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Simple Summary: The question of emerging pollutants, among which nanoplastics occupy a pre-
dominant position, requires further investigation regarding their interaction with different biological
systems, including reproductive cells. In the present evaluation, deleterious effects on sperm cells
have been correlated with polystyrene nanoparticle size. Indeed, the decline of fundamental param-
eters such as motility, acrosome and DNA integrity, and ROS physiological production, has been
associated with the action of nanoparticles with a diameter of 50 nm, compared to particles with larger
size (100 nm). In addition, the expression of protective biomarkers, such as HSP70s, has been shown
to contribute to damage recovery. The results warn about persistent and chronic contamination of
plastics with a focus on infertility to elucidate the metabolic and biochemical changes of sperm cells
in the presence of stressful xenobiotics.

Abstract: The ubiquitous spread of Polystyrene nanoplastics (PS-NPs) has rendered chronic human
exposure an unavoidable phenomenon. The biodistribution of such particles leads to bioaccumulation
in target organs including the testis, the site of sperm maturation. The purpose of this research has
been to estimate the impact of PS-NPs (50 and 100 nm) on the metabolism of mature spermatozoa.
The analysis of the semen parameters has revealed a higher toxicity of the smaller sized PS-NPs,
which have negatively affected major organelles, leading to increased acrosomal damage, oxidative
stress with the production of ROS, DNA fragmentation, and decreased mitochondrial activity. PS-NPs
of 100 nm, on the other hand, have mainly affected the acrosome and induced a general state of stress.
An attempt has also been made to highlight possible protective mechanisms such as the expression
of HSP70s and their correlation among various parameters. The results have evinced a marked
production of HSP70s in the samples exposed to the smaller PS-NPs, negatively correlated with the
worsening in oxidative stress, DNA fragmentation, and mitochondrial anomalies. In conclusion, our
results have confirmed the toxicity of PS-NPs on human spermatozoa but have also demonstrated
the presence of mechanisms capable of counteracting at least in part these injuries.

Keywords: human spermatozoa; polystyrene; nanoplastics; oxidative stress; DNA fragmentation;
protective responses

1. Introduction

The spermatozoon is the highly specialized and differentiated cell whose peculiarities
are decisive to complete the fertilization process. Its metabolism is finely regulated, through
sophisticated adaptations, to maintain intact all the essential components of the cell for
oocyte encounter and zygote formation [1,2]. For instance, its peculiar shape ensures proper
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progressive movement, the presence of the acrosomal vesicle guarantees the opening of a
passage in the egg cell envelopes, the highly condensed DNA protects the genetic heritage,
and the plastic membrane can withstand the fluidity changes required during the passage
and transport in the epididymis and subsequent capacitation in the female tract. These
are only some of the physiological properties of a healthy spermatozoon, but many others
can be mentioned, such as the maintenance of proper energy intake by the mitochondrial
helical sheath or proper activation of the signaling pathways [3]. Thus, the appropriate
cooperation of the various organelles and the correct consequentiality of events are required
to obtain conception. It is well known that any dysfunction at the structural, biochemical,
molecular, or metabolic level, because of disease, infection, or contact with contaminants,
may affect reproductive success and cause infertility. Furthermore, the proven sensitivity to
pollutants makes the sperm cell a good indicator of reproductive risks related to xenobiotic
pollution, which is currently dominated by the massive spread of PS-NPs [4].

Since 1930, global annual production of Polystyrene (PS) has exponentially grown
due to its low affordability, ease of fabrication, versatility, thermal efficiency, and moisture
resistance, so it finds multiple applications in a variety of fields, especially for the synthesis
of industrial products (creams, toys, food packaging) [5]. It is estimated that 21 million
tons of PS, which corresponds to 7.1% of all plastic present on the globe, are manufac-
tured annually [6]. Over the decades, scientists have experimented with supplementing
substances to ensure the resistance of PS products. Longevity is the primary cause of its
persistence in several environmental matrices. In fact, PS is a durable thermoplastic that
has a very low degradation rate in the natural environment, so it remains as a solid waste
in nature for a long time. Despite this, the slow degradation has led to the diffusion of
micro- and nanoscale fragments capable of penetrating into organisms. As has been widely
demonstrated, PS-NPs are absorbed and distributed in the tissues of various animals,
including mammals (cattle, sheep, etc.) [7–9]. Recently, these mechanisms have also been
observed in humans. In a study conducted by Leslie et al. (2022), PS-NPs have been
found at the level of the bloodstream. Thus, even in humans, as already demonstrated in
other mammals, NPs could move from the bloodstream into the target organs. [10]. For
example, traces of NPs have been reported in mice at the level of the liver, kidney, and
intestine [11,12]. It is also known that the reproductive system is one of the most vulnerable
to the presence of pollutants [13]. Jin et al. (2021) have, in fact, demonstrated how the testis
is a target for nanoplastics that can reach the lumen of the seminiferous tubules through
disruptive phenomena of the hematotesticular barrier, directly impairing the microstructure
of spermatozoa [14].

In this sense, the aim of the present study has been to evaluate, following 30 min of ex-
posure, the effects of polystyrene nanospheres with different diameters (50 and 100 nm) on
the metabolism of human spermatozoa, analyzing several semen parameters and possible
cytoprotective strategies in response to the injury.

2. Materials and Methods
2.1. Materials

Polystyrene nanospheres were purchased from Sigma-Aldrich (St. Louis, MO, USA),
along with the other solutions necessary for the conduct of this experiment (PBS, 2′,7′-
dichlorofluorescein-diacetate, DMSO, BSA, DAB). Human sperm culture and washing
medium were obtained from FertilPro (Industriepark Noord, Beernem, Belgium). Eosin
Y and Methylene blue and Formaldehyde were purchased from Bio-Optica (Milan, Italy).
Peanut Agglutin-Fluorescein solution was obtained from Vector Laboratories (Newark,
CA, USA). Fluoromount G with DAPI and Hoechst 33342 were purchased from Invitrogen
(Waltham, MA, USA). A Halosperm Kit was obtained from Halotech (Madrid, Spain).
HSP70 primary antibody and goat Anti-rabbit IgG pre-adsorbed Rhodamine secondary
antibody were obtained from GeneTex (Irvine, CA, USA). Triton X-100 was purchased from
ChemSolute (Renningen, Germany). Finally, a MiOXYS system was obtained from Medical
Biological Technologies (MBT, Pretoria, South Africa).
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2.2. Preparation of Solutions

Amino-modified polystyrene nanospheres with diameters of 50 and 100 nm were
purchased from Sigma-Aldrich. These emit, upon excitation, a blue (excitation/emission:
358/410 nm) and orange/green (excitation/emission: 481/644 nm) fluorescence, respec-
tively.

From the stock solution, consisting of PS-NPs in aqueous solution at a concentration
of 1.06–1.07 g/mL, the following concentrations were prepared in human sperm culture
medium (FertilPro): 0.1 µg/mL, 0.5 µg/mL, 1 µg/mL. To avoid the formation of aggre-
gates, the solutions were sonicated for 2 min in a sonicator (Sonoplus). Given the lack of
studies on human spermatozoa in the literature, these concentrations have been selected
in accordance with previous studies conducted in mice [15–17]. Based on them, NPs at
these concentrations cross the blood–testicular barrier and interact directly with sperma-
tozoa. The selected concentrations could be higher than the real concentrations to which
human spermatozoa might be exposed, but the aim of the experiment was to identify
effective concentrations.

2.3. Collection of Human Spermatozoa

Semen samples were received at the laboratory of Biotechnology of Reproduction
—Department of Biological, Geological and Environmental Sciences, University of Catania,
Italy, from the PMA (Medically Assisted Procreation) Center of Medi. San s.r.l.—Clinica del
Mediterraneo, Ragusa, Italy.

Semen samples (n = 8) were collected, in the year 2023, and delivered by the patients
according to the standard protocols set by the WHO Manual for the Examination and
Analysis of Seminal Fluid (WHO 2021) [18]. Subsequently, careful analysis by spermiogram
assessed, both macroscopically (volume, pH, appearance, fluidization, and viscosity of
seminal fluid) and microscopically (number, viability, motility, morphology of human
spermatozoa), the suitability of these samples for experimental purposes. Normospermic
samples with more than 70% motile spermatozoa were selected. Finally, semen samples
were cryo-frozen in liquid nitrogen at −196 ◦C and thawed as needed. The semen charac-
teristics of normospermic individuals whose samples were involved in the present study
are shown in Table 1.

Table 1. Parameters fresh semen.

Parameters Mean ± SD

Age (years) 31 ± 8.39
Volume (mL) 3.1 ± 0.7

Concentration (106 sperm/mL) 121.83 ± 48.13
Progressive motility (%) 60 ± 9.63

Non progressive motility (%) 7.66 ± 3.26
Immobility (%) 32.83 ± 9.41

Normal Morphology (%) 8.16 ± 3.06
Data are showed as mean ± standard deviation (SD).

2.4. Informed Consent

Patients of the PMA Center who donated their sperm for research purposes signed the
informed consent and anonymity was guaranteed. The study was conducted according to
the criteria of the Declaration of Helsinki (2001) [19]. The PMA Center-Mediterranean Clinic
(Ragusa, Italy) is authorized for cell donation, supply, testing, processing, preservation,
storage, and distribution by the National Transplant Center (NTC) and the Superior Institute
of Health under ministerial code 190002. The patient authorizations are included in the
Supplementary Materials.
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2.5. Thawing and Exposure

The thawing of samples was executed following the standardized protocol of the
WHO Manual (WHO 2021) [14]. Samples were placed for 10 min at room temperature
and for 10 min at 37 ◦C with 5% CO2 in a water bath. To verify that thawing had taken
place correctly and that the spermatozoa had regained the ability to move, 10 µL of sample
was placed in a Neubauer counting chamber and observed under a light microscope at
40× magnification. Furthermore, because cryopreservation and thawing result in the loss
of sperm viability from 50.6% to 30.3% [18], samples with ≥40% of viability were used in
the experiment. To separate motile spermatozoa from immobile spermatozoa, the direct
swim-up procedure, without centrifugation, was carried out by placing the tubes at a 45◦

inclination for 1 h in a 37 ◦C incubator with 5% CO2. Next, the samples were aliquoted,
drawing the surface part of the sample corresponding to the fraction of spermatozoa with
high motility, into four Eppendorf tubes: three for exposure for both nanoplastics and one
for control (CTRL or unexposed). At this point, to separate the semen from the plasma, a
cleavage was conducted, adding washing medium (FertilPro) in a 1:2 ratio, and centrifuging
for 10 min at 2000 rpm.

After discarding the supernatant, the pellet was resuspended on Eppendorf tubes: in
the case of the six exposed samples, with 450 µL of culture medium containing the PS-NPs
at different concentrations (0.1–0.5–1 µg/mL) and with different diameter; in the case of
the control, with 450 µL of only culture medium. The toxicity test involved the exposure of
the gametes for 30 min at 37 ◦C with 5% CO2 to assess the different basic parameters of the
semen. For each test, at least 200 (~400) spermatozoa were counted in 5 different random
fields, and 2 replicates were performed.

2.6. Evaluation of Motility

Measurement of the different parameters describing sperm movement was carried out
by video analysis in the ImageJ program, in which the CASA plugin, devised by Wilson-
Leedy and Ingermann (2007) [20] for the analysis of Zebrafish sperm motility, was installed.
The CASA system evaluated the parameters, as shown in Table 2.

Table 2. Parameters measured by CASA plugin.

CASA Parameters

Percent motility Percent of motile spermatozoa.

Velocity Curvilinear (VCL) Total distance traveled per second.

Velocity average path (VAP) Point to point velocity on a path constructed using a roaming average. The number of points in
the roaming average is 1/6th of the frame rate of video used.

Velocity straight line (VSL) Velocity measured using the first point and the average path and the point reached that is
furthest from this origin during the measured time period.

Linearity (LIN) VSL/VAP, describes path curvature.

Wobble (WOB) VAP/VCL, describes side-to-side movement of the sperm head.

Beat cross frequency (BCF) This value is determined in the plugin by detecting the frequency at which VCL crosses VAP.

In the present experiment, following exposure of the samples to the PS-NPs, 10 µL
of sample was placed on a slide and covered with a 24 × 24 coverslip. The slides were
examined under a light microscope at 10× magnification after approximately 30 s to
allow for stabilization of the fluid within the chamber created by the placement of the
coverslip. Videos of 10 s each were recorded via a video camera (Nikon Y-TV55, Amsterdam,
Netherlands) connected to the microscope. After uploading the videos into ImageJ in .avi
format, the images were adjusted to mark the sperm heads in red on a white background.
The CASA plugin has also been adapted for motion analysis of other animal species,
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including mammals, such as stallions [21]. At this point, the CASA plugin was run,
entering the values shown in Table 3.

Table 3. Optimal values entered in the CASA plugin to correctly analyze the different movement
parameters of human spermatozoa.

Parameters

a. Minimum sperm size (pixel) 1
b. Maximum sperm size (pixel) 250

c. Minimum track length (frames) 20
d. Minimum sperm velocity between frames (pixel) 20

e. Minimum VSL for motile (µm/s) 3000
f. Minimum VAP for motile (µm/s) 20
g. Minimum VCL for motile (µm/s) 25

h. Low VAP speed (µm/s) 5
i. Maximum percentage of path with zero VAP 1
j. Maximum percentage of path with low VAP 25

k. Low VAP speed 2 (µm/s) 25
l. Low VCL speed (µm/s) 35

m. High WOB (percent VAP/VCL) 80
n. High LIN (percent VSL/VAP) 80

o. High WOB two (percent VAP/VCL) 50
p. High LIN two (percent VSL/VAP) 60

q. Frame Rate (frames per second) 59
r. Microns for 1000 pixel 1075

2.7. Evaluation of Plasma Membrane Integrity

Plasma membrane integrity was assessed by a colorimetric assay using Eosin Y (0.5%,
w/v, Bio-Optica) [22]. An amount of 10 µL of the sample was placed on the slide, to
which 10 µL of dye was added. The slide was covered by the coverslip and read under a
light microscope (Nikon Eclipse E-200, Amsterdam, Netherlands) at 40× magnification.
Spermatozoa with compromised membranes were stained pink as the dye penetrated
inside the damaged and dead cells, while viable spermatozoa were transparent.

2.8. Assessment of Acrosomal Vesicle Integrity

Acrosome status was analyzed following the protocol described by Lybaert et al. (2009),
with some modifications [23]. An amount of 10 µL of the sample was smeared onto a slide
and allowed to air dry. The sample was then fixed in methanol for 15 min at 37 ◦C. Following
3 washes in Phosphate Buffered Saline (PBS, Sigma-Aldrich), the slides were incubated
with a Peanut Agglutin-Fluorescein solution (PNA-FITC, Vector Laboratories Newark, CA,
USA) with a concentration of 10 µg/mL for 30 min at 37 ◦C in the dark. At the end of
incubation, slides were washed in PBS and counterstained and simultaneously mounted
with Fluoromount G with DAPI (Invitrogen, Waltham, MA, USA). The slides were read
under an epifluorescence microscope (Nikon Eclipse Ci, Amsterdam, Netherlands) at 40×
magnification. Spermatozoa with intact acrosome were FITC+ and showed intense green
fluorescence at the level of the acrosome, while spermatozoa with broken or lost acrosome
were FITC– or with fluorescence at the level of the middle region of the head.

2.9. Genomic Damage Analysis

Analysis of any DNA breaks was performed using a Halosperm Kit (Halotech, Madrid,
Spain). Briefly, the sample was diluted to 20 mil/mL in PBS. Next, 50 µL of the sample was
mixed with 100 µL of agar, previously dissolved for 5 min in a water bath at a temperature
of 95–100 ◦C. An amount of 8 µL of the mixture was placed in the center of an agarized
slide and covered with a coverslip of 22 × 22. The slide was transferred at 4 ◦C for 5 min
to allow the agar to solidify. After removal of the coverslip, the sample was incubated
with denaturing solution for 7 min and with lysis solution for 25 min. Next, the slide was
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incubated for 5 min in distilled water and then dehydrated by increasing alcohols (70%
and 100% for 2 min each). Finally, staining was carried out by incubation with Eosin Y
(Bio Optica, Milan, Italy) for 2 min, followed by Methylene blue (Bio Optica) for 2 min.
The presence of a halo around the head was a hallmark of intact DNA. In fact, in the
spermatozoa with fragmented DNA, the halo was absent.

2.10. MiOXYS (Male Infertility Oxidative System)

The MiOXYS is a system to assay the so-called static oxidation-reduction potential
(sORP: static Oxidation-Reduction Potential) depending on the quantity of oxidants and
antioxidants present in the sample tested. Following the supplier’s instructions, 30 µL
of sample was placed on a sensor, previously inserted into the instrument, which, after
approximately 2 min, provided a sORP value expressed in millivolt (mV). This value was
then normalized by dividing it with the sperm concentration (mV/106 sperm/mL). The
cutoff considered in this experiment was proposed by Agarwal et al. (2017) [24]. It is called
Youden’s Index and corresponds to 1.41 mV/106 sperm/mL. Values above the threshold
denote the presence of a general state of stress.

2.11. DCFH2-DA

ROS generation was monitored using of 2′,7′-dichlorofluorescein-diacetate (DCFH2-
DA) probe. This compound cross membranes and, inside the cell, is deacetylated by
intracellular esterases that reduce it to dichlorofluorescein (DCFH), a more hydrophilic
and nonfluorescent molecule. In the presence of ROS, DCFH is rapidly oxidized into the
fluorescent compound DCF. The stock solution of DCFH2-DA (130 µM) (Sigma-Aldrich) in
DMSO was stored in aliquots at −20 ◦C until tested. If necessary, aliquots were thawed and
diluted to a concentration of 13 µM in 150 µL of the sample. The samples were incubated for
30 min at 37 ◦C in the dark. Next, the spermatozoa were washed by adding PBS in a 1:1 ratio
and centrifuged at 2000 rpm for 10 min. The supernatant was discarded, and the pellet was
resuspended in 150 µL PBS. Cells were counterstained with 1 mM Hoechst 33342 (specific
for nuclei) for 1 min, washed quickly in PBS, and observed under an epifluorescence
microscope (Nikon Eclipse Ci). The acquisition of images was realized through “acquire
multichannel images” tool, selecting DAPI and FITC filters. Spermatozoa with oxidative
stress were FITC+/Hoechst+ (fluorescent in green and blue), while negative spermatozoa
were FITC−/Hoechst+ (fluorescent in blue). The acquired images were analyzed using the
software, which enabled the production of graphs of the fluorescence intensity emitted by
each spermatozoon.

2.12. Cytoprotective Marker: HSP70 Expression

To investigate the stressogenic state of the cells and the stimulation of HSP70s protein
expression following the exposure of human spermatozoa to PS-NPs, an immunohisto-
chemistry protocol (qualitative analysis) was performed: 0.5 × 106 spz/mL were fixed in
4% paraformaldehyde in PBS (1:1 ratio, v/v) for 15 min at room temperature. Next, the
samples were centrifuged at 2000 rpm for 5 min, and after discarding the supernatant, the
pellet was resuspended in PBS, twice. At this point, a drop of the sample was placed on a
slide, smeared, and allowed to air dry. The cells were first permeabilized with PBS-0.3%
Triton X-100 for 20 min and then covered with blocking solution consisting of PBS-3% BSA
for 30 min. The slides were incubated with polyclonal anti-HSP70 primary antibody (rabbit,
GeneTex, Irvine, CA, USA) diluted to 1:100 in PBS-3% BSA at 4 ◦C overnight. Following
repeated washes in PBS, the slides were covered with Goat Anti-rabbit IgG pre-adsorbed
Rhodamine (GeneTex) secondary antibody diluted to 1:100 in PBS-3% BSA for 1 h at room
temperature. Finally, after subsequent washes in PBS, the slides were counterstained and
simultaneously mounted with Fluoromount G with DAPI. To exclude possible autofluores-
cence of the samples, a negative control, in which the primary antibody was not added, was
performed. The slides were analyzed by an epifluorescence microscope with 40× magnifi-
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cation, and the multichannel (DAPI and TRICT filters) images obtained were analyzed by
software to evaluate the fluorescence intensity emanated for each individual spermatozoon.

2.13. Assessment of Mitochondrial Activity

3′-3′-Diaminobenzidine (DAB, Sigma-Aldrich) was applied to assess mitochondrial
activity and function based on the deposition of DAB after the oxidation by cytochrome C
oxidase. For this purpose, 100 µL of semen was incubated with 300 µL of 1 mg/mL solution
of DAB in PBS for 1 h at 37◦ in the dark. Next, 10 µL of the suspension was smeared
onto a slide, which was first allowed to air dry, and then fixed in 10% formaldehyde in
distilled water for 10 min. Finally, the slides were washed in distilled water, allowed to air
dry, and analyzed using a light microscope with 100× magnification under oil immersion.
Observations permitted the classification of spermatozoa into four classes based on the
staining of the intermediate segment:

• Class I: 100% of the intermediate segment stained.
• Class II: >50% of the intermediate segment stained.
• Class III: <50% of the intermediate segment colored.
• Class IV: uncolored intermediate segment.

2.14. Statistical Analysis

Past 4.0 Software was used to analyze the results and highlight potential statistically
significant differences between the exposed groups and the control. Specifically, a one-way
ANOVA test was performed, followed by a Tukey’s test. In addition, Pearson’s method was
adopted to define the correlation coefficient between different parameters and protective
response (expression of HSP70). Graphs were constructed using GraphPrism software.
The level of significance was set as <0.05, and the data were indicated with the symbol
* if significant (p < 0.05) and with the symbol ** if highly significant (p < 0.01). All data
are presented as mean percentage ± standard deviation, excluding the normalized sORP
values and the different characteristics of movement.

3. Results
3.1. Motility

As shown in Table S1, PS-NPs with a larger diameter have not induced changes in
the parameters describing the movement of spermatozoa. In contrast, in the case of the
50 nm PS-NPs, adverse effects are evident. Firstly, exposure has caused a reduction in the
percentage of mobile spermatozoa in samples subjected to 0.5 µg/mL and 1 µg/mL. For
the latter concentration, lower values in LIN and VCL and an upper value of WOB have
been noted. A decrease in the LIN value (linearity of the curvilinear path) and the VCL
value (distance travelled per second) indicates a reduction in the space travelled by the
exposed spermatozoa. In addition, an increase in WOB (spermatozoa head movement)
describes an intensification in head oscillation, a sign of difficulty of progression in space.

3.2. Membrane Integrity

The Eosin test differentiated spermatozoa with an intact membrane (viable and trans-
parent) from spermatozoa with an injured membrane (non-viable and pink), as observed in
Figure 1a. Figure 1b shows the trend of sperm with intact plasma membranes, following ex-
posure to both PS-NPs at increasing concentrations. The rates of the spermatozoa exposed
to the 100 nm PS-NPs were very similar to those of the control, while those of the cells
exposed to the 50 nm PS-NPs showed lower values, especially for the highest concentration
1 µg/mL (16.52 ± 0.03, * p = 0.015) (Table S2).

3.3. Acrosome Damage

The PNA-FITC test (Figures 2 and 3) revealed no significant variation in the samples
exposed at the lowest concentrations of both PS-NPs, while statistically significant values
have been obtained for the highest concentration tested (1 µg/mL) for 50 nm (64.54 ± 0.01;



Biology 2023, 12, 624 8 of 18

p = 0.016 *) and 100 nm (65.9 ± 0.02; p = 0.02 *) PS-NPs compared to the control group
(48.14 ± 0.03). All data are summarized in Table S2.
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the middle region of the head; (c) spermatozoa FITC−.

3.4. DNA Fragmentation

DNA fragmentation was assessed using a Halosperm Kit, which differentiated sperma-
tozoa with fragmented DNA (absence of halo) from gametes with intact DNA (presence of
halo) (Figure 4a,b). Statistical analysis showed no significant changes between the different
exposed groups and the CTRL, as can be seen in Figure 4c, regarding the PS-NPs with
higher diameter. On the contrary, an elevated rate of DNA fragmentation has been found
on the samples exposed to all concentrations of 50 nm PS-NPs −51.71 ± 0.02 (p < 0.001 **)
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for 0.1 µg/mL; 52.69 ± 0.01 (p < 0.001 **) for 0.5 µg/mL; 52.5 ± 0.02 (p < 0.001 **) for
1 µg/mL compared to the control group (36.64 ± 0.03) (Table S2).
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Figure 3. Mean percentage of spermatozoa with acrosome damage after exposure (30 min) to 50 and
100 nm PS-NPs with increasing concentrations. Approximately 400 spermatozoa were counted in five
different fields for each sample. In addition, two replicates were performed, in a total of 8 samples
and 3200 spermatozoa analyzed. Significant data have been found at the higher concentration of both
PS-NPs (* p < 0.05).
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Figure 4. Observation of a casual field of spermatozoa subjected to halo test to assess DNA fragmenta-
tion: (a) spermatozoon with intact DNA surrounded by a halo; (b) spermatozoon with fragmented
DNA without halo; (c) mean percentage of spermatozoa with fragmented DNA after exposure (30 min)
to 50 and 100 nm PS-NPs at increasing concentrations. Approximately 400 spermatozoa were counted
in five different fields for each sample. In addition, two replicates were performed, in a total of
8 samples and 3200 spermatozoa analyzed. Strong statistically differences (** p < 0.01) have been
found between samples exposed to all concentration of 50 nm PS-NPs compared to the control group.
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3.5. MiOXYS Analisys

MiOXYS was used to analyze the total balance of oxidant and antioxidant systems
present in the sperm. As shown in Figure 5, an increment in oxidative stress has been
observed for both PS-NPs, even though the worst result was obtained in the samples
exposed to the 50 nm PS-NPs at the highest concentration (1 µg/mL) (Table S2).
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Figure 5. Normalized sORP values of spermatozoa exposed to 50 and 100 nm PS-NPs at increasing
concentrations. Strong statistically differences (** p < 0.01) have been found between samples exposed
to all concentration of 100 nm PS-NPs and 1 µg/mL 50 nm PS-NPs compared to the control group.
Significant data (* p < 0.05) have been found at 0.1 µg/mL and o.5 µg/mL of 50 nm PS-NPs.

3.6. ROS Production

The general higher stress has been correlated with an overproduction of ROS in the
exposed samples. As shown in Figure 6a–c, through DCFH2-DA probe, spermatozoa have
been categorized into two groups: with overexpression of ROS (DCF+/Hoechst+) or with
absence of ROS (DCF−/Hoechst+). It can be seen from Figure 7a,b that the increase in ROS
has occurred in the samples exposed to both PS-NPs at all concentrations. Again, the most
significant alteration has been in the higher concentration of the smaller PS-NPs (Table S2).

3.7. HSP70s Expression

Qualitative immunohistochemistry analysis detected the synthesis of HSP70s proteins
only in the samples exposed to the smaller 50 nm PS-NPs, in which a highly significant
(p < 0.01 **) (Table S2) increase in their expression has been found, mainly at the level
of the neck, and a smaller portion of spermatozoa, throughout flagellum, as observed
from Figures 8a–d and 9. No positivity has been shown in the control samples and in all
samples exposed to the increasing concentrations of the 100 nm PS-NPs. From the Pearson
coefficients obtained, a negative correlation has emerged between the marked expression
of HSP70s and the reduction in DNA fragmentation (r = −0.968, r2 = 0.937, p =< 0.001 **),
oxidative stress (r = −0.965; r2 = 0.932, p =< 0.001 **), and mitochondrial dysfunction
(r = −0.982, r2 = 0.965, p =< 0.001 **), as shown in Figure 10.

3.8. Mitochondrial Activity

DAB was used to analyze the status and function of mitochondria (Figure 11). From
Figure 12a,b, following exposure to the 50 nm PS-NPs compared with the control, it
can be seen that the portion of sperm belonging to class I (with excellent mitochondrial
functionality) has diminished in all exposed samples, especially for the higher concentration,
and the percentage of sperm belonging to class IV (lack of functionality) has increased. On
the contrary, in the case of samples exposed to the PS-NPs with a larger diameter (100 nm),
no significant differences are evident (Table S3).
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Figure 6. Observation of a casual field of spermatozoa subjected to DCFH2-DA test to assess ROS pro-
duction: (a) observation of spermatozoa under epifluorescence microscope with 40× magnification,
using DAPI channel acquisition; (b) observation of spermatozoa under epifluorescence microscope
with 40× magnification, using FITC channel acquisition; (c) observation of spermatozoa under
epifluorescence microscope with 40× magnification, using multichannel acquisition. The symbol *
indicates a spermatozoon DCF+/Hoechst+, while # indicate a spermatozoon DCF−/Hoechst+.
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Figure 7. (a) Analysis of fluorescence intensity of each spermatozoon. Blue peaks indicate the intensity
of Hoechst 33342 that is specific for the nucleus, while green peaks show spermatozoa positive to the
DCFH2-DA probe; (b) mean percentage of spermatozoa positive of oxidative stress after the exposure
(30 min) to 50 and 100 nm PS-NPs increasing concentrations. Approximately 400 spermatozoa were
counted in five different fields for each sample. In addition, two replicates were performed, in a
total of 8 samples and 3200 spermatozoa analyzed. Significant data were obtained at the two higher
concentration (0.5 µg/mL and 1 µg/mL) for 50 nm PS-NPs (* p < 0.05).
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Figure 8. Results of immunohistochemistry protocol for the identification of HSP70 after the exposure
(30 min) to 50 and 100 nm PS-NPs at increasing concentrations: (a) control (CTRL) with a magnification
of a spermatozoon without red spots; (b) sample exposed to 100 nm PS-NPs with a magnification of
a spermatozoon without red spots; (c) sample exposed to 50 nm PS-NPs with a magnification of a
spermatozoon with red fluorescence diffused on flagellum; (d) negative control with a magnification
of a spermatozoon without red spots.
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Figure 9. Mean percentage of spermatozoa that expressed HSP70 after the exposure (30 min) to 50
and 100 nm PS-NPs at increasing concentrations. Approximately 400 spermatozoa were counted
in five different fields for each sample. In addition, two replicates were performed, in a total of
8 samples and 3200 spermatozoa analyzed. Strong statistically differences (** p < 0.01) have been
found between samples exposed to all concentration of 50 nm PS-NPs compared to the control group.
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Figure 10. Correlation analysis: (a) relation between HSP70 expression and DNA fragmentation;
(b) relation between HSP70 expression and oxidative stress; (c) relation between HSP70 expression
and mitochondrial disfunction.
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Figure 11. Observation of a casual field of spermatozoa subjected to DAB test to assess mitochondrial
activity (DAB): (a) spermatozoon of class I with 100% of intermediate segment colored; (b) spermato-
zoon of class II with >50% of intermediate segment colored; (c) spermatozoon of class III with <50%
of intermediate segment colored; (d) spermatozoon of class IV with no colored intermediate segment.
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Figure 12. (a) Mean percentage of mitochondrial activity of spermatozoa after exposure (30 min) to
50 nm PS-NPs at increasing concentrations. Strong statistically differences (** p < 0.01) have been
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found between samples and control groups; (b) Mean percentage of mitochondrial activity of sper-
matozoa after exposure (30 min) to 100 nm PS-NPs at increasing concentrations. Approximately
400 spermatozoa were counted in five different fields for each sample. In addition, two replicates
were performed, in a total of 8 samples and 3200 spermatozoa analyzed. No statistical differences
have been found between samples and control groups.

4. Discussion

Nanoplastics pollution has generated growing apprehension in the academic com-
munity, especially because the most recent and alarming findings have corroborated the
ability of nanoplastics to penetrate the human body and be absorbed and biodistributed
through the bloodstream to bioaccumulate in different organ. Because several studies on
mouse models have confirmed the sensibility of the testis to the influence of nanoplastics,
proposing and translating this result also for other mammals, including humans, in the
present study, solutions containing amino-modified PS-NPs at increasing concentrations
have been tested on human spermatozoa to assess, after 30 min of exposure, the fun-
damental parameters of the semen. Given the absence of quantification studies of the
exact concentrations accumulated in the human testis as a result of distribution by the
bloodstream, the concentrations tested could be higher than realistic. However, the goal
of the present experiment was to detect and quantify the potential impact of NPs on the
metabolism and structure of human sperm cells, identifying potential toxic concentrations.

4.1. Motility

In general, 50 nm PS-NPs exerted more negative effects than 100 nm PS-NPs, demon-
strating how in vitro toxicity is associated with the dimension of the particles. First, the
50 nm PS-NPs, in contrast to 100 nm PS-NPs, not only resulted in a reduction in the per-
centage of mobile spermatozoa but have also caused a decreased in the speed and in the
linearity of the pathway (LIN). Additionally, an increase in the lateral oscillations of the
spermatozoa head (WOB), as a consequence of the decline in VCL, has been observed.
Impaired motility has always been correlated with dysfunction, as also evidenced by our
results, at the mitochondrial level, at the site of ATP production. The picture emerging
from the literature, however, appears to be more complex because ATP derived from
mitochondria appears to be flanked by ATP produced by glycolysis or by oxidation of
endogenous substrates. Thus, in the resulting reduction in motility, parallel to the worsen-
ing in mitochondria functionality, other mechanisms, not currently investigated, could be
involved [25].

4.2. Alteration of Plasmatic and Acrosomial Membranes

Our study has also shown an alteration of the acrosome morphology and a significant
compromission of the membrane. The worst results were recorded for 50 nm PS-NPs,
which have also caused plasmatic membrane insults, compared to the larger PS-NPs and
to the control. Given the scant data in the literature concerning the possible interaction of
nanoparticles with human spermatozoa, the results reported are certainly preliminary, but
they provide additional information to evidence other studies carried out on murine mod-
els. Jin and et al. (2021), in fact, emphasized the susceptibility of acrosome to the action of
PS-NPs, which caused the disaggregation and the loss of this vesicle [14]. Furthermore, the
different responses observed seem to be attributable exclusively to the size of the nanoparti-
cles, the only difference between the two groups of samples tested. The limited data in the
literature focus on the spermatozoa of aquatic species (Crassostrea gigas), specifically focus-
ing on the different response of spermatozoa to amino- and carboxy-modified NPs and not
in relation to size. However, considering the different papers, a high spermiotoxicity (char-
acterized by a decrease in the percentage of motile spermatozoa (−79%) and in the velocity
(−62%) compared to control spermatozoa) was found in samples exposed to 50 nm NPs
from concentrations at 10 µg mL−1 up to 25 mL−1 [26]. González-Fernández et al. (2018),
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on the other hand, obtained no increase in ROS production in samples exposed to different
increasing concentrations (from 0.1 to 100 mg L−1) of 100 nm NPs [27]. Although these
data concern species very distant from humans, it is important to consider that the sper-
matozoon is a highly conserved cell during evolution and that many of the mechanisms
at the basis of its physiology are shared with all species. This highlights the importance
of conducting further studies to expand our knowledge of the possible variation in the
toxicological profile of a substance depending on its size.

4.3. DNA Fragmentation: Possible Correlation with ROS and Mitochondrial Disfunctions

In our study, negative outcomes have also been noted for DNA fragmentation, which
is significantly increased in samples exposed to the smaller PS-NPs. This could be due
to the direct action of particles on the DNA molecule or to a secondary effect related to
the overproduction of ROS. The insults to DNA, and also to mitochondria, by 50 nm PS-
NPs suggest their possible uptake by spermatozoa, unlike PS-NPs with larger diameters.
Although the mechanism underlying the interaction between PS-NPs and membranes
remains to be clarified, several mechanisms have been proposed to explain the internal-
ization. The most plausible one concerns the possibility of PS-NPs with a not excessively
large size (40–60 nm) to penetrate inside cells via endocytosis occurrence [28], and also to
afflict various organelles, moving to the level of the nucleus (DNA fragmentation) and
mitochondria. Larger PS-NPs, on the other hand, could affect sperm cells while not being
internalized, for instance by interacting with receptors present at the level of the plastic
and acrosomal membranes.

For instance, this might explain why both PS-NPs have altered the stress, as shown by
sORP values, indices of the overall state of the cell (considering all oxidant and antioxidant
species present on spermatozoa), although it seems clear that 50 nm PS-NPs can also
interact with internal organelles. On sperm cells exposed to the smaller PS-NPs, oxidative
stress has mainly been provoked by an overexpression of reactive oxygen species (ROS),
apparently correlated with mitochondrial dysfunctions. It is well known that oxidative
stress and mitochondrial anomalies are intimately related in a vicious circle, in that unstable
species can attack and degrade mitochondria membranes, while the latter, because of
the damage and subsequent malfunction, release additional reactive species [29]. The
effects of oxidative stress, as confirmed in the study by Bisht et al. (2017), can have
serious repercussions on sperm function. In fact, spermatozoa are highly vulnerable due
to limited levels of antioxidant defense, and high levels of oxidative stress can damage
sperm DNA, RNA transcripts, and telomeres and, therefore, may provide a common
etiology underlying male infertility and recurrent pregnancy loss, as well as congenital
malformations and complex neuropsychiatric disorders [30]. It remains to be clarified
which unstable molecules are involved in the altered oxidative stress in samples exposed
to 100 nm PS-NPs. The involvement of radicals such as NO in the proper physiological
functions of the spermatozoon is well known. The balance of oxidant and antioxidant
complexes, again, has been unbalanced, tending towards the predominance of unstable
and harmful compounds other than ROS [31].

4.4. Cytoprotective Responses: Expression of HSP70s

The synthesis and localization of certain protective proteins, HSP70s, have been
qualitatively analyzed. HSP70s molecules can be constitutive or inducible by various
stimuli, including stress. They, in fact, act as chaperonins by protecting proteins from
denaturation and preventing the formation of aggregates between misfolded molecules by
eliminating them or assisting them to achieve natural folding [32]. Another cytoprotective
mechanism concerns the ability of HSP70s to protect and repair DNA breaks following ROS
insults, complementing the cell’s antioxidant systems [33]. The present study has revealed
that increased HSP70s activity and their concentration at the level of the intermediate
segment, in samples exposed to 50 nm PS-NPs, have been negatively correlated with DNA
breaks, oxidative stress, and mitochondrial dysfunctions; thus, samples with less damage
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have exhibited a higher percentage of spermatozoa expressing HSP70s. Interestingly,
spermatozoa exposed to both types of PS-NPs possess high sORP values compared to the
control, but only those exposed to the smaller PS-NPs have shown HSP70s production at the
level of the neck or in the entire flagellum. The inductive phenomenon of HSP70s synthesis
is probably the overexpression of ROS (evidenced only in samples exposed to 50 nm PS-
NPs) and not the eventual general state of stress of the cell. The defense mechanism could
be associated with the protection of proteins and membranes of mitochondria and of DNA
molecules through direct action on ROS by ensuring their proper activity.

Correct expression and proper functioning of HSP70s appear to be responsible for
the ability of sperm cells to adapt, even to unfavorable microenvironmental conditions.
Low levels of HSP70, in fact, have been observed in infertile patients [34]. Despite this, it
remains to be clarified how and in what timeframe HSP70s act to remove the stressogenic
chemical species from the gametes and whether this defense mechanism can bring stress
levels back within ranges considered normal and physiological.

4.5. Environmental and Biomedical Implication

The chronic persistence of plastic waste in environmental matrices has required careful
monitoring of the timing and different ways of its degradation, as well as its effects after
penetration into organisms [35]. As the ubiquitous nature of NPs has been confirmed, all
organisms are subject to contact with them by inhalation, ingestion, or absorption [36].

The reproductive sphere seems to be the most impacted by plastics, as gametes
are highly specialized cells, sensitive to alterations in their microenvironment, whether
released in water (internally fertilized species), or in the female genital tract (internally
fertilized species).

Gametic quality is, in fact, correlated with reproductive success, so any perturbation
that affects the optimal parameters for successful fertilization inevitably leads to a reduction
in the organisms of a population and very often to an imbalance in entire ecosystems.

In mammals, the ability of NPs to cross the hemato–testicular barrier certainly con-
fronts the scientific community with a problem that has perhaps not been adequately
addressed until now [37]. NPs, in fact, could contribute to the deterioration of gametic
quality. Moreover, because fertilization is a process that takes place in the female genital
tract, the presence of plastic residues could partly explain idiopathic infertility. In this con-
text, a man with normospermic parameters could release gametes into the female genital
tract to achieve pregnancy, but if spermatozoa encounter pollutants in their trajectory, such
as NPs, for example released from period products normally and widely used by women,
their physiology could be adversely affected, leading to couple infertility [38].

Thus, it is evident that more knowledge is needed on the real impact of the use of
plastic products on organisms and ecosystems. It should be considered important to study
the concentrations capable of reaching mature spermatozoa, both in the testis and in the
female genital tract, to determine the effects on egg cells as well and, finally, to assess the
effects on fertilization.

5. Conclusions

These findings contribute to the elucidation of responses of human spermatozoa to
the presence of high concentrations of PS-NPs in their microenvironment, highlighting
metabolic and structural anomalies of essential components and organelles. The toxic effect
appears to be correlated with the dimension of the nanoparticles, because worst results
have been obtained for PS-NPs with smaller diameters. Finally, after the impact of PS-NPs,
spermatozoa respond to the increased production of ROS with the synthesis of HSP70,
which actively participates in damage recovery.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biology12040624/s1, Table S1: Summary of motility param-
eters measured with CASA plugin; Table S2: Summary of monitored parameters; Table S3: Summary
of mitochondrial activity.
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