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Simple Summary: The inner layer of blood vessels is formed by endothelial cells. When these cells
do not work properly, several issues ensue in the human body. One of these issues is elevated
blood pressure, also known as hypertension, which is an established risk factor for ischemic heart
disease, stroke, chronic kidney disease, and dementia. However, the exact mechanisms linking
dysfunctional endothelium and hypertension are not fully defined. In this work, we discovered that
a small nucleic acid (miR-4432) is able to target and inhibit a specific gene (fibroblast growth factor
binding protein 1, FGFBP1) in human brain microvascular endothelial cells, and we demonstrate for
the first time that this miR-4432 significantly reduces endothelial oxidative stress, a well-established
feature of hypertension. Taken together, our findings provide unprecedented mechanistic insights
and open the field to new studies aimed at ameliorating endothelial dysfunction by harnessing
miR-4432-based strategies.

Abstract: MicroRNAs (miRs) are small non-coding RNAs that modulate the expression of several tar-
get genes. Fibroblast growth factor binding protein 1 (FGFBP1) has been associated with endothelial
dysfunction at the level of the blood–brain barrier (BBB). However, the underlying mechanisms are
mostly unknown and there are no studies investigating the relationship between miRs and FGFBP1.
Thus, the overarching aim of the present study was to identify and validate which miR can specifi-
cally target FGFBP1 in human brain microvascular endothelial cells, which represent the best in vitro
model of the BBB. We were able to identify and validate miR-4432 as a fundamental modulator of
FGFBP1 and we demonstrated that miR-4432 significantly reduces mitochondrial oxidative stress, a
well-established pathophysiological hallmark of hypertension.

Keywords: blood–brain barrier; blood pressure; cerebrovascular disease; endothelial dysfunction;
hBMECs; hypertension; HUVEC; microRNA; miRNA; miR-4432-3p

1. Introduction

Hypertension is a leading risk factor for ischemic heart disease, stroke, chronic kidney
disease, and dementia [1]. It is a multifactorial disease involving interactions among genetic,
environmental, demographic, vascular, and neuroendocrine factors [2,3]. Endothelial
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dysfunction is an established hallmark of hypertension [4–6]; however, the exact molecular
mechanisms linking dysfunctional endothelial cells (ECs) and high blood pressure are
not fully understood. Several genome-wide association studies (GWAS) have identified a
number of genes associated with hypertension [7,8], but only a few of these genes have
been functionally validated. In 2019, the International Consortium of Antihypertensive
Pharmacogenomics Studies (ICAPS) recognized fibroblast growth factor binding protein
1 (FGFBP1) as one of the genes involved in the regulation of blood pressure [9]. FGFBP1
is a key promoter of the development of the blood–brain barrier (BBB) [10], an aspect
that is especially relevant considering that ECs are a major component of the BBB [11],
which is crucial for maintaining neuronal and glial function [12]. Specifically, FGFBP1
has been implied in refining and maintaining barrier characteristics in the mature BBB
endothelium [13].

MicroRNAs (miRs) are a relatively well conserved group of small (~21 nucleotides)
non-coding RNAs that modulate the expression of their target genes: miRNAs can bind the
3′ untranslated region (UTR) of specific genes, thereby inhibiting their expression. Thus,
miRNAs have been involved in numerous pathological and physiological processes [14,15].
Others and ourselves have, in the last decades, identified a variety of miRs involved in the
regulation of endothelial function [16,17].

Since FGFBP1 has been previously linked to the modulation of the BBB, and precisely
to endothelial function, the central scope of the present study is to detect which miR can
target FGFBP1 in hBMECs (human brain microvascular endothelial cells).

2. Results
2.1. miR-4432 Targets FGFBP1 in a Conservative Manner

We applied bioinformatic analyses and functional experiments which led, for the first
time to our knowledge, to the identification of hsa-miR-4432-3p (miR-4432) as a crucial
modulator of FGFBP1 transcription, in a manner that is highly conserved across different
species, including primates such as chimpanzee (Pan troglodytes), orangutan (Pongo abelii),
macaque (Macaca mulatta), and gorilla (Gorilla gorilla), although it is not detected in mouse
(Mus musculus) and rat (Rattus norvegicus), as shown in Figure 1.
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Furthermore, we designed a mutant construct of FGFBP1 3′-UTR (“FGFBP1 MUT”)
that harbors nucleotide substitutions at the level of the miR-4432 binding sites of FGFBP1
3′-UTR, as illustrated in Figure 2.
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Figure 2. The designed mutant construct of FGFBP1 3′-UTR (FGFBP1 MUT) that harbors nucleotide
substitutions at the level of the miR-4432 binding sites (indicated in red) of FGFBP1 3′-UTR, proving
that miR-4432 specifically targets the 3′UTR of FGFBP1.

2.2. miR-4432 Regulates FGFBP1 Transcription in Endothelial Cells

We first verified that miR-4432 is actually expressed in two different types of endothe-
lial cells, namely hBMECs, which remain the best in vitro model of the BBB [18], and
human umbilical vascular endothelial cells (HUVECs), and that its expression is regulated
by miR-4432 mimic and miR-4432 inhibitor, as shown in Figure 3.
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Figure 3. RT-qPCR showing that miR-4432 is expressed in both hBMECs (A) and HUVECs (B). All
the assays were carried out in quadruplicate; the graphs indicate the median and the 5th to 95th
percentiles; *: p < 0.01 vs. miR-scramble.

Then, we performed a series of experiments in hBMECs to test whether miR-4432
is a regulator of FGFBP1 transcription. Through luciferase assays, we determined that
FGFBP1 is a target of miR-4432 (Figure 4); these findings were also endorsed in HUVECs
(Supplementary Figure S1).
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Figure 4. miR-4432 targets FGFBP1. Luciferase activity was quantified in hBMECs forty-eight hours
after the transfection, utilizing the vector without FGFBP1 3′-UTR (“Empty Vector”), the vector that
included the WT FGFBP1 3′-UTR (“FGFBP1 3′-UTR”), and the vector that included the mutated form
of the FGFBP1 3′-UTR (“FGFBP1 MUT 3′UTR”); a miR-scramble (non-targeting miR) was used as an
additional control. All the assays were carried out in quadruplicate; the graphs indicate the median
and the 5th to 95th percentiles; *: p < 0.01 vs. miR-scramble; #: p < 0.05 vs. FGFBP1 3′UTR.
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2.3. FGFBP1 Expression Is Controlled by miR-4432

As depicted in Figure 5, we experimentally proved that miR-4432 significantly dimin-
ishes the mRNA expression of FGFBP1 in hBMECs.
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Figure 5. In hBMECs, FGFBP1 transcription was diminished by miR-4432 and augmented by miR-
4432 inhibitor. FGFBP1 mRNA was quantified via RT-qPCR in hBMECs that had been transfected
for forty-eight hours with the miRs indicated in the figure; values were normalized to GAPDH
(glyceraldehyde-3-phosphate-dehydrogenase). All the assays were carried out at least in triplicate;
the graph shows the medians and the 5th to 95th percentiles; *: p < 0.01 vs. miR-scramble. Sequences
of the primers that have been used for the RT-qPCR are shown in Table 1.

These findings were then confirmed by immunoblot at the protein level (Figure 6),
as well.
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Figure 6. The observations detected by RT-qPCR in terms of mRNA were upheld by Western blots,
as shown in the representative blots, showing two biological replicates per condition (A) and their
quantification (B). All assays were carried out at least in triplicate; the graph represents the medians
and the 5th to 95th percentiles; *: p < 0.01 vs. miR-scramble.

2.4. miR-4432 Regulates Mitochondrial Oxidative Stress in Human ECs

The next logical step was to gain more insights into the physiological and disease-
related consequences of the interaction between miR-4432 and FGFBP1. The generation
of mitochondrial reactive oxygen species (ROS) induced by the known vasoconstrictor
angiotensin II (Ang II) in ECs [19] has been mechanistically implied in the pathogenesis of
hypertension [20–22] and previous investigations have evidenced that the upregulation of
FGFBP1 can increase oxidative stress signaling, leading to pro-hypertensive effects [23].

On these grounds, we quantified, by MitoSOX, the ROS production induced by Ang
II in hBMECs transfected with miR-4432 mimic, miR-4432 inhibitor, or, as control, miR-
scramble. Strikingly, we observed that mitochondrial oxidative stress was significantly
reduced by miR-4432 mimic and increased by miR-4432 inhibitor (Figure 7).
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Figure 7. In hBMECs, the production of mitochondrial ROS (reactive oxygen species) was significantly
diminished by miR-4432 mimic and increased by miR-4432 inhibitor. Mitochondrial ROS generation
induced by Ang II (200 nMol, 4 h) was quantified using MitoSOX Red in hBMECs that had been
transfected for forty-eight hours with the miRs indicated in the figure. All the assays were carried out
at least in triplicate; the violin plots show the median (dashed line) and the quartiles (dotted lines);
*: p < 0.01 vs. miR-scramble.

To mechanistically prove the functional role of FGFBP1, we repeated the ROS quantifi-
cation after the knock-down of FGFBP1, showing that in the absence of FGFBP1 there is no
significant effect of miR-4432 (Figure 8).
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Figure 8. Mitochondrial ROS generation induced by Ang II in hBMECs was not affected when
measured after having silenced FGFBP1 (top), whereas it was significantly blunted by miR-4432
mimic and increased by miR-4432 inhibitor when the cells had been treated with a shRNA scramble.
All the assays were carried out at least in triplicate; the violin plots show the median (dashed line)
and the quartiles (dotted lines); *: p < 0.01 vs. miR-scramble.

3. Discussion

The experimental observation herein reported indicates that miR-4432 targets FGFBP1
in human ECs, representing a novel potential strategy against numerous diseases charac-
terized by endothelial dysfunction, including hypertension [24–29].

Consistent with our results, hypertensive patients have been shown to have approx-
imately 1.5- and 1.4-fold higher expression of FGFBP1 mRNA and protein compared to
normotensive subjects [30], further corroborating the crucial role of FGFBP1 in the patho-
physiology of hypertension.
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A genetic polymorphism in the human FGFBP1 gene has been associated with a
higher gene expression and an increased risk of familial hypertension [30]. Preclinical
studies in spontaneously hypertensive rats substantiated a contribution of the FGFBP1
genomic locus to hypertension and to glomerular damage [31]. In addition, the induction
of FGFBP1 in a transgenic mouse model resulted in sustained hypertension and increased
vascular sensitivity to the vasoconstrictor angiotensin II (Ang II) via ROS and MAP kinase
pathway signaling [23,32]. Taken together, these pieces of evidence indicate that FGFBP1
can finely control steady-state blood pressure, most likely by regulating vascular sensitivity
to endogenous Ang II.

Another study explored the indirect relationship between FGFBP1 and miRs in human
umbilical vein ECs, showing that miR-146a promotes angiogenesis by increasing FGFBP1
expression via targeting CREB3L1 (Cyclic AMP Responsive-Element-Binding Protein-3-
Like 1) [33]. In agreement with these data, FGFBP1 has been shown to be significantly
upregulated in the hemolytic uremic syndrome associated with human immunodeficiency
virus (HIV-HUS), which is characterized by endothelial damage and microcystic tubular
dilation [34,35]; furthermore, the inhibition of FGFBP1 was shown to be beneficial in
preventing brain vessel damage triggered by acute kidney injury [32].

Intriguingly, FGFBP1 is also expressed in keratinocytes, infiltrating mononuclear cells,
and Kaposi’s Sarcoma spindle cells [36,37]; its activation during the process of wound heal-
ing in the skin can induce angiogenic lesions that closely resemble Kaposi’s Sarcoma [36].
Equally importantly, FGFBP1 can promote hepatocellular carcinoma metastasis [38], and
patients with pancreatic cancer who express higher FGFBP1 levels have been shown to
have a worse prognosis [39].

So, FGFBP1 is generally considered an indicator of early stages of pancreatic and
colorectal adenocarcinoma [40], and as a biomarker it is very useful in predicting bacil-
lus Calmette–Guérin response in bladder cancer [41]. It has been shown to be signif-
icantly upregulated in early dysplastic lesions of the human colon as well as in pri-
mary and metastatic colorectal cancers, whereas its knock-down led to anti-proliferative
effects [42–44]. Therefore, its targeting using miR-based approaches could also lead to
novel strategies in oncology.

Last but not least, the FGF signaling pathway has been shown to be intimately involved
in the regulation of the vascular tone, with important roles in a number of homeostatic pro-
cesses including blood pressure regulation, inflammation, shock, and ischemia-reperfusion,
as well as injury/repair situations involving the vasculature, nervous system and dermal
wound healing [45,46], and it also affects vascular morphogenesis of pre-endothelial cells
of the embryo [47]. One of the main limitations of our study is having performed just
in vitro assays; however, the FGFBP1 targeting by miR-4432 was confirmed in two different
cell types (i.e., hBMECs and HUVECs). Additional studies are necessary to confirm the
effects of miR-4432 in the pathobiology of hypertension and other cardiovascular and
cerebrovascular disorders.

In summary, we established that FGFBP1 is expressed in ECs and that miR-4432 finely
controls its expression levels both at the mRNA and protein level.

4. Methods
4.1. Cells and Other Reagents

hBMECs were purchased from Neuromics (Catalog code number: HEC02; Minneapo-
lis, MN, USA). HUVECs were purchased from ThermoFisher Scientific (Catalog code
number: C0035C; Waltham, MA, USA). Cells were cultured at early passages (3–7) under
standard conditions (37 ◦C, 5% CO2), as previously described [48]. In some assays, the cells
were transfected with pcDNA3.1-FGFBP1 plasmids obtained from GenScript (Piscataway,
NJ, USA). All other reagents were obtained from Merck (Darmstadt, Germany).
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4.2. Identification of miR-4432 as a Modulator of FGFBP1

To ascertain which miRs could specifically target the 3′-UTR of FGFBP1, we harnessed
Target Scan Human 8.0, as reported previously [48]. The effects of miR-4432 on FGFBP1
gene transcription were assessed in hBMECs cells through a luciferase-reporter that con-
tained the 3′-UTR of the predicted miR interaction site, in both the WT and mutated forms.
The mutant of FGFBP1 3′-UTR (FGFBP1-MUT, see Figures 1 and 2), which contained
substituted nucleotides in the region of the predicted miR-4432 binding-site of FGFBP1
3′-UTR, was designed via the NEBase Changer and Q5-site-directed mutagenesis kit (New
England-Biolabs, Ipswich, MA, USA) as previously reported [48].

Using Lipofectamine-RNAiMAX (Thermo Fisher Scientific), hBMECs were transfected
(66% transfection efficiency) with 0.05 µg of the 3′-UTR plasmid as well as miR-4432
mimic (a chemically synthesized double-stranded RNA that mimics endogenous miR-
4432, MedChemExpress, Monmouth Junction, NJ, USA) or miR-4432 inhibitor (a steric
blocking oligonucleotide that hybridizes with mature miR-4432 and inhibits its function,
IDT, Coralville, IA, USA), or a negative control (non-targeting scramble, IDT), reaching
a final concentration of 50 nMol/L [48]. Utilizing the Luciferase-Reporter Assay System
(Promega, Madison, WI, USA), we quantified Firefly-and-Renilla luciferase activities forty-
eight hours after the transfection, as previously described [48]. In some experiments,
endothelial cells were transfected with shRNA-FGFBP1 or shRNA-scramble (Origene,
Rockville, MD, USA), following the manufacturer’s instructions. TaqMan microRNA
Assays (Thermo Fisher Scientific) were used to quantify mature miR-4432 using U18 as
endogenous control, as described in the literature [16]. FGFBP1 expression was assessed
via RT-qPCR as previously reported [48], normalizing to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). The sequences of oligonucleotide primers (Merck, Darmstadt,
Germany) are shown in Table 1.

Table 1. Primer sequences used for RT-qPCR assays.

Genes F/R Sequence (5′-to-3′) bp

FGFBP1
Forward GG AGG AGC TGT GAG TAA CGT

113Reverse TG TCA GGT AGA GTG CAA GGG

GAPDH
Forward GG CTC CCT TGG GTA TAT GGT

94Reverse TT GAT TTT GGA GGG ATC TCG
FGFBP1 stands for fibroblast growth factor binding protein 1; GAPDH stands for glyceraldehyde-3-phosphate-
dehydrogenase; bp indicates base pairs.

4.3. Immunoblotting

Immunoblotting assays were performed as previously described and validated by our
group [16,49]; the intensity of the bands was quantified using FIJI (“Fiji Is Just Image J”)
software. The antibody for FGFBP1 was purchased from ThermoFisher Scientific (Catalog
code number: PA5-77220); the antibody for β-Actin was purchased from abcam (Cambridge,
MA, USA; Catalog code number: ab8229).

4.4. Mitochondrial ROS

Mitochondrial ROS generation was assessed using MitoSOX Red (catalog code number:
#M36008; Thermo Fisher Scientific) in hBMECs cells treated with Ang II (400 nMol for 4 h),
as previously described [50].

4.5. Statistical Analysis

All data were expressed as means± standard error of the means (SEMs). The statistical
analyses were carried out using GraphPad 9 (Dotmatics, San Diego, CA, USA). Statistical
significance, set at p < 0.05, was tested using the non-parametric Mann–Whitney U test or a
two-way ANOVA followed by Bonferroni multiple comparison test, as appropriate.
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5. Conclusions

Taken together, our results indicate for the first time, to the best of our knowledge, that
miR-4432 specifically targets the 3′UTR of FGFBP1, thereby representing a novel potential
strategy against hypertension, cerebrovascular disease, and other disorders characterized
by endothelial dysfunction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12030459/s1, Figure S1: Validation of FGFBP1 targeting
by miR-4432 in HUVECs.
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