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1 VAN HOVE CORRE LAT ION FUNCT IONS

The vanHove Function (VHF) (𝐺(𝑟, 𝜏)) is often used inMolecular Dynamics (MD) simulations of
liquids, gasses, and solid materials where it quantifies the stability of local structures and thus the
interaction betweenmolecules. 𝐺(𝑟, 𝜏) may be determined experimentally using quasi-elastic and
inelastic scattering of both X-ray or neutron radiation using its relation to the Dynamic Scattering
factor. [1;2] Shinohara et al. have demonstrated the ability of simulations to correctly identify corre-
lated motions in liquids. [3] We attempted to apply these to ion clouds surrounding biomolecules,
but found that the concept of the Time-Resolved Radial Distribution Function (TRRDF) is better
suited to simulations of freely moving single proteins using periodic boudary conditions. Never-
theless, SPEADI provides and efficient implementation of the VHF that might be of interest to the
Physical Chemistry community.

The VHF is a dynamic correlation function that quantifies the correlation of two particle types
in both temporal and spatial dimensions. [4] The VHF may generally be defined as the bivariate
distribution over distance 𝑟 and time 𝜏,
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between particles of type 𝑎 and 𝑏, with 𝑁𝑎 and 𝑁𝑏 being the number of particles of type 𝑎 and 𝑏. 𝑟
represents the value of the distance bin, and 𝑟𝑖(0) and 𝑟𝑗(𝜏) represent the position coordinates of
particle 𝑖 at time 𝜏 = 0 and particle 𝑗 at the time being sampled. As the peaks in the distribution
quickly dissipate, time 𝜏 is only meaningful on a very short time-scale dependent on the particle
rate of diffusion. The function is instead sampled at different starting times 𝑡 = 𝜏0 and an average
over the displacement or relaxation times 𝜏 with respect to 𝜏0 is calculated.

The VHF is normalized by the volume of the radial shell 𝑉(𝑟):
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When the VHF is calculated between particles of the same type, 𝐺(𝑟, 𝜏) may be split into a self
𝐺𝑠(𝑟, 𝜏) and distinct part 𝐺𝑑(𝑟, 𝜏):

𝐺(𝑟, 𝜏) = 𝐺𝑠(𝑟, 𝜏) + 𝐺𝑑(𝑟, 𝜏) (3)
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The self part of the VHF is related to the particle diffusion. [3;5–8] Integration of 𝐺𝑠(𝑟, 𝜏) gives
the fraction of particles having moved less than a distance threshold within a given time. [1]

Note that the Radial Distribution Function (RDF) 𝑔(𝑟) is readily described as a special case of
the VHF at relaxation time 𝜏 = 0:
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which simplifies to
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VHFs are calculated by constructing a time-distance matrix between the target group (using
only the positions in the first frame of the window) and the reference group (using all frames in
the window). A histogram is constructed for each of the frames (displacement time with respect
to the first frame) in the window.

2 S P EAD I DE P ENDENC I E S AND USAGE

2.1 Dependencies

SPEADI is implemented on the basis of, and thus has a hard dependency on, the Python pack-
age MDTraj. [9] MDTraj provides low-level functions for reading trajectories and topologies from
atomistic simulations of various formats, as well as many analysis methods itself. It also provides
optimized methods of iterating over simulation trajectories in many formats, from a large number
of simulation programs and codes. Accordingly, SPEADI has followed the naming conventions
and general style ofMDTraj, so as to smoothly integrate usage of both. Theminimum requirements
for SPEADI are Python 3.8 and MDTraj 1.5.0.

2.2 Optional Dependencies

SPEADI can take advantage of several optional acceleration libraries in the Python environment
intowhich it is installed. The JAX library [10] and its companionXLA compiler provide acceleration
on both CPUs, GPUs and Google Cloud-TPUs. It is currently the acceleration library used in
AlphaFold2 [11;12] and the TensorFlow [13] package. JAX is thus already installed and available in
many High Performance Computing (HPC) environments as well as Cloud Computing services
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such as Google Co-Lab. SPEADI automatically detects an installation of JAX, and uses it to just-in-
time (jit) compile performance critical functions for any available accelerators.

SPEADI may also be accelerated with the Python package Numba. [14] This is done by detect-
ing the presence of the Numba package in the Python environment that SPEADI is installed in.
Performance-relevant low level functions are jit-compiled and parallelized using the provisions
provided by Numba.

When neither JAX nor Numba are detected, SPEADI falls back on a vectorized approach using
Numpy arrays [15;16] and MDTraj’s (CPU optimized) time-distance matrix function. It is highly
recommended to use an accelerated version of the package for either any trajectory with added
temporal resolution (i.e. frames saved frequently) or when analysis involves a large number of
particles. SPEADI only takes advantage of the shared memory parallelism in both acceleration
libraries, as reading large Molecular Dynamics (MD) trajectories are currently the prominent bot-
tleneck. See section 7 and table S2 below for further discussion.

2.3 Usage

First, groups for the reference and target in the system topology need to be specified as Python list
objects using the MDTraj package in a python script or Jupyter Notebook:

import mdtraj as md

top = md.load('topology.pdb').top
group1 = [top.select('<selection_expression>')]
group2 = [top.select('<selection_expression>')]

For details on the selection expressions, please refer to the MDTraj documentation. For exam-
ple, to the calculate the Time-Resolved Radial Distribution Function (TRRDF) between C𝛽 atoms
in separate serine residues and water oxygen atoms (using the TIP4P water model), define the
groups as following:

top = md.load('topology.pdb').top
group1 = [[a] for a in top.select('resname SER and name CB')]
group2 = [top.select('name OW')]

The following code calculates the TRRDF between these two groups using SPEADI:

import speadi as sp

r, grt = sp.trrdf(traj, group1, group2, top=top,
pbc='general',
n_windows=2000, window_size=500,
stride=1, skip=1,
r_range=(0.0, 2.0), nbins=200)
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Here, specifying pbc allows the user to enable acceleration for periodic boundary conditions
in cubic simulation cell geometries (“cubic”), where the default “general” option can be used
for arbitrary simulation cell geometries such as “dodecahedral” simulation cells. stride tells the
function to either calculate using every frame, or to only use every nth frame in the trajectory.

Obtaining the time-averaged Radial Distribution Function (RDF) is as simple as averaging over
the first dimension:

gr = np.mean(grt, axis=0)

To instead calculate the integral of TRRDF between these two groups:

r, nrt = sp.int_trrdf(traj, group1, group2, top=top,
pbc='general',
n_windows=2000, window_size=500,
stride=1, skip=1,
r_range=(0.0, 2.0), nbins=200)

To calculate the van Hove Function (VHF) for the same trajectory and groups, one simply has
to write the following:

r, Gs, Gd = sp.vanhove(traj, group1, group2, pbc='general',
n_windows=2000, window_size=500,
overlap=False,
stride=1, skip=1,
r_range=(0.0, 2.0), nbins=200)

overlap specifies either False, or an integer number of frames to move the start of a new win-
dow forward in time from the start of the previous window. The function returns the variables
r: the mid-points of each radial slice, 𝐺𝑠: the self-correlation function, and 𝐺𝑑: the distinct part
of the van-Hove correlation function averaged over every time window. Each of the variables are
returned as Numpy arrays. [15]

Subsection 6.3 contains an example of the VHF applied to ions around a biomolecule.

3 EX P ER IMENTAL DE TA I L S FOR MOLECULAR DYNAM IC S S IMULAT IONS

3.1 Alpha-Synuclein

3.1.1 Wild-Type Alpha-Synuclein

A 25ns all-atom Molecular Dynamics (MD) simulation was conducted for (N-terminally acety-
lated)wild-type alpha-Synuclein (AS)using theReplica Exchangewith Solute Tempering (REST2)-
algorithm. [17] 32 replicas between 300 and 500K exchanged every 100 time steps. The most fre-
quent conformation found during previous simulations by Rossetti et al. was used as the start-
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ing structure. [18] The simulation were parameterized using the recent a99SB-disp force field [19] in
sodium chloride solution at physiological (150mmolL−1) concentration.

3.1.2 E46K Alpha-Synuclein

A 100ns all-atom MD simulation of AS containing the E46K point mutation associated with early
onset Parkinson’sDisease (PD)was conducted using theREST2-algorithm. [17] 32 replicas between
300 and 500K exchanged every 100 time steps. The most frequent conformation found during pre-
vious simulations by Rossetti et al. was again used as the starting structure. [18] The simulationwas
conducted using the recent a99SB-disp force field [19] in sodium chloride solution at physiological
(150mmolL−1) concentration.

3.1.3 Wild-Type Alpha-Synuclein with the DES-Amber Force Field

A 100ns all-atom MD simulation of AS containing the E46K point mutation associated with early
onset PD was conducted using the REST2-algorithm. [17] 32 replicas between 300 and 500K ex-
changed every 100 time steps. Themost frequent conformation foundduring previous simulations
by Rossetti et al. was again used as the starting structure. [18] The simulation was conducted using
the recent a99SB-disp force field [19] in sodium chloride solution at physiological (150mmolL−1)
concentration.

3.2 Humanin

1µs all-atom MD simulations were conducted on wild-type Humanin (HN) and mutants (S14G,
D-S14, D-S7 and D-S7,14) using the lowest energy structure of the NMR ensembles deposited in
the Protein Data Bank under PDB-code 1Y32. [20] Mutations were done starting from the wild-
type structure using PyMOL. [21] The simulations were conducted using the GROMACS [22–27]

package (version 2021.4) starting from the HN conformation found from the final frame of the
wild-type HN simulation. All simulations were conducted using the a99SB-disp all-atom force
field specifically designed for Intrinsically Disordered Proteins (IDPs) together with its modified
TIP4P-D water model. [19] The simulations were conducted as unbiased MD simulations at 300 K
in isothermic-isobaric (NPT) ensembles after a series of equilibration steps. The simulations were
performed in sodium chloride solution at physiological (150mmolL−1) concentration.

A further 500ns REST2 simulationwas performed on thewild-typeHNusing the same starting
equilibrated structure as above. 16 replicas between 300 and 500K exchanged every 100 time steps.
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4 ALPHA- SYNUCLE IN

4.1 Convergence
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Figure S1: Cumulative average of secondary structure content for the “wet”wild-type (A) and E46Kmutated
(B) alpha-Synuclein (AS) trajectories.

4.2 Clustering

Clustering the simulation trajectories was done according to the recent protocol described by Ap-
padurai et al. for clustering Intrinsically Disordered Protein (IDP) structures. [28] The simulations
for wild-type and E46K ASwere converged after 12ns of simulation time. The lowest temperature
replica (at 300K) was used for analysis in both cases. The Root Mean Square Distance (RMSD)
was calculated between each frame of the converged part of the trajectories. The wild-type was
sampled each 10ps and the E46K mutant was sampled each 100ps, resulting in 1300 and 800
frames for clustering respectively.

TheRMSDmatrixwas then clusteredusing t-distributed StochasticNeighbor Embedding (t–SNE)
at different perplexity values. The perplexity values giving the highest silhouette score was cho-
sen (100 for the wild-type and 350 for the mutant). The t–SNE projection was then clustered using
K-means clustering for 20 clusters.
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4.3 Ion Distributions for Each Alpha-Synuclein Domain
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Figure S2: Sodiumand chloride iondistributions in theN-terminal region along the residue index for compact
and extended conformations of wild-type and E46K-AS. Residue index 0 is the acetylated N-terminus. Mean
number of ions (running coordination number), is given as the integral of 𝑔(𝑟) for the ion up to the second
hydration shell (𝑟 ≤ 0.70nm).
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Figure S3: Sodium and chloride ion distributions in the NAC region along the residue index for compact and
extended conformations of wild-type and E46K-AS. Mean number of ions (running coordination number),
is given as the integral of 𝑔(𝑟) for the ion up to the second hydration shell (𝑟 ≤ 0.70nm).
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Figure S4: Sodium and chloride ion distributions in the C-terminal region along the residue index for com-
pact and extended conformations of wild-type and E46K-AS. Mean number of ions (running coordination
number), is given as the integral of 𝑔(𝑟) for the ion up to the second hydration shell (𝑟 ≤ 0.70nm).
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4.4 Choice of Ion Interaction Site

Ion interaction sites for each amino acid were chosen as the carbon atom two bonds away from a
charge carrying atom (table S1).

Amino acid R H K D E S T N Q C G P A V I L M F Y W
Carbon atom 𝛾 𝛽 𝛿 𝛼 𝛽 𝛼 𝛼 𝛼 𝛽 𝛼 𝛼 𝛼 𝛽 𝛽 𝛽 𝛽 𝛾 𝛽 𝜖 𝛽

Table S1: Choice of ion interaction sites for each amino acid.

4.5 Intradomain Residue Distance Maps of Representative Clusters

0.1

0.2

0.3

0 5 10 15 20 25 30 35 40 45 50 55 60

Residue Index

0.1

0.2

0.3n N
a+

(0
.7

nm
) 0.10.20.3

0

5

10

15

20

25

30

35

40

45

50

55

60

R
es

id
ue

 in
de

x

0.1 0.2 0.3
nNa + (0.7nm) 0.1

0.2

0.3

0 5 10 15 20 25 30 35 40 45 50 55 60

Residue Index

0.1

0.2

0.3n N
a+

(0
.7

nm
) 0.10.20.3

0

5

10

15

20

25

30

35

40

45

50

55

60

R
es

id
ue

 in
de

x

0.1 0.2 0.3
nNa + (0.7nm)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Mean minimum heavy atom distance / nm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Mean minimum heavy atom distance / nm

Figure S5: Distance maps between residues 0-59 in representative compact (triangle above) and extended
(triangle below) clusters in wild-type (left) and E46K mutated (right) AS. Red points mark contact (mean
distance ≤ 0.5nm). Insets show the mean number of sodium (orange) and chloride (green) ions within a
distance of 0.70nm.
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Figure S6: Distance maps between residues 60-96 in representative compact (triangle above) and extended
(triangle below) clusters in wild-type (left) and E46K mutated (right) AS. Red points mark contact (mean
distance ≤ 0.5nm). Insets show the mean number of sodium (orange) and chloride (green) ions within a
distance of 0.70nm.
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Figure S7: Distance maps between residues 96-140 in representative compact (triangle above) and extended
(triangle below) clusters in wild-type (left) and E46K mutated (right) AS. Red points mark contact (mean
distance ≤ 0.5nm). Insets show the mean number of sodium (orange) and chloride (green) ions within a
distance of 0.70nm.
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4.6 Sodium Distribution Across Clusters and Mutation
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Figure S8: Distribution of sodium ions across different clusters of wild-type AS. Values are the mean number
of sodium ions up to 0.70nm from the ion interaction sites in each residue.
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Figure S9: Visualization of the distribution of sodium ions present within the first and second coordination
shells of the ion interaction sites in conformational clusters of wild-type alpha-Synuclein. Red coloring indi-
cates increasing 𝑛(𝑟).
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Figure S10: Distribution of sodium ions across different clusters of E46K-AS. Values are the mean number of
sodium ions up to 0.70nm from the ion interaction sites in each residue.
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Figure S11: Visualization of the distribution of sodium ions present within the first and second coordination
shells of the ion interaction sites atoms in conformational clusters of E46K mutated alpha-Synuclein. Red
coloring indicates increasing 𝑛(𝑟).
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4.7 Chloride Distribution Across Clusters and Mutation
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Figure S12: Distribution of chloride ions across different clusters of wild-type AS. Values are the mean num-
ber of chloride ions up to 0.70nm from the ion interaction sites in each residue.
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Figure S13: Visualization of the distribution of chloride ions present within the first and second coordina-
tion shells of the ion interaction sites in conformational clusters of wild-type alpha-Synuclein. Red coloring
indicates increasing 𝑛(𝑟).



4 ALPHA- SYNUCLE IN 17

0

2.5 

0

2.5 

E46K cluster 1

0

2.5 

E46K cluster 2

0

2.5 

E46K cluster 3

0

2.5 

E46K cluster 4

0

2.5 

E46K cluster 5

0

2.5 

E46K cluster 6

0

2.5 

E46K cluster 7

0

2.5 

E46K cluster 8

0

2.5 

E46K cluster 9

0

2.5 

E46K cluster 10

0

2.5 

E46K cluster 11

0

2.5 

E46K cluster 12

0

2.5 

E46K cluster 13

0

2.5 

E46K cluster 14

0

2.5 

E46K cluster 15

0

2.5 

E46K cluster 16

0

2.5 

E46K cluster 17

0

2.5 

E46K cluster 18

0

2.5 

E46K cluster 19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
0

2.5 

E46K cluster 20

n C
l

(r)
 w

ith
in

 2
nd

 s
he

ll 
of

 C
 a

to
m

Figure S14: Distribution of chloride ions across different clusters of E46K-AS. Values are the mean number
of chloride ions up to 0.70nm from the ion interaction sites in each residue.
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Figure S15: Visualization of the distribution of chloride ions present within the first and second coordination
shells of the ion interaction sites in conformational clusters of E46K mutated alpha-Synuclein. Red coloring
indicates increasing 𝑛(𝑟).
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Figure S16: Distribution of ions around alpha-Synuclein (AS) during simulations using different force field
parameters. Color intensity scales with difference between the running average 𝑛(𝑟, 𝑡) and total average 𝑛(𝑟).
The presence of ions was averaged over 13ns of simulation time, after 12ns of equilibration.



5 COMPAR I SON OF FORCE F I E LD S U S ING W I LD -T Y P E ALPHA- SYNUCLE IN 20

Figure S17: Equilibration of ions around AS during 25ns of simulation time using different force field param-
eters. Color intensity shows the difference between cumulative ion occupation and mean ion occupation.



6 HUMAN IN 21

6 HUMAN IN

6.1 Ion Distribution At Large Distance
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Figure S18: Sodium (A) and Chloride (B) ion distribution along the residue index for wild-type andmutants
of Humanin (HN). Themean number of ions is given as the Radial Distribution Function (RDF) around each
functional site integrated up to 2.00nm.
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6.2 Comparison of Equilibration Between Unbiased and REST2 MD

Figure S19: Distribution of ions around HN during simulations using biased and REST2 enhanced sampling
Molecular Dynamics (MD) algorithms. The force field and starting structures were kept the same. Colors
intensity scales with difference between the running average 𝑛(𝑟, 𝑡) and total average 𝑛(𝑟). Ion concentrations
were averaged over the first 500ns of simulation time.

6.3 Van Hove Function Applied to the S14 Residue in Humanin

The dynamics of sodium ions in the vicinity of S14 can be further explored by constructing van
Hove Functions (VHFs) of different time slices along the trajectory. The VHF in figure S20B shows
that a single sodium ion near S14 stays in the vicinity of the residue, and because of thewell defined
peaks, there seems to be little or no movement of the ion relative to the atoms in the residue itself.
The VHF in figure S20C shows an absence or very low likelihood of finding a sodium ion near
S14 during parts of the simulation. Some information can still be gained from this however, as the
lack of decline in VHF along displacement time again shows a stable broad peak, meaning that the
sodium ions at the distance of the broad peak are not moving rapidly with respect to the residue.
Figure S20A shows a part of the trajectory corresponding to another peak in the Time-Resolved
Radial Distribution Function (TRRDF). This shows that at least one sodium ion is near S14 at a
consistent distance during this part of the simulation, and simultaneously that there is significant
lateral movement with respect to the single atoms in the residue.
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Figure S20: van Hove Functions (VHFs) for sodium at S14 with respect to sodium ions at three different
simulation times: 259-261 ns (A), 290-310 ns (B) and 350-370 ns (C). Window length: 10 ps.

The VHFs distinguish between different oscillations and movements that cannot be seen us-
ing only time-averaged RDFs. Examining the decay of certain peaks in the VHF also allows the
quantification of phenomena that might otherwise only be qualitatively assessed using visual in-
spection of the simulation trajectory.
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7.1 Distance Evaluations With The Minimum Image Convention

The most computational intensive part of calculating radial distribution functions is obtaining the
distance matrix between particles. For 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 target particles together with 𝑀𝑟𝑒𝑓 reference parti-
cles, a total of 3𝑁target × 𝑀reference distances need to be evaluated over 3 cartesian coordinates. As
Molecular Dynamics (MD) simulations are generally conducted using reduced-size periodic sim-
ulation cells, correct distances between particles have to be calculated using the Minimum Image
Convention (MIC). In general, each component distance along a geometry axis Δ𝑥0 between parti-
cle 𝑛 and particle 𝑚0 inside the simulation cell are compared to the distances Δ𝑥−1 and Δ𝑥+1 to the
periodic image of the reference particle (𝑚−1 and 𝑚+1). An orthogonal simulation cell has 3 axes
and is generally the least computationally intensive for analysis. The highest computational com-
plexity is found in dodecahedral simulation cells, where a total of 9 axes are present and where
each inter-cell distance is compared to 26 mirror image distances.

SPEADI implements an efficient distance-matrix algorithm [29] that calculates MIC distances
either for an orthogonal geometry or for an arbitrary geometry. Distances for arbitrary geometries
incur a runtime penalty of 2 to 5. Figure S21 shows a benchmark comparison between SPEADI
and the distance-matrix function implemented in the MDTraj Python package. Both algorithms
are implemented using shared-memory parallelism.
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Table S2: Execution time in seconds over a single trajectory window for generating simultaneous radial distri-
bution functions between 1, 10, and 100 single carbon atoms and 1000 and 10000 solvent atoms. Eachwindow
consists of 10 trajectory frames.

MDAnalysis SPEADI (jax) SPEADI (non-opt) SPEADI (numba) MDTraj
System configuration N(distances) / 103

2 × Intel(R) Xeon(R)
CPU 2.20 GHz

10 1.159 1.043 0.996 0.950 1.281
100 1.163 1.073 1.121 0.980 1.307
1000 1.958 1.047 2.735 1.278 1.609
10000 10.538 1.228 6.185 4.321 4.179

256 × AMD EPYC 7742
64-Core Processor

10 0.251 0.209 0.215 0.212 0.278
100 0.271 0.217 0.255 0.230 0.299
1000 0.802 0.232 0.673 0.399 0.604
10000 10.346 0.364 3.389 2.081 3.204

8 × Apple M1

10 1.965 1.501 1.537 1.544 2.090
100 2.073 1.597 1.618 1.524 2.424
1000 2.387 1.534 2.030 1.686 2.302
10000 7.183 1.631 4.835 3.177 4.218

80 × Intel(R) Xeon(R)
Gold 6148 CPU 2.40 GHz

10 0.304 0.269 0.275 0.271 0.351
100 0.340 0.270 0.311 0.297 0.366
1000 0.855 0.282 0.688 0.545 0.563
10000 8.296 0.294 2.422 3.026 2.136
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Figure S21: Comparison of execution time per window calculated and scaling according to the number of
distance evaluations benchmarked on various hardware. The benchmarks in (A–C) were run using only
CPUs. The benchmark in (D) was run with an Nvidia Tesla P100 GPU available to the functions.
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