (C-domain) (Figure 1) [1].
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in complex with CRF peptide and G-proteins (PDB: 6P9X) and the crystal structure of the ECD 

Figure 1. Model of CRF1R receptor (blue) in complex with the CRF (orange) and the three subunits
of G-proteins, namely the Gαs protein (green), Gβ protein (brown), and Gγ protein (red). This
generalized model of receptor has been created based on the crystal structure of the J-Domain of
CRF1R in complex with CRF peptide and G-proteins (PDB: 6P9X) and the crystal structure of the
ECD domain of CRF1R in complex with the CRF (PDB: 3EHU). The place between the two dotted
lines is the lipid bilayer of the plasma membrane.
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The ECD is also named the N-domain, whereas their ELs along with their TMs
comprise the J-domain (Figure 1) [1]. The TMs of CRF receptors are arranged such as to
form a pocket into the phospholipid bilayer of the plasma membrane, named the binding
pocket, the surface of which is accessible to the extracellular fluid and interacts with
ligands [54]. The binding of CRF agonists to the extracellular domains of CRF receptors
triggers conformational changes, which are associated with receptor activation and the
subsequent stimulation of G-proteins, thus leading to a biological response (Figure 1).
Importantly, activation of each type of CRF receptor could result in a diverse spectrum
of biological responses, given that it could stimulate different signaling pathways by
interacting with diverse G-proteins, such as Gαs, Gαi, Gαo, Gαq, and Gαz [55,56].

Even though CRF receptors and the other subfamily B1 GPCRs have a low sequence
homology with family A GPCRs, all share a common structural architecture and several
common activation mechanisms, suggesting that these characteristics have been conserved
over the course of evolution, being very important for their function [53,57,58].

2. Pharmacological Properties of CRF Ligands and Their Receptors and
Historical Overview

Pharmacological studies have shown that different CRF peptides display different
binding affinities for the CRF1R and CRF2R (Table 1). The oCRF and all known non-peptide
CRF analogs, including antalarmin (Ki = 9.7 nM, where Ki is the binding affinity of the
ligand determined from heterologous displacement radioligand experiments [59]), bind
selectively to CRF1R, whereas UcnII and UcnIII are CRF2R-selective ligands. Human UcnI
(hUcnI) and SVG bind non-selectively to CRF1R and CRF2R. In addition, the synthetic CRF
peptides, astressin, and α-helical CRF(9-41) (see below) interact with CRF1R and CRF2R
with slightly different binding affinities [1].

Table 1. Amino acid sequences of peptides of the CRF family, their percentage of identity to
h/rCRF, and their binding affinities to two CRF receptor types. Highly conserved residues are
in bold. Ki is the binding affinity of peptides mostly determined from heterologous displacement
radioligand experiments.

Peptide Amino Acid Sequence Ki (nM) % h/rCRF
Identity

CRF1R CRF2R

h/rCRF 1 Agonist SEEPPISLDSLDSLDLTFHLLRLLRLLREVLELELEMARAEQLAQQAAAHSNNNRKLMLMLMEIIII 1.9 b 31 a 100
oCRF Agonist-CRF1R SQEPPISLDSLDSLDLTFHLLRLLRLLREVLELELEMTKADQLAQQAAAHSNNNRKLLLLLLDIA 1.2 b 1.1.2 b 185 a 82.9
UI Agonist NDDPPISIDSIDSIDLTFHLLRLLRLLRNMIEIEIEMARIENEREQAAAGLNNNRKYLYLYLDEVVV 0.4 b 2.2 a 53.7
SVG Agonist ZGPPISIDSIDSIDLSLELLRLLRLLRKMIEIEIEIEKQEKEKQQAAAANNNNRLLLLLLLDTIII 0.7 b 4.3 a 45.0
α-helCRF 2 Antagonist DDDLTFHLLRLLRLLREMLELELEMAKAEQEAEQAAAALNNNRLLLLLLLEEA 23.7 b 96 a 67.9
Astressin Antagonist HLLRLLRLLREVLELELEBARAEQLAQEAAAHKNNNRKLLLBEIIII 15.4 b 1.5 b 86.2
rUcnI 1 Agonist DDPPLSIDSIDSIDLTFHLLRLLRLLRTLLELELELARTQSQRERAAAEQNNNRIIIIFDSVVV 0.3 b 0.3 b 45.0
hUcnI 1 Agonist DNPSLSIDSIDSIDLTFHLLRLLRLLRTLLELELELARTQSQRERAAAEQNNNRIIIIFDSVVV 0.4 b 0.3 b 42.5
hUcnII 1 Agonist-CRF2R IVLSLDSLDSLDVPIGLLLLLLQILLELELEQARARAAREQAAATTNNNARILILILARVVV >100 c 1.7 c 34.2
mUcnII 1 Agonist-CRF2R VILSLDSLDSLDVPIGLLRRRILLELELEQARYKAARNQAAAATNNNAQILILILAHVVV >100 c 2.1 c 34.2
hUcnII I 1 Agonist-CRF2R FTLSLDSLDSLDVPTNIMNLLFNIAKAKNLRAQAAAAANNNAHLLLMAQIII >100 c 22 c 31.6
mUcnIII 1 Agonist-CRF2R FTLSLDSLDSLDVPTNIMNILFNIDKAKNLRAKAAAAANNNAQLLLMAQIII >100 c 5 c 26.3

1 The abbreviations h/r, r, h, and m before the peptides refer to human/rat (see main text), rat, human and mouse,
respectively; 2 α-helCRF is the α-helical CRF (9–41); a Grigoriadis et al., 1996 [60], b Dautzenberg et al., 2001 [61],
c Lewis et al., 2001 [7].

The oCRF was first characterized and synthesized by Vale and his research team at
Salk Institute, in 1981, whereas concurrently a similar peptide, named sauvagine, was
isolated from the skin of Phyllomedusa sauvagei [3,10]. A year later, urotensin I, a CRF-like
peptide with hypotensive properties, was isolated in Catostomus species [4]. Two years
after the initial discovery of CRF, its rat counterpart was isolated by the same research
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team at Salk Institute, whereas concurrently a Japanese research group identified the
gene encoding the human CRF [62,63]. Subsequently, a CRF-like peptide has been also
identified and isolated from other species such as pig, fish, and frog [64–66]. Later on, and
specifically in 1995, Vaughan et al. identified the rat UcnI, followed by the identification
of its human counterpart and the homologous peptides UcnII and UcnIII from various
species [2,5–7,67]. In addition to CRF peptides from different species, the CRF family
includes synthetic peptides, such as stressin1-A, astressin, astressin-2B, antiSVG-30, and
cortagine, and synthetic non-peptide CRF analogs, such as antalarmin. These CRF synthetic
peptides are CRF1R-selective, CRF2R-selective, or non-selective agonists or antagonists
and were derived from appropriate modifications of the maternal peptides, as reviewed by
Liapakis et al. 2011 [1]. In addition to CRF peptide analogs, non-peptide CRF1R-selective
antagonists were created as discussed below.

3. Structural Features of CRF Family Peptides
3.1. Peptide CRF Analogs

The peptides of the CRF family consist of three segments: a carboxy-terminal (C-
segment), an amino-terminal (N-segment), and an internal (I-segment) one. A study from
Grace et al. (2007) describes the NMR structures of six CRF peptide analogs (the antagonists
astressin-2B and astressin-B, the agonist stressin1-A, and the natural ligands human UcnI,
UcnII, and UcnIII) in solution (Figure 2) [68].
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and the N-segment is depicted in orange color [68].

3.1.1. The N-Segment

The N-segment of CRF peptides is significant for their biological activity. Removal of
the amino-terminal 23 or 28 amino acids from UI created biologically inactive analogs [69].
Similarly, deletion of the eight amino-terminal amino acids of oCRF resulted in the inactive
peptide oCRF (9–41) [70]. This was likely due to the loss of the ability of the truncated
peptide to produce a biological effect and not to its binding to CRF receptor, granted
that it was able to antagonize the biological actions of CRF [70]. Further modifications
of the truncated oCRF (9–41), which enhanced its α-helical structure, created the first
CRF antagonist, named α-helical-CRF (9–41) [70]. Supportive evidence for the functional
importance of the N-segment of CRF peptides has been provided by the study of Kornreich
et al., which has shown that Ala mutation of most amino acids in this region had detrimental
results on the biological activity of CRF [71].
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3.1.2. The C-Segment

The C-segment is also very important for the function of CRF peptides and their
binding to receptors. The CRF analog, YAM19, which consists of only the 12 C-terminal
amino acids of CRF, bound with high affinity to a soluble form of the ECD of CRF1R [72].
In marked contrast, deletion of the two last amino acids of its C-segment, Ile40, and Ala41,
largely decreased the biological potency of CRF [10,71].

Similarly, deletion of the amino acid at position 41 from a CRF-truncated antagonist de-
creased its antagonistic activity [73]. Furthermore, the removal of the five carboxyl-terminal
amino acids (37–41) from UI or substitution of a free acid for the amidated carboxyl-terminal
end of CRF reduced (or abolished) the biological activity of the peptides [10,69,71,74].

Supportive evidence for the functional importance of the C-segment of CRF peptides
is provided by several studies. Truncation of the carboxyl-terminal segment of UI, resulting
in a smaller fragment, containing residues 1–19, largely decreased the activity of the
peptide [69]. Similar to UI, the stepwise deletion of C-terminal amino acids from astressin,
thus resulting in different fragments having detrimental effects in the peptide binding [73].
Importantly, even the deletion of only the last C-terminal residue (Ile41P) largely reduced
the binding affinity of the peptide [73]. In addition, Ala substitutions for Arg35P and
Leu38P in the C-segment of CRF significantly reduced the potency and binding affinity
of the peptide [10,71,74]. The superscripts of peptide residues represent their position in
the peptide sequence followed by the letter p, which is the abbreviation of the peptide.
For example, Arg35P indicates that Arg is the 35th amino acid in the peptide sequence,
starting from the N-terminus. Substitution with alanine is used to determine the role of
side chains because it removes all side-chain atoms past the β-carbon [75]. Consistent with
the functional importance of residue 38, its replacement in peptide-1, a small 12-amino-acid
N-truncated analog of CRF, by cyclohexylalanine (Cha) increased its affinity for CRF1R [76].
In contrast, the substitution of residue 38 by the smaller Phe did not increase its affinity,
suggesting that the bulkier Cha maximized the hydrophobic interaction between residue
38 of the peptide and the receptor [76]. It is possible that in small peptides with fewer
interactions with the CRF1R, the side chain of residue 38 plays a crucial role in this network
of interactions.

The significant role of Arg35P in its interaction with the receptor is supported by the
crystal structure of the CRF1R in complex with CRF, in which a network of interactions take
place between Arg35P of CRF and receptor residues, as thoroughly discussed below [74].

3.1.3. The I-Segment

An important role for the CRF1R binding likely plays the I-segment of peptides
containing amino acids 14-30. Beyermann et al. created the analog UcnI-EK (UEK) by
replacing the I-segment of UcnI with a highly charged linker consisting exclusively of Glu
acid and Lys, which were arranged in a way that side chains at positions i and i4 form salt
bridges (EKEEKEKKRKE) (Figure 3) [77]. This arrangement resulted in helix stabilization.
Stepwise shortening of this charged linker by deleting amino acids resulted in peptide
analogs of various lengths, with or without a complete alpha-helical conformation (Table 2).
Only peptides bearing a complete a-helical linker, independently of its length, are potent,
suggesting that the orientation of the two N- and C-segments rather than the preservation
of a specific distance between them is important for peptide function [77].

Supportive evidence for the functional significance of the I-segment of CRF peptides
has been provided by previous studies, which have shown that a segment between residues
8 and 32 could form an α-helical structure, which is likely stabilized in less hydrophilic
environments, such as the amphiphilic one of cell membrane containing the CRF binding
sites [78,79]. In addition, enhancement of the α-helical structure of peptide after the
substitution of α-helical preferring residues with several amino acids of oCRF, increased
the biological potency of the peptide [70]. In contrast, replacing several amino acids of
oCRF with their D-enantiomers drastically decreased its biopotency [80,81]. D-enantiomers
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destabilize the α-helical structures [82]. The α-helical structure of CRF peptides has been
verified in an NMR study (Figure 2) [68].
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N-region-E K K K R K E-C-region 12
N-region-E K K R K E-C-region 50
N-region-E K R K E-C-region 30
N-region-E K K E-C-region 4.6

The importance of the I-segment of CRF peptides is further supported by the study of
Eckart et al. (2001) [83]. Specifically, the Ala22P of the Ala22P-Arg23P-Ala24P-Glu25P (ARAE)
motif of the α-helical I-segment of CRF is very important for peptide binding to the CRF-BP.
Mutation of the Ala22P to the corresponding Glu of SVG changed the phenotype of CRF to
that of SVG, by largely reducing the binding affinity of peptide to CRF-BP.

3.2. Non-Peptide CRF Analogs

In addition to peptide ligands, many non-peptide antagonists have been created. Most
of these analogs have a planar heterocyclic structure (mono-, bi- or tri-) in the center of
the molecule [84–87] (Figure 4). Their heterocyclic ring contains a nitrogen atom, which
could participate in hydrogen bonds and it is an important functional element of these
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analogs. In addition to this nitrogen atom, functionally important groups are a lipophilic
one attached at the top of the core, and a lower aryl or heteroaryl ring (Figure 4). Another
principal functional element is an ortho-substituent in the lower ring, which restricts
this ring orthogonal to the plane of the core (Figure 4). This restriction could also be
accomplished by adding an alkyl or alkoxy group next to its nitrogen atom into the core.
Moreover, new compounds have been synthesized, bearing an acyclic central core with
a nitrogen atom [88]. The important role of this nitrogen atom was suggested by its
methylation abolished binding [88]. The latest CRF1R small-molecule antagonists reported
are NGD9002 and NGD98-2 (Figure 4), which suppressed stimulation of motor activity
of the colon induced by stress and visceral hypersensitivity in experimental animals [87].
However, small allosteric molecules have failed to reach clinical utility due to limitations
arising from their similar chemical properties [89].
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4. Receptors
4.1. The ECD

The extracellular amino-terminal domain (or ECD) of CRF1R plays a major role in
ligand binding. Replacement of the ECD of CRF1R with the ECD of the receptor for the
GH-releasing hormone (GRF-R) resulted in the loss of astressin and UcnI binding [90]. In
marked contrast, replacement of ECD of the GRF-R with the ECD of CRF1R generated a
receptor capable to bind astressin and UcnI [90]. Supportive evidence for the significance
of ECD in CRF peptide binding is provided by previous studies, which have shown
that a soluble form of the isolated ECD of CRF1R and CRF2R, and a receptor formed
by substituting the ECD of the receptor for activin receptor (a single transmembrane
protein) with the corresponding region of CRF1R or CRF2R, bind various CRF peptides
with considerable affinities [91–93]. A crystal structure of the isolated ECD of CRF1R
revealed that main chain atoms of Val97 form hydrogen bonds with the oxygen and
nitrogen atoms of the C-terminal amide group (of residue 41) of CRF, demonstrating its
important role in peptide function (Figure 5) [74]. In addition, Ile41P of CRF hydrophobically
interacts with residues Leu50 and Ile51 of the ECD. Furthermore, hydrophobic interactions
between Met38P of CRF and Tyr99 and Tyr77 of the ECD have been observed, as well as
hydrophobic interactions along Phe72 of the ECD with Leu37P of CRF. The Asn34P of CRF
could also possibly form a hydrogen bond with the side chain oxygen of Tyr77 of the ECD.
Moreover, the nitrogen of the C-terminal amide interacts through a hydrogen bond with
the backbone carbonyl of Met38 of CRF, which stabilizes the significant α-helical structure
of the peptide [74] (Figure 5). Similarly, the amide group of the C-terminal residue 41 of
astressin forms H-bonds with CRF2R residues including Val113 (Val97 in CRF1R) [94].

In addition to these amino acids, several Cys of the ECD of CRF1R and CRF2R form
disulfide bridges that play an important functional role [74,92,93,95,96]. A reduction in
these disulfide bonds in CRF1R using DTTs or their mutation decreased CRF binding [97].
These disulfide bonds hold important structural motifs in the ECD of CRF1R. These struc-
tural motifs are a short N-terminal α-helix followed by two anti-parallel β-sheets each with
two β-strands (β1-β2 and β3-β4), and a short C-terminal α-helix, as revealed in the crystal
structure of the ECD of CRF1R (Figure 5) [74]. A similar structure has been observed in the
structure of the ECD of CRF2R, as determined in an NMR study, with some differences,
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such as the absence of a salt bridge between Arg85 and Asp49 in CRF1R, as observed in
CRF2R [74,94].
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of the C-terminal amide group (of residue 41) of CRF.

These structural motifs of the receptor’s ECD are of vital importance for its function.
Specifically, the β1-β2 loop of CRF1R, which is formed between the β1-β2 strands and
interacts with the Met38P and Ile41P of CRF, is shifted closer to CRF upon peptide binding,
rendering the Ile51 at the top of this loop a contact site of the peptide [74]. Structural
rearrangements are also associated with peptide binding to the CRF2R [92,94].

In addition to its significance in ligand binding, the ECD is proposed to play a role
in CRF receptor activation by interacting with the third extracellular loop (EL3) of the
J-domain of receptor [98]. Specifically, Dore et al. proposed that the EL3 of CRF1R likely
interacts with the ECD to stabilize an inactive conformation of the receptor, like the glucagon
receptor [98,99]. Upon CRF binding to the ECD, the peptide destabilizes the receptor’s
inactive state by affecting ECD-EL3 interaction before interacting with the J-domain to
result in receptor activation. In accordance with this theory, a recent cryo-EM study of the
active states of both CRF1R and CRF2R in complex with UcnI has shown that the ECDs do
not interact with the TMs of receptors [100].

4.2. The J-Domain

The J-domain of CRF receptors plays an important role in ligand binding and receptor
activation. It contains contact sites of ligands, and is responsible for the transmission
of conformational changes, associated with agonist binding and receptor activation, to
the intracellular regions of receptor, which subsequently stimulate the G-proteins, thus
resulting in a biological response [101,102]. Interaction of non-peptide antagonists, such as



Biology 2024, 13, 120 9 of 21

antalarmin and CP-376395 with TM residues of the J-domain of CRF1R allosterically inhibit
agonist binding and block the receptor activation-associated conformational changes, thus
antagonizing the CRF biological effects [1,102,103]. In detail, the pyrimidine nitrogen of
CP-376395 interacts through a hydrogen bond with Asn2835.50b of CRF1R, whereas the
aryloxy group of ligand interacts with a hydrophobic pocket of receptor formed by Phe
2845.51b, Leu2875.54b, Ile2905.57b, Thr3166.42b, Leu3196.45b and Leu3206.46b [103] (Figure 6).
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are denoted by superscripts indicating their positions in receptor transmembrane domains (TMs).
In subfamily B1 GPCRs, the most conserved residue in each TM is labeled as position index .50,
preceded by the TM number (TM1-TM7). For example, Phe2845.51b denotes Phe284 located in TM5,
one residue after the most conserved residue, Asn2835.50b.

The exocyclic alkylamino moiety of CP-376395 interacts with Gly3246.50b, Phe2033.44b,
Leu2805.47b, Leu3236.49b, and Tyr3276.53b of CRF1R [103]. The pattern of binding of the
structurally related antalarmin is similar to that of CP-376395 [102]. The superscripts
of receptor residues represent their positions in the TMs of the receptor, with the most
conserved residue in each TM of subfamily B1 GPCRs to be assigned the position index .50,
and this number is preceded by the TM number (TM1–TM7) [104]. For example, Phe2845.51b

denotes Phe284 located in TM5, one residue after the most conserved residue, Asn2835.50b.
In addition to the interaction with the non-peptide analogs, the residues of the J-

domain interact with the CRF peptides. An alanine mutagenesis study has shown that
Trp259EL2 and Phe260EL2 of the CRF1R play role in receptor interaction with CRF and
SVG [101]. The superscripts EL1, EL2, and EL3 of receptor residues represent the ELs
of the receptor, in which these residues are located. This interaction is supported by the
cryoelectron microscopy (cryo-EM) results of CRF1R in complex with the Gs protein and
CRF (receptor structure at 2.91 Å resolution, pdb: 6P9X) [105]. Specifically, the backbone of
Trp259EL2 of the receptor is linked through a water-coordinated hydrogen bond network
with Asn1963.37b, Tyr2725.39b, and Asp2695.36b, whereas the backbone of Phe260EL2 interacts
through an H-bond with Arg16P.

Similar to EL2, the EL1 and EL3 of CRF1R are also important for peptide binding.
A photo-cross-linking study demonstrated that the amino-terminally located residues
17 and 22 of the UcnI analogs lay in close proximity to a region between Trp170EL1 to
Glu179EL1 of CRF1R [106]. A different study has also shown that position 185 EL1 of hu-
man CRF2R (189EL1 of human CRF1R) plays a role in receptor function. Specifically, SVG
and UI bound with increased affinities to CRF2R when arginine was at position 185EL1

compared to the presence of histidine at this position [107]. In addition, the substitution
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of Tyr346EL3, Phe347EL3, and Asn348EL3 of CRF1R by Ala significantly reduced the bind-
ing affinity of CRF [108]. Furthermore, a recent photocrosslinking study has revealed
several crosslinking pairs between UcnI and CRF1R, namely the pairs Gln273EL2-Asp8p,
Phe330EL3-Asp8p, Leu329EL3-His12p, Phe330EL3-His12p, Asn333EL3-His12p, Ile345EL3-His12p,
Asn348EL3-His12p, Ser349EL3-His12p and Ser349EL3-Leu14p [109].

The pairs Gln273EL2-Asp8p, Asn348EL3-His12p, and Ile345EL3-His12p are also observed
in the cryo-EM structure of CRF1R [100]. However, other pairs of crosslinking were not
consistent with the Cryo-EM structure. Based on these results, the authors suggested
that several regions of receptor containing crosslinked amino acids are subjected to large
conformational changes during activation of the receptor, in contrast to the cryo-EM
structure of receptor in complex with ligand and G-protein, which represents the most
stable conformational active state [100].

In addition to the interaction of EL1 and EL2 with ligands, these regions contain two
Cys, which are highly conserved among GPCRs, and form a disulfide bond that connects
these loops, playing an important functional role [110,111]. Mutation of Cys188EL1 and/or
the Cys258EL2 of CRF1R to different amino acids broke this disulfide bond and largely
decreased the binding of CRF [97].

The CRF also interacts with TM helices of CRF1R, excluding TM4 [105]. Specifically,
the peptide enters the top of the receptor core, and forms interactions with the top of TM1
and TM2/EL1. As the peptide goes deeper into the receptor, it forms additional interactions
with TM1 and EL2 at the outer membrane level and TM3, TM5, and TM7 deep into the
pocket (Figure 7). The N-segment of peptide forms a loop in the receptor which orients
toward the extracellular side of the receptor and forms polar interactions mainly with TM6,
and secondarily with TM5 and EL2 residues. Residues at positions 7 to 9 of the N-segment
of CRF have been characterized to play a crucial role in peptide’s agonist activity [112].
Specifically, Ser7P forms an H-bond with the backbone of Phe3316.57b and Tyr3276.53b of the
receptor (Figure 7). In addition, Leu8P forms hydrophobic interactions in the hydrophobic
region of the receptor consisting of Tyr3276.53b, Phe2033.44b, Ile2775.44b, and Met2765.43b and
Asp9P forms an H-bond interaction with Asn2735.40b, among others (Figure 7).
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In addition to the structural information of CRF1R in complex with CRF, a recent Cryo-
EM study has revealed the structure of both CRF1R and CRF2R obtained in complex with
UcnI and Gs protein (Figures 8A and 8B, respectively) [100]. UcnI interacts with the ELs and
TM helices of CRF receptors, excluding TM4. Similarly, to the CRF peptide, UcnI enters the
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top of the receptor core, and forms interactions with the top of TM1 and TM2/EL1 of both
receptors. The N-terminus of UcnI loops back up inside the receptors and forms interactions
mainly with TM7. The amino acids 6 to 8 of the N-segment of UcnI have been shown to
play a crucial role in the activity of the peptides. Specifically, Ser6p of UcnI forms an H-bond
with Asn3487.42b of CRF1R (Figure 8C), which is also observed in the structure of CRF2R
(Ser6p–3447.42b interaction) (Figure 8D). Moreover, Asp8p interacts with Tyr2725.39b and
Gln2735.40b of CRF1R, similarly to its mode of interaction with Tyr2685.39b and Gln2695.40b in
CRF2R (Figure 8C,D). An additional important feature of Asp8p, as revealed in the cryo-EM
structure of CRF receptors, is its intramolecular electrostatic interaction with the Arg15p

of UcnI, thus stabilizing the bound peptide conformation [100]. In the structure of the
CRF1R-UcnI complex, Ile7p interacts with a hydrophobic region consisting of Tyr3276.53b,
Phe2033.44b, Ile2775.44b, and Met2765.43, whereas the same hydrophobic region in CRF2R has
a differentiation at position 2765.43b, where there is an isoleucine instead of a methionine
(Figure 8C,D).
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5. The Two-Step Model of Ligand–Receptor Interaction

The CRF peptides interact with the CRF receptors according to a two-step model.
In the first step, the C-segment of the peptides interacts with the ECD of the receptors.
This interaction orients the peptides in such a way that their N-segment residues interact
with the J-domain of the receptors in the second step. This model was built based on
the experimental results from the study of Hoare et al. [113]. Previous pharmacological
studies have also shown the interaction between the ECD of CRF receptors, and the C-
segment of the peptides [72,74,90,94]. In addition, other studies have shown the interaction
between the amino acids of the N-segment of CRF peptides with the J-domain of CRF
receptors [101,106,114,115]. The last interaction is responsible for receptor activation [116].
Specifically, Nielsen et al. have shown that replacement of the ECD of CRF1R with the first
16 N-segment residues of CRF constitutively activated the receptor because it mimicked
the first-step interaction and allowed the important for receptor activation second-step
interaction [116]. The constitutive activity of this chimeric receptor, which lacks the ECD,
was not blocked by astressin which binds to the ECD of CRF1R [116]. In contrast, the small
non-peptide allosteric antagonist, antalarmin, which binds to the TMs of CRF1R, decreased
the constitutive activity of this construct. Interestingly, the Ala mutation of Leu8p in the
tethered N-segment of CRF abolished the constitutive activation of the chimeric receptor,
suggesting the important role of this peptide residue in receptor–ligand interactions [116].

6. Structural Basis of Receptor Activation

The activation of CRF1R involves a complex and finely tuned set of structural interac-
tions between different receptor residues, between peptide and receptor amino acids, and
between receptor and G-protein residues. The high-resolution structures of CRF receptors
provide a detailed view of these interactions. The receptor core, inclusive of all loops
and the Gas domain, is resolved with great precision. This clarity allows for the accurate
placement of side-chain rotamers and a deep understanding of the receptor’s structural
conformation upon ligand binding.

Interactions of agonist peptides with the transmembrane helices (TM1–TM7) and
extracellular regions of the receptor are characterized by a combination of hydrogen bonds,
hydrophobic interactions, as described previously, and structural water molecules that
stabilize the peptides within the receptor. The presence of structural water molecules in
CRF receptor structures contributes significantly to the stability and specificity of peptide
binding, by linking key residues such as E3527.46b and Y1953.36b that are essential for
maintaining the receptors in an active conformation [105]. As revealed by the comparison
of the inactive and active crystal structures of CRF receptors, their activation is associated
with conformational changes, such as the reorganization of EL2, which includes an upward
movement of TM4 and TM5 that repositions both EL2 and IL2 [105]. In addition, the
computational data from a recent pharmacological study have proposed a movement of
TM3 and TM5 of CRF1R during its activation [102]. Strengthening the interface between
TM3 and TM5 by appropriately mutating their amino acids further stabilized the inactive
state of the receptor [102].

The CRF1R-Gas protein interface is another critical aspect of receptor activation. The
receptor makes extensive contacts with Gas, predominantly through hydrophobic inter-
actions and hydrogen bonds across TM2, TM3, IL2, TM5, TM6, and the junction of TM7
and helix 8 [105]. Helix 8 is a structure of receptors located intracellularly after the end of
TM7 and connects the TMs of the receptor with its C-domain. Specifically, Y391aH5 of Gas
protein participates in hydrophobic interactions with H1552.50b, L2133.54b, Y2123.53b, and
R1512.46b of CRF1R, in addition to the H-bond networks in which participates as described
in the study of Liang et al. (Figure 9) [105]. E392aH5 of Gas protein interacts through a
hydrogen bond with the main chain of S3688.48b located in helix 8, and L393aH5 of Gas
protein participates in hydrophobic interactions with A3156.41b and L2945.61b of the receptor
(Figure 9). In addition, the main chain oxygen of L394aH5 of Gas protein interacts with recep-
tor residues, K3116.37b forming a hydrogen bond and L2985.65b by hydrophobic interactions.
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Residues from the alpha helix 5 of the Gas protein, and specifically, Q384aH5 make H-bond
interactions with K2975.64b, K3345.64b, T258IL2 and L2553.58b. In addition, T220IL2 interacts
with main chain atoms of I2173.58b, while I383aH5 and R380aH5 participate in hydropho-
bic interactions with T220IL2 and Y221IL2. Y221IL2 also forms a hydrogen bond with the
main chain oxygen of F376aH5 in the Gas protein, whereas Q35aHN interacts with R2274.41b.
Moreover, R385aH5 participates in hydrophobic interactions with K2975.64b (Figure 9). The
superscripts IL1, IL2, and IL3 of receptor residues represent the intracellular loops (ILs) of
the receptor, in which these residues are located. The superscript aH5 represents the alpha
helix 5 of the Gas protein. Similar to CRF1R, the α5 helix of the Gαs protein extensively
interacts with TM2, TM3, TM5, TM6, IL2, and IL3, and the TM7-H8 junction of the CRF2R,
highlighting the extensive interface for G-protein coupling [117]. Specifically, Y391 in the
Gas protein binds to a sub-pocket formed by R1482.46b, H1522.50b, and E2053.50b, Y2083.53b,
L2093.54b of CRF2R. Other interface residues in the α5 helix of the Gαs protein include E392,
forming polar contacts with K3106.40b and N3638.47b of the receptor, and Q390 forming a
hydrogen bond with R1482.46b of the receptor. In addition, the C-terminal L394 of the Gas
protein forms a charge interaction with K3076.37b of the TM6 of the receptor.
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Figure 9. Molecular interactions of Gas protein (green) with CRF1R (cyan) (PDB: 6P9X). CRF (orange)
and the three subunits of G-proteins, Gβ protein (brown), and Gγ protein (red) are also shown as
part of the general complex in the left side.

The IL2 of CRF receptors plays an important role in their interaction with different
G-proteins, consistent with the ability of subfamily B1 GPCRs to engage with multiple
G-proteins and their related signaling pathways. Conformational changes in IL2 of CRF
receptors are key in differentiating their interactions with various G-proteins (Gs, G11,
and Go). Specifically, the α5 helices of different G-proteins interact differently with the
receptor [117]. The sharp kink in the middle of TM6 of CRF2R facilitates the formation of
an open G-protein-binding pocket, allowing for the accommodation of the relatively large
C-termini of the α5 helix of Gα subunits, particularly Gs [117].

The structural–functional knowledge derived from CRF receptors can provide valuable
insights into the activation mechanisms of subfamily B1 GPCRs. Common structural
features of CRF receptors and subfamily B1 GPCRs have been extensively studied. The
formation of a cytoplasmic cavity by three intracellular loops (ILs) for G-protein coupling,
the interaction of the α5 helix of Gαs proteins with TM2, TM3, and IL2, which is a highly
conserved feature across subfamily B1 GPCRs, suggest a common mechanism in Gs protein
coupling for these receptors. The ECD and ELs of subfamily B1 GPCRs, including CRF
receptors, show the ability to regulate the binding of different peptides, indicating that
the general principles of ligand recognition and binding are shared across this subfamily.
Similar to CRF receptors, subfamily B1 GPCRs undergo conformational changes upon
activation, such as the outward movement of TM6/ECL3/TM7, which are variable among
different receptors but follow a common trend [57].

However, there are structural aspects of activation within the CRF receptor family
which are not necessarily extrapolatable. These are the specific interactions at the residue
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level, and the diverse G-protein engagement. Differences between receptors of this family
are likely reflective of the distinct dynamics of side chains and backbone conformations
within individual receptors. Thus, although CRF receptors provide a valuable framework
for understanding subfamily B1 GPCR activation, variations in ligand recognition, G-
protein engagement, and structural dynamics of these receptors highlight the importance
of studying each of them individually.

7. Molecular Mechanisms of Ligand Selectivity
7.1. Selectivity of Non-Peptide Antagonists

The crystal structure of the inactive state of CRF1R has revealed that a layer formed
by the side chains of several residues, including His1993.40b and Met2765.43b, is located
just above the bound CP-376395 [103]. Interestingly, although His1993.40b and Met2765.43b

do not interact with the ligand, their mutation to the corresponding residues of CRF2R
(V1953.40b and I2725.43b, respectively) largely reduces non-peptide antagonist binding
to CRF1R [118]. The non-conserved His1993.40 and Met2765.43 interact with the con-
served Tyr3276.53b and Phe2033.44b, possibly affecting the positioning of these two aromatic
residues. It has been proposed that during ligand binding and dissociation Tyr3276.53b and
Phe2033.44b change rotameric states, such as to allow the entrance and exit of the small
non-peptide ligands from the CRF1R [98]. In contrast, the mutation of His1993.40b and
Met2765.43b of CRF1R to alanine did not affect non-peptide ligand binding, since this small
well-tolerated amino acid does not largely affect the conformation of receptor [102,119].
These conformational changes provide a theoretical rationale for the CRF1R-selectivity
of non-peptide ligands given that all receptor residues directly interacting with these
molecules are completely conserved in CRF2R. It is possible that in CRF2R, the correspond-
ing Val1953.40b and Ile2725.43b restrict the aromatic residues, which correspond to Tyr3276.53b

and Phe2033.44b of CRF1R, to a conformation that prohibits the access of non-peptide ligands
to their binding sites [98].

7.2. Selectivity of Peptide Agonists

Residues at the N-segment of the CRF and related peptides play an important role in
CRF receptor selectivity. Specifically, the replacement of the motif Thr11p-Phe12p-His13p of
CRF with the corresponding motifs of UcnII and UcnIII, Pro11P-Ile12P-Gly13P and Pro11P-
Thr12P-Asn13P, respectively, conferred to peptide CRF2R-selectivity [120]. Supportive
evidence for the structural importance of the Thr11p-Phe12p-His13p motif of CRF in receptor
selectivity is provided by the study of Isfort et al. [121]. Specifically, Phe, Leu, Ile, Thr,
Gln, His and Tyr at position 12 and Phe, Gln, Trp, Tyr, Val, Ile, Leu and 2-naphthylalanine
at position 13 are the preferable substitutions for CRF2R selectivity. In addition to the
N-region, amino acids at the C-region of the CRF and related peptides are significant for
CRF receptor selectivity. Importantly, Arg35p and the acidic residue (Asp or Glu) at position
39 are not conserved in the CRF2R-selective UcnII and Ucn III, which have an Ala at these
positions, suggesting that they could play an important role in the selective binding of
these peptides to CRF2R. Simultaneous replacement of Arg34p (Arg35p of CRF) and Asp38p

(Glu39p of CRF) of SVG by the corresponding Ala35p and Ala39p of UcnII increased the
CRF2R-selectivity obtained after the substitution of Ser10p of SVG (which corresponds
to Thr11p of CRF) by the corresponding Pro11p of UcnII and UcnIII, [122]. Similarly, the
corresponding substitutions in the UcnI increased CRF2R-selectivity, whereas in the CRF it
resulted in a decrease in binding to both receptor subtypes (EC50 > 100 nM for CRF2R and
EC50 > 1000 nM for CRF1R), suggesting that UcnI, SVG, and CRF bind to CRF receptor with
slightly different modes, which might be differentially affected by the same modification of
peptides [122].

The molecular determinants of peptide selectivity could be determined by examining
the existing structures of CRF1R and CRF2R and comparing the amino acids at positions
11-13 of the N-segment of CRF (Thr11P-Phe12P-His13P), UcnI (Thr11P-Phe12P-His13P), UcnII
(Pro11P-Ile12P-Gly13P) and UcnIII (Pro11P-Thr12P-Asn13P) bound to the two CRF receptor
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types. Given that Pro11P is an alpha-helix breaker, these residues abate the α-helicity,
leading to an impairment of binding to CRF1R [120]. Moreover, a comparison of the
electrostatic surface potentials of the ECD for both CRF receptors indicates that Arg35P

(positively charged amino acid) present in CRF and UcnI is compatible for interaction with
Glu104 of CRF1R as well as the corresponding Pro100 in CRF2R. In contrast, UcnII and
UcnIII have Ala35P, the hydrophobic surface of which may interact only with Pro100 of
CRF2R and not with Glu104 of CRF1R, which could provide an additional determinant of
peptide selectivity [123].

Receptor selectivity could also be attributed to modifications of different sets of
amino acids at positions 30, 31, 33, 34, and 35 and/or to a change in the conforma-
tion of peptide by introducing lactam bridges at different positions of CRF [124,125].
For example, Rivier et al. have shown that the introduction of a Glu32p-Lys35p lactam
bridge into a CRF analog with the eleven N-terminal residues deleted (creating the ana-
log, cyclo(32-35)[DPhe12,Nle21,38,Glu32,Lys35]- hCRF(12-41)) yielded a CRF2R-selective
ligand [124]. In marked contrast, the introduction of a Glu30p-Lys33p lactam bridge in a CRF
truncated analog created the non-selective astressin ([cyclo(30-33)[DPhe(12),Nle(21),Glu(30),
Lys(33),Nle(38)]hCRF((12-41))]) [125]. Furthermore, salt bridges that are formed in the
Glu31p–Glu34p region of CRF analogs could play a crucial role in peptide selectivity.
The CRF analog Stressin1-A is a CRF1R-selective peptide with quite similar sequence
as CRF (cyclo(31-34)[DPhe12,Nle21,38,Glu31,Lys34]Ac-hCRF(4-41)). In Stressin1-A, residues
Glu31p and Lys34p form a lactam bridge resulting in a 130-fold selectivity increase to-
wards the CRF1R [126]. Interestingly, the linear counterpart of stresin-1A, (linear[DPhe12,
Nle21,38,Glu31,Lys34]-Ac-hCRF(4-41)), which has Glu and Lys at positions 31 and 34, re-
spectively, displayed CRF1R selectivity, similar to stressin-1 A, whereas the linear analog
[DPhe12,Nle21,38,Glu30,Lys33]-Ac-hCRF(4-41), which has Glu and Lys at positions 30 and
33, respectively, was non-selective [126].

Differential truncation of peptides could also confer the selective binding of pep-
tides to the two CRF receptor types. Thus, although the introduction of a cyclic con-
straint between Glu32p and Lys35p of a truncated CRF analog created the CRF2R-selective
ligand (cyclo(32-35)[DPhe12, Nle21,38,Glu32, Lys35]- hCRF(12-41)), the same modification
in a lengthier CRF analog created the non-selective ligand cyclo(32-35)[DPhe12,Nle21,38,
Glu32,Lys 35]-Ac-hCRF(4-41) [124,126].

8. Concluding Remarks

In this exploration of CRF peptides and their receptors, we have delved into the
intricate structural and functional nuances that govern their roles in diverse physiologic
and pathologic states. The elucidation of the crystal structures of CRF receptors, particularly
CRF1R and CRF2R, has been pivotal in enhancing our understanding of their activation
mechanisms and ligand specificity.

The detailed insights into the interaction dynamics between CRF peptides and their
receptors underscore the sophistication of ligand–receptor binding, ligand selectivity for the
CRF1R and CRF2R, and activation processes. In addition, these interactions, characterized
by specific amino acid interactions, and conformational changes, highlight the intricacy of
G-protein-coupled-receptor (GPCR) signaling.

Moreover, the structural–functional insights gained from CRF receptors provide a
valuable framework for understanding the function of the broader subfamily B1 GPCRs.
While certain aspects of CRF receptor activation and ligand binding can be generalized to
other receptors in this subfamily, the unique features of each receptor must be appreciated.
This knowledge underscores the potential for developing targeted therapies that harness
the specific characteristics of each receptor within this subfamily.

The revelation of the molecular mechanisms underlying receptor activation and ligand
selectivity has profound implications for therapeutic applications. Understanding the
structural basis of receptor activation opens avenues for the development of novel drugs
targeting CRF receptors. These drugs hold significant promise in the treatment of a range
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of conditions, from psychiatric disorders such as depression and anxiety, to those of
the cardiovascular, gastrointestinal, and immune systems. As we continue to deepen
our understanding of these molecular mechanisms, we edge closer to unlocking the full
therapeutic potential of targeting CRF receptors and their related signaling pathways.
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