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Simple Summary: The consumption of cocaine is linked to a range of detrimental outcomes, includ-
ing addiction, cognitive deficits, and an elevated risk of developing psychiatric disorders. This study
sought to assess the effect of cocaine on brain structure by utilizing both statistical (e.g., voxel-based
morphometry) and machine learning (e.g., brain age estimation) models. The results from our experi-
ment showed that individuals with cocaine use disorder (CUD) had a significantly reduced amount
of gray matter (GM) when compared to age- and sex-matched healthy controls (HCs), implying GM
deterioration. In addition, the machine learning model revealed that CUD patients had a higher brain
age than that of the HCs, indicating accelerated aging. By shedding light on the adverse effects of
cocaine on brain anatomy and the aging process, this study greatly contributes to our understanding
of the neurological mechanisms underlying CUD, thus expanding our knowledge in this area.

Abstract: Introduction: Cocaine use disorder (CUD) is a substance use disorder characterized by
a strong desire to obtain, consume, and misuse cocaine. Little is known about how cocaine affects
the structure of the brain. In this study, we first investigated the anatomical brain changes in
individuals with CUD compared to their matched healthy controls, and then explored whether
these anatomical brain abnormalities contribute to considerably accelerated brain aging among this
population. Methods: At the first stage, we used anatomical magnetic resonance imaging (MRI)
data, voxel-based morphometry (VBM), and deformation-based morphometry techniques to uncover
the morphological and macroscopic anatomical brain changes in 74 CUD patients compared to
62 age- and sex-matched healthy controls (HCs) obtained from the SUDMEX CONN dataset, the
Mexican MRI dataset of patients with CUD. Then, we computed brain-predicted age difference (i.e.,
brain-PAD: the brain-predicted age minus the actual age) in CUD and HC groups using a robust brain
age estimation framework. Using a multiple regression analysis, we also investigated the regional
gray matter (GM) and white matter (WM) changes associated with the brain-PAD. Results: Using a
whole-brain VBM analysis, we observed widespread gray matter atrophy in CUD patients located in
the temporal lobe, frontal lobe, insula, middle frontal gyrus, superior frontal gyrus, rectal gyrus, and
limbic lobe regions compared to the HCs. In contrast, we did not observe any swelling in the GM,
changes in the WM, or local brain tissue atrophy or expansion between the CUD and HC groups.
Furthermore, we found a significantly higher brain-PAD in CUD patients compared to matched HCs
(mean difference = 2.62 years, Cohen’s d = 0.54; t-test = 3.16, p = 0.002). The regression analysis
showed significant negative changes in GM volume associated with brain-PAD in the CUD group,
particularly in the limbic lobe, subcallosal gyrus, cingulate gyrus, and anterior cingulate regions.
Discussion: The results of our investigation reveal that chronic cocaine use is linked to significant
changes in gray matter, which hasten the process of structural brain aging in individuals who use
the drug. These findings offer valuable insights into the impact of cocaine on the composition of
the brain.
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1. Introduction

Cocaine, a potent stimulant drug, is primarily sourced from the coca plant that is
grown in South America. Dating back to ancient times, it has a lengthy history of use for
both medicinal and recreational purposes. Nevertheless, the widespread consumption of
cocaine has become a significant matter of concern for public health due to its addictive
attributes and the profound adverse consequences it inflicts on individuals, families, and
communities. It has been estimated that 18 million people worldwide are currently using
cocaine, with the majority of users located in Latin America, North America, and Europe,
according to the World Drug Report 2021 published by the United Nations Office on Drugs
and Crime (UNODC; https://www.unodc.org/unodc/data-and-analysis/wdr2021.html,
accessed on 15 April 2023). Cocaine usage has a profound and broad impact on society.
Cocaine users are at a heightened risk of encountering a wide range of health issues,
including cardiovascular disease, respiratory failure, and mental health disorders such as
anxiety and depression. In addition, the economic ramifications of cocaine consumption
are considerable, as it results in elevated healthcare costs, criminal behavior, and lost
productivity. Cocaine is one of the most powerful stimulants that directly affect the brain,
elevate a person’s mood, and create great euphoria. Cocaine usage causes blood vessels
to constrict, as well as an increase in body temperature, heart rate, blood pressure, and
metabolism. Cocaine raises the amount of dopamine and prevents its reabsorption in the
brain, disrupting the function of nerve receptors in the long term [1]. The vast majority
of individuals who use cocaine do not exhibit a substance use disorder. However, there
is an increased risk of dependence with heavier use that can lead to major health issues
that affect mood, emotions, cognition, mental health, behavior, and physical health [2,3].
Cocaine use disorder (CUD) is a condition in which an individual repeatedly uses cocaine
despite its negative consequences on physical and mental health. As per the DSM-5,
CUD is categorized as a substance use disorder and is acknowledged as a psychiatric
diagnosis. CUD is associated with cognitive abnormalities in verbal memory and executive
functioning during withdrawal that may be recoverable depending on usage frequency
and the length of abstinence [4–6]. Cocaine can adversely affect the brain through various
biological mechanisms, such as oxidative stress, inflammation, and neurotoxicity. Oxidative
stress occurs due to an imbalance between the formation of reactive oxygen species (ROS)
and the body’s ability to eliminate them [7]. Cocaine increases the production of ROS,
which in turn leads to oxidative damage to brain cells [8]. Moreover, cocaine usage can
induce an inflammatory response within the brain [9], resulting in a multitude of negative
consequences, including damage to brain cells. Neurotoxicity is another direct consequence
of cocaine use [10,11], as it stimulates the release of neurotransmitters such as dopamine,
serotonin, and norepinephrine, which can cause excitotoxicity, leading to harm or demise
of brain cells.

Neuroimaging tools have been proposed as a robust technique that allows us to explore
drug actions and repercussions as they act and persist in the brain [12,13]. In the context of
CUD, several studies have investigated the effects of cocaine on the brain using various
brain imaging modalities [14–18]. For example, Ersche et al. [17] reported a decreased
gray matter (GM) volume in the cerebellar cortex, orbitofrontal, insular, cingulate, and
temporoparietal areas, as well as an increased GM volume in the basal ganglia area in
chronic cocaine users compared to controls. A recent inquiry was conducted to explore
the differences in diffusion tensor imaging (DTI) metrics between those who suffer from
chronic cocaine use and those who are classified as healthy controls [19]. The findings
revealed that chronic cocaine users displayed significantly reduced signals of fractional
anisotropy (FA) and axial diffusivity (AD) in several regions, such as the right inferior,
splenium of the corpus callosum, body, anterior, posterior, and superior corona radiata
regions, in contrast to the healthy control cohort [19]. Compared to non-users, cocaine users
have exhibited a reduction in cortical thickness in the lateral frontal regions and a decrease
in cortical surface area in the anterior cingulate cortex [20]. Another study [16] stated that
cocaine abuse is associated with a significant decrease in FA signals in the inferior frontal

https://www.unodc.org/unodc/data-and-analysis/wdr2021.html
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white matter, as well as trends towards reduced GM and white matter (WM) volumes in
the same brain area.

Despite these findings, we still know very little about the long-term effects of cocaine
on the anatomy of the brain and its mechanisms. Anatomical magnetic resonance imaging
(MRI) investigations, along with advanced MRI analysis techniques, could enhance our
understanding of the impact of CUD on brain structure and the pathophysiology of CUD.
This could lead to better treatment approaches. In addition, combining neuroimaging
methods with machine learning algorithms has successfully offered adequate techniques
for assessing brain health [21]. One of these techniques is brain age estimation, or the “brain
age” biomarker, which provides informative information about the rate of brain aging
and global brain health, not only among healthy subjects but also among patients with
different neurological and non-neurological disorders [22]. It has been demonstrated that
structural brain abnormalities are associated with faster brain aging in various neurological
disorders, while certain practices such as meditation can significantly slow down this
process [22]. To date, the brain age estimation paradigm has been widely used to assess the
impact of different neurological diseases—e.g., Alzheimer’s disease [23–25], epilepsy [26],
Parkinson’s disease [27,28] and schizophrenia [29,30]—on brain health status.

In this work, we aimed first to explore and validate the effects of CUD on brain
volume and microstructure using advanced brain imaging techniques. To this end, we
used whole-brain voxel-based morphometry (VBM) and deformation-based morphometry
(DBM) analyses to identify GM/WM and macroscopic anatomical changes in a group of
CUD patients (n = 74) competed to age- and sex-matched healthy controls (HCs) (n = 62),
respectively. At the second level, we used the brain age estimation paradigm to quantify the
impact of cocaine usage on global brain health and the degree of brain aging in individuals
with CUD. In addition, another goal of this study was to investigate the brain morphological
changes associated with brain-PAD (i.e., the brain-predicted age minus the actual age) in
CUD and matched HCs. Based on the relevant literature, we hypothesized that cocaine
consumption has a significant negative impact on brain structure, and individuals with
CUD experience accelerated brain aging compared to their matched healthy controls.

2. Materials and Methods
2.1. Participants and MRI Acquisition

We recruited 74 CUD participants and 64 HCs with available anatomical MRI scans
from the SUDMEX CONN dataset, the Mexican MRI dataset of patients with CUD. Two
HCs were excluded from this study due to missing age and sex data. The two groups were
matched in terms of age, sex, and handedness. In the CUD group, the utilization rate was
a minimum of three times a week, with a maximum of 60 consecutive days of abstention
within the previous year. The CUD participants had not consumed any drugs before or on
the day of the study and they had not partaken in the consumption of any drugs during
the time of acquisition. More information about the characteristics of the individuals who
participated in this study is available in [31].

Anatomical MRI scans were obtained from a 3T scanner (3D FFE SENSE sequence, rep-
etition time = 7 ms, echo time = 3.5 ms, voxel size of 1 mm × 1 mm × 1 mm, flip angle = 10◦,
matrix = 24 cm × 24 cm, field of view = 24 cm × 24 cm, number of slices = 180, gap = 0,
and scan time = 3.19 min) manufactured by Philips (Philips Healthcare, Best, Netherlands
& Boston, MA, USA). The MRI scans of five participants were acquired with a voxel size
of 0.75 mm × 0.75 mm × 1 mm. More information about the SUDMEX CONN dataset is
provided in [31] and OpenNeuro (https://openneuro.org/datasets/ds003346/, accessed
on 10 December 2022). Table 1 summarizes the demographics and characteristics of patients
with CUD and their respective HCs used in this study.

https://openneuro.org/datasets/ds003346/
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Table 1. The demographics of HC and CUD participants used in this study.

HC CUD p

Number 62, 83% male 74, 88% male
Age, years 30.60 ± 8.26 30.99 ± 7.25 0.77

Education, years 12.73 ± 3.34 11.26 ± 3.17 0.01
Years of consumption n.a 10.07 ± 6.79 a n.a

Cocaine age onset n.a 20.91 ± 5.59 a n.a
Weekly dose n.a 2.97 ± 1.21 b n.a

HC, healthy control; CUD, cocaine use disorder; p, t-test between HC and CUD; n.a, not available. a Data missing
in 4 participants, b Data missing in 5 participants.

2.2. MRI Preprocessing

The anatomical MRI scans were processed using the CAT12 toolbox (http://www.
neuro.uni-jena.de/cat/, accessed on 15 December 2022), which is an extension of the
Statistical Parametric Mapping (SPM12) software package (https://www.fil.ion.ucl.ac.
uk/spm/software/spm12/, accessed on 15 December 2022). All anatomical MRI scans
were preprocessed using the following steps: bias correction, MRI segmentation into
GM, WM, and cerebrospinal fluid (CSF) images, DARTEL normalization to MNI space
(voxel size = 1.5 mm × 1.5 mm × 1.5 mm), and modulation. We also generated the Jaco-
bian determinant (JD) images. Besides the visual evaluation, the quality of the images
was evaluated using the “Check Homogeneity” feature within the CAT12 toolbox. This
function was developed to detect MRI images that may contain artifacts or other forms
of variability in voxel intensity values, which could potentially compromise the accuracy
and consistency of subsequent analyses. All the generated images were smoothed with
an 8 mm full-width-half-maximum Gaussian smoothing kernel. Total intracranial volume
(TIV) was also computed by CAT12. The GM and WM density images were used for VBM
analysis, and the JD images were used for DBM analysis.

2.3. Brain Age Calculation

To build our brain age estimation model, we used anatomical MRI scans of
876 cognitively healthy subjects obtained from the Open Access Series of Imaging Stud-
ies (OASIS) (https://www.oasis-brains.org/, accessed on 10 December 2022) and the IXI (http:
//brain-development.org/ixi-dataset/, accessed on 10 December 2022) dataset. We randomly
divided these data into training (90% of the data, n = 789, mean age = 47.61± 19.47 years)
and validation sets (10% of the data, n = 87, mean age = 46.16 ± 19.75 years). For the
prediction of brain age, we utilized the smoothed images of GM, WM, and CSF that were
resampled to an isotropic spatial resolution of 8 mm as features. In addition to brain
features, sex, TIV, scanner vendor, and field strength were also considered in the prediction
model. To predict brain age, we used a support vector regression (SVR) algorithm, as it
has been widely used in neuroimaging-driven studies for estimating brain age [32]. The
SVR algorithm was executed through the utilization of MATLAB software, specifically
the “fitrsvm” function with a linear kernel and automatic KernelScale. A validated bias
adjustment technique, as described in [33], was also applied to the model to compute
the bias-free brain age values. The prediction accuracy in the training and hold-out sets
was quantified based on the mean absolute error (MAE) and the coefficient of determi-
nation (R2) between the model-estimated age and the chronological age. Of note, the
accuracy of the prediction in the training set was evaluated through the implementation of
a 10-fold cross-validation approach. We computed the brain-PAD (i.e., chronological age
subtracted from model-estimated age) in each group based on the mean and 95% confidence
interval (CI).

2.4. Statistical Analysis

After preprocessing the MRI data, the GM, WM, and JD images underwent inde-
pendent t-test analysis in SPM12 to identify morphological and anatomical differences

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.oasis-brains.org/
http://brain-development.org/ixi-dataset/
http://brain-development.org/ixi-dataset/
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between the HC and CUD groups. We adjusted the peak-level p-value thresholds at <0.001
(uncorrected) and considered the clusters with q < 0.05 (cluster-level FDR-corrected) as
significant. A voxel-based analysis of the entire brain was performed in order to identify
regional changes in the GM, WM, and JD images.

Sex, the subject’s age, and TIV were considered as covariates in our VBM analysis,
whereas sex and the subject’s age were taken into account in the DBM analysis. An
independent student t-test and Cohen’s d were used to compute the mean difference and
effect size between HC and CUD groups in terms of brain-PAD, respectively. The statistical
analyses were conducted in MATLAB with a significant level of p < 0.05. In addition, we
used multiple regression analysis in SPM12 with a family-wise error (FWE) threshold of
p < 0.05 to investigate the alterations in GM and WM associated with brain-PAD in HC and
CUD groups, respectively. In the regression analysis, the subject’s age, sex, and TIV were
considered in the matrix design and the extent threshold was set at 50 voxels.

3. Results
3.1. VBM and DBM Analysis

Compared with the HCs, the CUD patients showed a significant GM reduction in the
temporal lobe, frontal lobe, insula, middle frontal gyrus, superior frontal gyrus, rectal gyrus
and limbic lobe regions. Figure 1 and Table 2 show substantial GM atrophies detected by
our whole-brain VBM analysis in the CUD patients versus HCs. The opposite contrast
showed no significant GM swelling in the CUD patients when compared to the HCs. In the
CUD group compared with the HCs or in the reverse contrast, the VBM and DBM analyses
showed no significant alterations in WM and deep brain structures, respectively.
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Figure 1. Comparison of gray matter volume by VBM among 74 CUD patients and 62 HCs. Significant
gray matter atrophy was observed in the temporal lobe, frontal lobe, insula, middle frontal gyrus,
superior frontal gyrus, rectal gyrus, and limbic lobe regions in CUD patients compared to age- and
sex-matched HCs. Substantial alterations are displayed as colored brain areas. The T-map was
generated based on FDR-uncorrected at p < 0.001 with an extent threshold of k > 900. The color bar
represents the t-test between the two groups. No gray matter swelling was detected in any region.
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Table 2. Clusters of gray matter atrophies detected by the VBM analysis using SPM12 software (74 CUD patients vs. 62 matched HCs).

Cluster Region BA Cluster Size
(No. of Voxels) q (FDR) Hemisphere

MNI
Coordinates

(x, y, z)

T Value
(Peak Voxel)

1
Temporal Lobe/Insula/Superior Temporal

Gyrus/Superior temporal gyrus/Temporal pole 13/22/38 1579 0.005
L −45, 4, −3 5.58
L −44, −10, −8 4.14
L −44, 12, −16 3.66

2
Frontal_Mid_2/Middle Frontal Gyrus/Superior

Frontal Gyrus 10/11 2558 0.001
R 45, 45, 4 4.58
R 15, 62, −4 4.59
R 30, 66, 0 4.45

3
Temporal Lobe/Temporal_Mid/Middle Temporal

Gyrus/Superior Temporal Gyrus 21/22 1726 0.005
R 66, −34, 0 4.41
R 60, −39, −4 4.41
R 60, −27, −2 4.06

4
Frontal Lobe/Middle Frontal

Gyrus/Frontal_Mid_2/Superior Frontal Gyrus 10/11 986 0.028
L −36, 51, −9 4.28
L −27, 51, −9 4.23
L −30, 63, −6 4.20

5
Frontal Lobe/Medial Frontal Gyrus/Rectal

Gyrus/Limbic lobe 11/25 971 0.028
L 0, 38, −27 4.26
L −2, 27, −15 4.02

BA = Brodmann area; R = right hemisphere; L = heft hemisphere; MNI = Montreal Neurological Institute; FDR = false discovery rate.
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3.2. Brain Age Values

Our brain age estimation model accurately predicted chronological age in the training
dataset through the 10-fold cross-validation strategy (MAE = 4.53 years, R2 = 0.91, with a
mean brain-PAD of 0.00 [95% CI −0.45, 0.45] years). The model produced a comparable
output on the validation set (MAE = 4.39 years, R2 = 0.92, with a mean brain-PAD of
−0.29 [95% CI −1.52, 0.93] years). This model was used to predict brain age in CUD
patients and matched HCs. The brain-PAD of CUD participants was significantly higher
than that of matched HCs (mean difference = 2.62 years, Cohen’s d = 0.54; t-test (134) = 3.16,
p = 0.002). The mean brain-PAD in the CUD group was 2.61 years (95% CI 1.53, 3.69), while
it was 0.001 years (95% CI −1.12, 1.26) in the matched HC group. There was an insignificant
difference between males and females in the CUD (t-test (72) = 1.10, p = 0.27) and matched
HC groups (t-test (60) = 0.98, p = 0.32) in terms of brain-PAD. Figure 2 shows the grouped
data plots displaying the brain-PAD values for CUD and HC participants.
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Figure 2. Box plots displaying the grouped brain-PAD values (years) in individuals with CUD
(n = 74) and matched HCs (n = 62). The reference line is represented by the black dashed line (y = 0).
The Student t-test was used to conduct the statistical test between groups.

3.3. Regional Relationship between GM and WM Alterations with Brain-PAD

In order to examine the alterations in GM and WM that are linked to brain-PAD, a
multiple regression analysis was conducted separately on both the HC and CUD groups.
Significant negative changes in GM were observed in the limbic lobe, subcallosal gyrus,
cingulate gyrus, and anterior cingulate regions of individuals with CUD in association
with brain-PAD. No significant positive interaction effect was found between GM volumes
and brain-PAD in individuals with CUD. No significant WM changes were observed to
be associated with brain-PAD in CUD, but we observed slight negative WM changes in
the HC group. Additionally, no substantial interaction effects between GM volumes and
brain-PAD were observed in the HC group. The results of the multiple regression analysis
in both the CUD and matched HC groups are presented in Figure 3 and Table 3.
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Figure 3. The results of negative gray matter (GM) and white matter (WM) volumes alterations
associated with brain-PAD in CUD and HC groups, respectively. Substantial alterations are displayed
as colored brain areas. These maps were generated using multiple regression analysis in SPM12 with
a family-wise error (FWE) threshold of p < 0.05 and an extent threshold of K = 50. (A) GM in CUD
and (B) WM in HC.
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Table 3. Clusters of negative changes in gray matter (GM) and white matter (WM) associated with brain-PAD revealed in the CUD and matched HC groups,
respectively, through multiple regression analysis using SPM12 software.

Analysis Cluster Region BA Cluster Size
(No. of Voxels) p (PWE) Hemisphere MNI Coordinates

(x, y, z)
T Value

(Peak Voxel)

GM in CUD

1 Frontal Lobe/Limbic Lobe/Subcallosal
Gyrus/Parahippocampal Gyrus 34/47 327 0.000 L −24, 6, −15 6.79

2 Limbic Lobe/Cingulate Gyrus 24/32 150 0.001
R 8, −3, 45 6.06
R 4, 6, 46 5.69

3
Limbic Lobe/Cingulate Gyrus/Anterior

Cingulate 32/9 239 0.000
R 4, 28, 33 6.04
R 8, 18, 40 5.95

4
Frontal Lobe/Middle Frontal Gyrus/Limbic

Lobe/Cingulate Gyrus 6/8/32 253 0.000
L −2, 32, 40 6.02
L −10, 38, 40 5.70
L −12, 26, 46 5.57

WM in HC 1 Frontal Lobe/Subgyral - 57 0.007 L 42, 24, 18 5.95

BA = Brodmann area; R = right hemisphere; L = heft hemisphere; MNI = Montreal Neurological Institute; FDR = false discovery rate.
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4. Discussion

The objective of this study was to assess the impact of cocaine on brain structure and
global brain health. At the first level, we performed VBM and DBM analyses to identify the
brain changes in CUD groups in comparison to sex- and age-matched HCs. Of note, the
VBM technique measures changes in the volume and density of GM and WM in different
brain areas, whereas DBM provides information about changes in the physical shape and
deformation of brain structures. When we compared the GM differences between CUD
patients and healthy controls, we observed significant morphological changes in the CUD
group, including atrophy in several areas such as the temporal lobe, frontal lobe, insula, and
superior temporal gyrus (Table 2). These brain areas are mainly associated with processing
emotions, language, attention, higher cognitive functions (e.g., working memory), and
making decisions. These findings are in agreement with other clinical studies that have
reported impairments in emotional recognition [34], language proceeding and cognitive
functions (e.g., verbal learning/memory attention, and working memory) in individuals
with CUD [35]. The results of our investigation regarding the regions of GM atrophy in
CUD are consistent with previous research that has identified significant GM atrophy in
cocaine users, particularly in the insula, anterior cingulate cortex, orbitofrontal cortex, and
superior temporal cortex regions [36]. Although previous research has shown that chronic
cocaine users have an increase in gray matter volume in the basal ganglia region [17], our
VBM analysis did not reveal any significant GM enlargement in CUD patients compared
to healthy controls. Several explanations are possible for this ambiguity: sample size, the
characteristics of patients with CUD, and pre-processing software. For example, it has
been shown that even two versions of a processing program can lead to dissimilar results,
ultimately influencing the interpretation of findings [37]. Interestingly, the VBM analysis
showed no significant alterations in WM in the CUD group compared to the HCs, or in
the reverse comparison. This finding could imply that cocaine has a negligible effect on
the WM area, which is primarily composed of long-range myelinated axons. Furthermore,
DBM analysis did not reveal any significant differences in deep brain structures between
the CUD group and the HCs. Of note, DBM is an advanced MRI analysis approach that
detects brain atrophy in subcortical regions more sensitively than VBM. These findings
would imply that cocaine has a deleterious impact on GM, which consists of neural cell
bodies, axon terminals, dendrites, and all nerve synapses. It is important to note that
GM loss is associated with a number of aging symptoms, such as memory issues and
other deteriorating cognitive capacities. These results are in line with the clinical signs of
memory impairment in the CUD The results are in agreement with the clinical symptoms
of memory deterioration in individuals suffering from CUD as documented in earlier
investigations [4–6].

A secondary goal was to assess whether cocaine could accelerate brain aging. To this
end, we used the brain age metric that has been widely used to quantify the amount of
deceleration or acceleration of brain aging [32]. Brain age estimation is a technique that
utilizes supervised machine learning algorithms to analyze brain scans and determine
the biological age of an individual’s brain based on their brain features. This technique
involves compressing the whole-brain information into a single numerical value, known as
the brain-PAD, which represents the difference between an individual’s predicted brain
age and their chronological age. A negative brain-PAD score suggests a younger-looking
brain, which is advantageous, while a positive score may indicate a divergence between
predicted and chronological age, potentially indicating an increased risk of age-related
cognitive decline or disease. Brain age estimation has proven useful in detecting early
signs of neurodegenerative diseases, assessing overall brain health and aging, predicting
cognitive decline, and identifying the impact of lifestyle factors such as diet, exercise,
mental health, and stress on brain aging [21]. Further information about the brain age
estimation technique and its potential application in clinical settings can be found in [21,22].

At the group level, we found that patients with CUD had a positive brain-PAD that
was 2.62 years greater than that of matched HCs (Cohen’s d = 0.54; t-test (134) = 3.16,
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p = 0.002). Note that a positive brain-PAD value indicates an older-appearing brain [22].
In other words, CUD patients were predicted to have brains that were approximately
2.5 years older than their chronological age based on the brain age model. Consequently,
these findings support our hypothesis that individuals with CUD experience considerably
faster brain aging. A mean brain-PAD of +2.5 years in CUD patients is similar to that of
some neurological diseases, such as Parkinson’s disease (+2.5 years) [27], schizophrenia
(+2.56 years) [38], major depressive disorder (+2.78 years) [39], and anxiety (+2.91 years) [39].
Interestingly, we found no significant difference between males and females in the CUD
group in terms of brain age values (t-test (72) = 1.10, p = 0.27), suggesting that both sexes
experience the same level of brain deterioration due to CUD. In this study, we employed a
standard SVR algorithm for predicting brain age values, as this approach is commonly used
in neuroimaging studies for estimating brain age [32]. However, it is crucial to acknowledge
that several factors, such as the choice of prediction algorithm, image preprocessing, MRI
protocols, and bias adjustments, can influence brain age values and affect the interpretation
of the results.

Furthermore, we conducted multiple regression analyses to reveal the regional changes
in GM and WM associated with brain-PAD (Table 3). The regression analysis revealed a
negative association between brain-PAD and GM in the limbic lobe, which is associated
with cognitive and emotional functions. This finding is consistent with prior research that
has identified a correlation between cocaine use and cognitive abilities [6]. In the CUD
group, we also observed a negative association between brain-PAD and GM changes in the
subcallosal gyrus, that is involved in processing emotions, behavior regulation, depression,
and anhedonia (i.e., reduced motivation or interest in activities). This finding is in line
with previous studies that investigated depression [40] and anhedonia [41] among cocaine
users. Moreover, positive brain-PAD scores in CUD were associated with a decrease in
GM in the cingulate gyrus area, which is important in emotional processing and cognition.
Damage to the cingulate gyrus might impair the ability to respond to some stimuli, leading
to aggressive behavior, decreased emotional expressiveness, or shyness. Indeed, damage to
the cingulate gyrus has been linked with increased aggression and impulsivity, as well as
decreased empathy and social awareness [42]. These changes may result from an inability
to regulate emotional responses or to effectively interpret social cues, which can lead to
difficulties in social interactions. Thus, damage to the cingulate gyrus can have significant
negative impacts on a person’s emotional and behavioral functioning, underscoring the
significance of this brain region in the regulation and processing of emotions [43].

The identification of brain regions that are linked to CUD can significantly contribute
to our comprehension of the impact of cocaine on the brain’s mechanisms. By investigating
the functional role of these brain regions in the disease progression, as well as the molecular
and cellular mechanisms disrupted in these regions, we may gain insight into how CUD
develops. This knowledge can also help determine the specific risks, such as cognitive
decline, depression, and anxiety, that patients with CUD are exposed to. Additionally,
it can aid in the development of innovative treatments, including repetitive transcranial
magnetic stimulation (rTMS) and high-definition transcranial direct current stimulation
(HD-tDCS) therapies [44]. Of note, identifying the most accurate stimulation target regions
is a challenging and complex task in rTMS and HD-tDCS therapies. To the best of our
knowledge, this study is the first to quantify the effects of cocaine use on global brain health
in terms of brain age metric.

There are some limitations to the current study that should be taken into account. One
limitation of our study might be the gender disparity in the subject groups, with males
making up the majority of the CUD group. Although we did not observe a statistically
significant difference between males and females in the CUD group in terms of brain age
values, further research involving an equal representation of both genders is required to
confirm this finding. The sample size used in this study for brain age analysis was limited,
consisting of only 74 CUD participants and 64 healthy controls. To gain further insight into
the effects of cocaine on brain structure, larger sample sizes should be utilized in future
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research. Additionally, it is important to acknowledge that this study utilized a specific
dataset of CUD patients and HCs from Mexico [31]. The race or ethnicity of individuals
who use cocaine may have an impact on their behavioral tendencies, and future studies
should aim to investigate the effects of cocaine on brain structure in different racial and
ethnic groups.

The CUD group in this study was composed of young patients with a mean age of
30.99 ± 7.25 years. Determining the impact of aging on brain health among older CUD
patients is important to investigate in future studies. We acknowledge that the use of a
specific imaging protocol and MRI scanner may limit the generalizability of our findings
to other imaging protocols or scanners. Therefore, it is crucial to conduct further studies
with larger sample sizes obtained from different MRI protocols to validate our results.
Moreover, as statistical significance can occasionally be impacted by a number of variables,
we should be cautious when interpreting the significance of the results. It is documented
that individuals with obesity have older brains, indicating lower brain health, which
is likely owing to GM and WM atrophy caused by obesity. However, obesity-related
impairments in brain health may be reversed by substantial weight loss [45]. In this study,
we demonstrated that cocaine has a negative impact on brain structure, particularly the
cortex area. However, it is unclear whether these brain injuries due to cocaine consumption
are reversible, for example, by quitting cocaine use and adopting a healthy diet, stress
management, and exercise. Further study is required to understand the short- and long-
term effects of cocaine therapy on brain structure. We assessed the influence of cocaine
on brain structure in this cross-sectional study. Longitudinal investigations are needed to
determine the course of GM atrophy in CUD over time. Furthermore, additional research
should be conducted to investigate the impact of cocaine on functional brain deficits, such
as functional connectivity. In particular, investigating functional connectivity through
resting-state fMRI data is essential to comprehending the arrangement and communication
of neural networks in the brain, as well as the functional interactions between different
brain regions [46].

5. Conclusions

In this study, we investigated the impact of cocaine on brain structure. We explored
the GM and WM volume abnormalities in individuals with CUD compared with age- and
sex-matched HCs at the voxel level. We also demonstrated that CUD is associated with
accelerated brain aging of approximately +2.5 years, which can result in a wide range
of cognitive impairments (such as memory loss and reduced attention span), behavioral
issues, and emotional impairments. We identified the brain regions that are associated
with brain-PAD in CUD. The identification of the particular brain regions affected by CUD
could greatly enhance our comprehension of the disorder’s effects on brain structure and
potentially lead to the development of novel therapeutic approaches for individuals with
this condition.
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