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Simple Summary: When studying the cancer transcriptome, we found that there is no work that
has conducted a global and systematic analysis of the metabolism-related genes and pathways in
the cancer transcriptome, especially in connection with cancer prognosis and treatment. Therefore,
we performed this work by establishing a survival risk model to associate metabolic checkpoint
genes and pathways in cancer with prognosis. We screened metabolic genes and pathway signatures
related to cancer survival, providing data reference for clinical treatment.

Abstract: Metabolic dysregulation has been reported involving in the clinical outcomes of multiple
cancers. However, systematical identification of the impact of metabolic pathways on cancer prog-
nosis is still lacking. Here, we performed a pan-cancer analysis of popular metabolic checkpoint
genes and pathways with cancer prognosis by integrating information of clinical survival with gene
expression and pathway activity in multiple cancer patients. By discarding the effects of age and
sex, we revealed extensive and significant associations between the survival of cancer patients and
the expression of metabolic checkpoint genes, as well as the activities of three primary metabolic
pathways: amino acid metabolism, carbohydrate metabolism, lipid metabolism, and eight nonpri-
mary metabolic pathways. Among multiple cancers, we found the survival of kidney renal clear
cell carcinoma and low-grade glioma exhibit high metabolic dependence. Our work systematically
assesses the impact of metabolic checkpoint genes and pathways on cancer prognosis, providing
clues for further study of cancer diagnosis and therapy.

Keywords: cancer transcriptome; metabolic pathways; prognosis

1. Introduction

Metabolic genes and pathways of tumor cells have been widely recognized as an
emerging hallmark of cancer, and metabolic rewiring is critical for the initiation, prolifera-
tion, and progression of cancer [1]. Metabolic checkpoints play a crucial role in dynamically
coordinating metabolic homeostasis in the tumor microenvironment, referring to a series
of cellular metabolic molecular switches that consist of metabolic signals, sensors, signal
transducers, and molecular effectors [2]. Metabolic checkpoints are involved in a molecular
mechanism that senses metabolic stress caused by nutrient deprivation [3]. Metabolic
checkpoints are also inherently linked to the development, activation, function, differ-
entiation, and survival of T cells [4]. For example, the expression of HIF-1α (HIF1A) is
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critical for the response of T cells to hypoxic environments [5]. The activity of intracellular
metabolic pathways is closely related to the unique metabolic homeostasis in the tumor
microenvironment [6]. Including glucose and lactate, tumors can use a variety of fuels to
obtain energy to sustain their survival, such as fatty acids, amino acids, and proteins [7].
Deprivation of glutamine impairs the activation-induced growth and proliferation of T
cells [8]. Meanwhile, the regulation of cell metabolic pathways against the lifespan and
anticancer function of tumor T cells directly affects the clinical efficacy of T cell-mediated
immunotherapy [9]. Despite the importance of metabolic checkpoints and pathways, our
current understanding of how the metabolic network affects the progression of cancers is
still incomplete [10]. Thus, a systematic dissection of their relevance to cancer treatment
and prognosis is necessary.

Here, we integrated transcriptomic and clinical data from 33 cancer types in TCGA and
constructed a multifactor cox regression model to assess the impact of metabolic checkpoint
gene expression and pathway activities on patient survival. Our study comprehensively
explored the association between the dysregulation of metabolic transcriptome and cancer
prognosis, providing a clue for finding new cancer therapeutic markers and selecting
effective treatments.

2. Materials and Methods
2.1. Data Collection

Gene expression data from cancer patients in the TCGA cohort were obtained from
UCSC Xena (http://xena.ucsc.edu/, accessed on 23 September 2022) [11]. Expression value
was represented by log2 (x + 1), while x indicates the RSEM normalized counts of each gene.
Clinical data of the samples, including sample barcodes, age, gender, survival outcome,
overall survival, etc., were obtained from GDC (https://portal.gdc.cancer.gov/, accessed
on 25 September 2022). The sample information from the two databases was matched
using the sample barcodes. Samples with unclear survival outcomes or survival time were
excluded. All data were publicly available.

2.2. Collection of Metabolic Checkpoint Genes

Twenty-six metabolic checkpoint genes were collected from previous work [12].
Protein–protein interaction analysis was performed using the online analysis platform
STRING (https://string-db.org/, accessed on 5 January 2023). The list of metabolic check-
point genes was used as input. The protein products of all 26 metabolic checkpoint genes
were correctly matched, and a protein–protein interaction network was generated. The gen-
erated network was exported to Cytoscape for network visualization. In the protein–protein
interaction network diagram, each line between two proteins represents an interaction
between them.

2.3. Calculation of Metabolic Pathway Activity Scores

Metabolic pathways were obtained from the public platform KEGG (https://www.
kegg.jp/, accessed on 8 October 2022) [13], which included 84 metabolic pathways from
11 major metabolic categories. Based on the gene expression data in each sample and
the genes in each gene set, the ssGSEA score of each pathway was calculated using the R
package GSVA v1.46.0 [14], reflecting the enrichment level of the pathway in the sample.

2.4. Multivariable Cox Regression Model

According to the clinical information of the samples provided by GDC, the method of
calculating the survival time (days_to_last_followup or days_to_death) was determined
based on their survival status. In each cancer type, a multivariable Cox regression model
was constructed using gene expression or metabolic pathway scores, age, and gender as
independent variables. This analysis was performed using the R package survival v3.5.
The hazard ratio (HR) output by the model reflects the degree of impact of the variable on
prognosis. HR > 1 indicates that the variable increases the patient’s risk of death and leads
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to a poor prognosis. HR < 1 indicates that the variable reduces the patient’s risk of death
and leads to a good prognosis. The significance threshold was set at the commonly used
threshold, the Wald test p-value of the regression model was less than 0.05, and the Wald
test p-value of the variable (gene expression or metabolic pathway score) was less than 0.05.
When the significance threshold was met, we considered that gene expression or pathway
scores had a significant impact on prognosis.

2.5. Statistical Analysis and Visualization

All statistical analyses were performed using R v4.2.0. Radar plots were drawn using
the R package fmsb v0.7.5, and heat maps were drawn using the R package pheatmap
v1.0.12. Other graphics were drawn using the R package ggpubr v0.4.0.

3. Results
3.1. Significant Correlation between the Pan-Cancer Survival and Metabolism Checkpoint Genes

We collected a list of 26 metabolic checkpoint genes (MCGs) that have been previously
validated [12], belong to three different metabolic landscapes (nutrient-sparse, metabolite-
excessive, low-oxygen) in tumor microenvironments (Figure 1A). Interaction analysis
revealed widespread interactions among these MCGs (Figure 1B). Then, 9585 patients
from 33 cancer types in TCGA cohorts with clearly defined clinical information were
selected (Table S1) and their transcriptomic data were integrated to assess the correlation
of MCG expression (Figure S1) and the survival of TCGA cancer patients. To avoid the
interference caused by age and gender, we used a multivariate Cox regression model to
evaluate the correlation.

After eliminating the biases of age and gender, among the 26 MCGs, we observed
23 MCGs significantly affecting the survival of at least one type of cancer patient (Figure 1C).
Of all combinations that were significantly correlated, we found that high expression of
metabolic checkpoint genes more often leads to poor patient prognosis (Figure 1D). Among
all MCGs, ADORA2A (adenosine A2a receptor) and XBP1 (X-box-binding protein 1) are
significantly correlated with the survival of six types of cancer (Figure 1E), including
increased risk of death in lung squamous cell carcinoma (HR = 1.42) and reduced risk of
death in five other types of cancer patients (BRCA, HR = 0.53; HNSC, HR = 0.64; PAAD,
HR = 0.47; SARC, HR = 0.62; SKCM, HR = 0.71). ADORA2A can also serve as a targetable
immune checkpoint, and studies have shown that blocking ADORA2A can effectively treat
refractory renal cell carcinoma [15]. XBP1 significantly reduced the risk of death in HNSC
patients (HR = 0.71), which is observed in previous work [16]. In addition to HNSC, high
XBP1 expression also significantly increased the risk of death in two types of cancer patients
(LGG, HR = 1.82; UVM, HR = 24.24) and reduced the risk of death in three types of cancer
patients (OV, HR = 0.52; PCPG, HR = 0.17; SKCM, HR = 0.64) (Figure 1C).

Considering individual cancers, the prognoses of eighteen cancers are significantly
correlated with at least one MCG. Among those, kidney renal clear cell carcinoma (KIRC)
and lower-grade glioma (LGG) have 13 prognosis-associated MCGs, the most among all
cancers (Figure 1F). The high expressions of ACAT1 (HR = 0.49), AHR (HR = 0.71), ENO1
(HR = 0.69), GLUD1 (HR = 0.67), NFATC2 (HR = 0.66), PCK1 (HR = 0.54), and SLC16A4
(HR = 0.62) are significantly correlated with good prognosis in KIRC patients, while the
high expression of ADORA2B (HR = 1.65), ARG1 (HR = 1.38), HIF1A (HR = 1.42), PVR
(HR = 2.25), SLC1A5 (HR = 1.62), and TIGIT (HR = 1.49) are significantly correlated with
poor prognosis in KIRC. Acetyl-CoA acetyltransferase 1 (ACAT1) has been shown to be
downregulated in KIRC and overexpression of ACAT1 can inhibit the secretion of MMP7
in KIRC cells, thereby inhibiting tumor invasion [17]. Previous work revealed that high
expression of glutamate dehydrogenase 1 (GLUD1) is detrimental to the survival of renal
cancer cells in unfavorable nutritional environments (such as amino acid deficiency) and is
significantly associated with good prognosis in KIRC patients [18]. High expression levels
of adenosine A2b receptor (ADORA2B) and solute carrier family 1 member 5 (SLC1A5) were
also correlated with poor prognosis in KIRC patients [19,20]. Further, the high expression
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of ACAT1 (HR = 0.44), GLUD1 (HR = 0.41), SLC38A1 (HR = 0.61), and SLC38A2 (HR = 0.63)
are significantly correlated with good prognosis in LGG patients, while high expression
of AHR (HR = 1.78), ENO1 (HR = 1.69), HK2 (HR = 3.56), MTOR (HR = 1.71), NFATC2
(HR = 2.16), SLC16A4 (HR = 2.92), SLC1A5 (HR = 3.00), SLC36A4 (HR = 1.67), and XBP1
(HR = 1.82) are correlated with poor prognosis in LGG patients. The expression of enolase 1
(ENO1) and hexokinase 2 (HK2) has been shown to play an important role in the occurrence
and metastasis of glioma cells [21,22].
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Figure 1. Global identification of survival-related metabolic checkpoint genes. (A) Twenty-six
metabolic checkpoint genes were classified based on their functional role in the tumor microenvi-
ronment. (B) Interacting network diagram of metabolic checkpoint genes, where the lines represent
interactions between genes. (C) Heatmap of the regression coefficients of the Cox regression model of
the metabolic checkpoint genes. Coefficient greater than 0 indicates that the expression of metabolic
checkpoint genes increases the risk of patient death, while a coefficient less than 0 indicates that the
expression of metabolic checkpoint genes decreases the risk of patient death. * indicates a significant
association between the metabolic checkpoint gene and cancer prognosis. (D) Ratio of good or
poor survival-associated pairs of metabolic checkpoint gene and cancer. (E) Number of cancers
with prognosis-associated metabolic checkpoint gene. (F) Number of metabolic checkpoint genes
associated with survival of each cancer.
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3.2. Extensive Impact of the Activities of Metabolic Pathways on Cancer Prognosis

To inspect the influence of metabolic pathways (MPs) in cancer prognosis, we collected
84 metabolic pathways from the KEGG [13] database, belonging to 11 major categories
(Figure 2A, Tables S2 and S3), and calculated their activities using transcriptomic data
(see Materials and Methods). Notably, the activities of all MPs in liver hepatocellular
carcinoma (LIHC) were relatively high, comparing to other cancers (Figure S2, Table S4).
We constructed a multivariable Cox regression model with the activities of 84 MPs, age,
and gender information as independent variables in assessing the association between the
activities of MPs and cancer prognosis.

We first inspected the impact of 41 pathways from three primary metabolic categories:
amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Results showed
that most of these pathways are significantly correlated with the survival of at least one
cancer (Figure 2B,C). For example, in the lipid metabolic pathway, the sub-pathway primary
bile acid biosynthesis had the most significant impact on the prognosis of nine cancers. In
pancreatic cancer, ursodeoxycholic acid (UDCA) has anticancer effects, while deoxycholic
acid (DCA) and CDCA have procancer effects [23]. In our results, we observed that the
activity of primary bile acid biosynthesis pathway is significantly correlated with the
prognosis of pancreatic cancer (PAAD) patients (HR = 0.46). In addition, the activity of
primary bile acid biosynthesis pathway is also significantly associated with good prognoses
in adrenocortical carcinoma (ACC) (HR = 0.06), kidney renal papillary cell carcinoma (KIRP)
(HR = 0.37), mesothelioma (MESO) (HR = 0.36), uveal melanoma (UVM) (HR = 0.11), HNSC
(HR = 0.69), and KIRC (HR = 0.62), and with poor prognoses in LAML (HR = 1.89) and LGG
(HR = 1.64). Several MPs are only significantly associated with the prognosis of special
cancer. For example, alanine, aspartate, glutamate, and butanoate metabolism are only
significantly correlated with the prognosis of KIRC.

Another 43 pathways from eight nonprimary metabolic categories including biosynthe-
sis of other secondary metabolites, energy metabolism, glycan biosynthesis and metabolism,
metabolism of cofactors and vitamins, metabolism of other amino acids, metabolism of
terpenoids and polyketides, nucleotide metabolism, and xenobiotics biodegradation and
metabolism were further inspected (Figure S3A). Results indicated the mannose type
O-glycan biosynthesis in glycan biosynthesis and metabolism showed a significant as-
sociation with the prognosis of seven cancers: with poor prognosis in sarcoma (SARC)
(HR = 1.66), ACC (HR = 17.18), CESC (HR = 2.23), KIRC (HR = 1.47), MESO (HR = 4.78), and
SKCM (HR = 1.43), and good prognosis in stomach adenocarcinoma (STAD) (HR = 0.59).
Existing studies have shown that cancer cells often synthesize polysaccharides at dif-
ferent levels and that specific glycosylation patterns may be useful for tumor grading
and prognosis [24]. Among all pathways, seven pathways showed significant associa-
tion with prognosis in only one cancer (Figure S3B). For example, caffeine metabolism
(HR = 0.60) was significantly associated with good prognosis of invasive breast carcinoma
(BRCA), while glycosphingolipid biosynthesis-lacto and neolacto series (HR = 1.91) and
vitamin B6 metabolism (HR = 1.70) were significantly associated with poor prognosis of
BRCA. D-amino acid metabolism (HR = 0.49), glycosylphosphatidylinositol (GPI)-anchor
biosynthesis (HR = 0.67), and riboflavin metabolism (HR = 0.11) were correlated with good
prognosis in KIRC, lung squamous cell carcinoma (LUSC), and uveal melanoma (UVM),
respectively. Mucin type O-glycan biosynthesis was only significantly associated with poor
prognosis in head and neck squamous cell carcinoma (HNSC) (HR = 1.59). Mucin-type
O-glycans are a class of glycans initiated with N-acetylgalactosamine (GalNAc) α-linked,
and changes in their intracellular content have been described in various types of tumors,
which may affect cancer prognosis [25].

An interesting result is that we observed the prognosis of KIRC and LGG have the
strongest significant associations with the activities of all pathways (Figures 2D and S3C).
Considering KIRC has long been recognized as a metabolic disease due to abnormal ac-
cumulation of lipid droplets in the cytoplasm [26], and LGG is a group of primary brain
tumors produced by supporting glial cells and characterized by mutations in isocitrate de-
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hydrogenase (IDH) [27]. Overall, these MPs significantly associated with cancer prognosis
may have potential applications in cancer prevention and treatment.
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Figure 2. Correlation of 41 metabolic pathways from three primary categories and cancer survival.
(A) A total of 84 metabolic pathways from 11 major metabolite-related subtypes defined by KEGG
were used. (B) Heatmap of the regression coefficients of the Cox regression model of the three
main metabolite-related pathways. A coefficient greater than 0 indicates that the metabolic pathway
increases the risk of patient death, while a coefficient less than 0 indicates that the metabolic pathway
decreases the risk of patient death. * indicates a significant association between the metabolic pathway
and cancer prognosis. (C) Bar chart showing the total number of metabolic pathways significantly
associated with a specific number of cancer prognoses in the three main metabolite-related pathways.
The height of the bar represents the total number of metabolic pathways significantly associated
with a specific number of cancer prognoses. (D) Statistics of the number of major metabolite-related
metabolic pathways significantly associated with cancer prognosis in each cancer type.
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4. Discussion

Metabolic checkpoints regulate the immune response in cancer and immunotherapy
by coordinating metabolic interactions between tumor cells and infiltrating immune cells.
In this study, we systematically identified the survival and efficacy-related metabolic tran-
scriptomes across multiple cancers based on TCGA datasets, which provided abundant
and comparable cancer samples [28]. The expression of ADORA2A and XBP1 was found
to have a significant impact on the survival of most cancer types. ADORA2A, the adeno-
sine receptor of the A2A subtype, interacts with G protein family members to increase
intracellular cAMP levels. In the tumor microenvironment, the expression of ADORA2A
affects the function, differentiation, and number of CD8+ T cells [29]. The downregulation
of ADORA2A expression using nanoparticles in HNSC patients increased T cell infiltration
into tumors [30]. This is consistent with our observation that an increase in ADORA2A
expression significantly reduces the risk of death in HNSC patients. X-box-binding protein
1 (XBP1) encodes a transcription factor that regulates MHC class II genes by binding to a
promoter element referred to as an X box. The IRE1α-XBP1 pathway that XBP1 participates
in plays a critical role in physiological and pathological environments, and its activity
has a profound impact on disease progression and prognosis [31]. An increase in XBP1
expression is associated with a good prognosis in HNSC patients [32]. This is similar to our
findings, which show that XBP1 significantly reduces the risk of death in HNSC patients
(HR = 0.71).

Abnormal cancer metabolism, such as aerobic glycolysis and increased synthetic
pathways, play important roles in tumor initiation, metastasis, drug resistance, and cancer
stem cells [33]. As the main source of cellular energy, glucose metabolism is also a key
source of carbon for cancer cell metabolism [34]. Glucose uptake also restricts T cell
activation [35]. The expression profile of carbohydrate pathway-related genes in cancer
cells is related to the tumor cell dissemination pathway, metastasis mode, and prognosis of
colorectal cancer [36]. Fatty acids not only have a structural role, but also act as secondary
messengers (DAG and IP3), regulating multiple physiological processes, including cell
signaling, ultimately leading to the regulation of T cell function [37]. Therefore, fatty
acid synthesis is essential for cell response and proliferation. Our research found that
the activation levels of multiple pathways related to the amino acid metabolism and
carbohydrate metabolism are significantly associated with patient survival. Lipid levels
can also serve as predictors of breast cancer risk and prognosis, with an increase in levels
reducing the risk of death in breast cancer patients [38]. We found that the levels of most
pathways in the lipid metabolism-related metabolic pathway reduce the risk of death in
BRCA patients, although not all have statistically significant associations. In addition,
research has found that lipid metabolism is related to the prognosis and incidence of colon
cancer [39]. In our study, we found that the levels of two lipid metabolism-related pathways
(fatty acid degradation, steroid biosynthesis) were significantly associated with the survival
outcomes of colon adenocarcinoma (COAD) patients, and an increase in their activation
levels significantly reduced the risk of death in COAD patients.

5. Conclusions

Overall, through integrating the expression and clinical outcomes at pan-cancer level,
our research revealed that metabolic checkpoint genes and pathways are significantly
associated with cancer prognosis, suggesting potential metabolic transcriptomic markers in
evaluating the cancer prognosis and treatment.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biology12081129/s1. Figure S1. Expression matrix of
26 metabolic checkpoint genes in 33 cancer types. Expression value was represented by log2 (x + 1),
while x indicates the RSEM normalized counts of each gene. The average gene expression of all
samples in each cancer was scaled by rows. Red represents high expression and blue represents
low expression. Figure S2. Activity score of 84 metabolic pathways from 11 major categories in

https://www.mdpi.com/article/10.3390/biology12081129/s1
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33 cancer types. Each cell was represented by the average original ssGSEA scores of all samples
in each cancer. Red indicates a high level of pathway activity and blue indicates the low activity.
Figure S3. Correlation of 43 pathways from eight nonprimary metabolic categories and cancer
survival. A. Heatmap of the regression coefficients of the Cox regression model for nonprimary
metabolite related pathways. Positive coefficients indicate an increased risk of patient mortality
associated with the metabolic pathway, while negative coefficients indicate decreased risk. * indicates
a significant association between the metabolic pathway and cancer prognosis. B. The statistics
for significant combinations of nonprimary metabolite related pathways associated with a specific
number of cancer cases. The height of the bar represents the total number of metabolic pathways
significantly associated with the prognosis of a specific number of cancers. C. Number of nonprimary
metabolite-related metabolic pathways significantly associated with prognosis for each cancer type.
Table S1. Summary of cancer samples in TCGA cohort. Table S2. Eighty-four metabolic pathways
from 11 major categories. Table S3. Gene list of 84 metabolic pathways. Table S4. The ssGSEA scores
of 84 metabolic pathways in TCGA cohort.
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