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Simple Summary: Hyperuricemia is a major risk factor for gout. Inhibition of liver xanthine oxi-
dase has been shown to reduce the uric acid level in blood. However, side effects were reported
for the xanthine oxidase inhibitors clinically used in the treatment of hyperuricemia. This study
aimed to evaluate strictinin, a natural polyphenol from Pu’er tea, for its therapeutic effects on hy-
peruricemia. Alleviation of hyperuricemia by strictinin supplementation was observed in AML12
mouse hepatocytes treated with xanthine as well as in an animal model using mice treated with
potassium oxonate.

Abstract: Hyperuricemia, an abnormally high level of blood uric acid, is a major risk factor for gout.
Although xanthine oxidase inhibitors were clinically used to lower blood uric acid level, the concerned
side effects restricted their utilization. In this study, strictinin, an abundant polyphenol in Pu’er tea,
was evaluated for its preventive effects on hyperuricemia. The results showed that the xanthine
oxidase activity, uric acid production, and inflammation in AML12 mouse hepatocytes treated with
xanthine were significantly reduced by the supplementation of strictinin. Detailed analyses revealed
that strictinin inhibited xanthine-induced NLRP3 inflammasome activation. Consistently, the elevated
blood uric acid level and the enhanced xanthine oxidase activity in mice treated with potassium
oxonate were effectively diminished by strictinin supplementation. Moreover, for the first time,
strictinin was found to promote healthy gut microbiota. Overall, strictinin possesses a great potential
to be utilized as a functional ingredient for the prevention of hyperuricemia.

Keywords: hyperuricemia; NLRP3 inflammasome; strictinin; uric acid; xanthine

1. Introduction

Hyperuricemia is a metabolic disease characterized by high blood uric acid (UA). It
results from the excess UA synthesized in the liver and/or incompetent excretion from the
kidney. In Taiwan, the proportions of men and women with their blood uric acid levels
exceeding 7.0 mg/dL were reported to be 46% and 26%, respectively [1]. The high level of
UA is a typical impediment in tubules and may lead to the progression of hyperuricemic
nephropathy, as shown by the deposition of UA crystals enclosed by macrophages in the
kidneys of hyperuricemic animals [2].
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Hyperuricemia is noticed as a major risk factor for gout and metabolic syndromes,
including several chronic diseases in the liver, heart, and kidney [3–5]. High dietary intake
of high-purine foodstuffs, such as alcoholic beverages, organ meats, seafood, and shellfish,
might increase the UA level in blood. Purine (guanosine and inosine) nucleotides from diets
are converted to xanthine by way of enzymatic reactions in the liver putatively by specific
enzymes including nucleotidase, purine nucleoside phosphorylase, guanine deaminase,
and xanthine oxidase (XOD) [6]. In the human body, xanthine is assumed to be oxidized
to UA by XOD, a highly expressed enzyme in the liver [7]. As a result, reducing UA
production by modulating liver enzymes responsible for UA production is assumed to
effectively prevent the UA-induced metabolic diseases.

Recent studies showed that NOD-like receptor family pyrin domain containing
3 (NLRP3) inflammasome presumably played a key role in the development of many
diseases, including UA-induced kidney inflammation and fibrosis [6]. NLRP3 inflamma-
some contains several proteins, such as NLRP3, pro-caspase-1, and the speck-like protein
with a caspase recruitment domain (ASC) [8,9]. Activation of NLRP3 inflammasome re-
quires two steps. The first step is the initiation reaction, where the cells are subjected to
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns
(DAMPs). NF-κB signal transduction is activated to promote the production of NLRP3,
pro-IL-1β, and pro-IL-18. The second step is the activation reaction, where caspase-1 trig-
gers the generation of IL-1β and IL-18 to promote the inflammation response. Notably, UA,
a DAMP, was shown to induce the production of reactive oxygen species (ROS) and further
NLRP3 inflammasome activation [6]. In addition, activation of XOD seemed to activate the
NLRP3 inflammasome [10]. Therefore, inhibition of XOD activity might be beneficial to
reduce UA production and NLRP3 inflammasome activation [11].

Allopurinol, an inhibitor of XOD, is clinically applied to the treatment of hyper-
uricemia and gout by stimulating the renal excretion of UA [12]. However, side effects
such as allergies, skin rash, liver necrosis, and poor renal function were reported for this
drug [13]. Thus, it is essential to develop new drugs without severe side effects for the
treatment of hyperuricemia. Strictinin, a hydrolysable tannin abundantly found in Pu’er
tea, was demonstrated to display a broad range of biological functions, such as anti-obesity,
anti-tumor, antipsoriatic, anti-microbial, and anti-viral activities [14–18]. In this study, the
preventive effects of strictinin on hyperuricemia were investigated in a cellular model
as well as in an animal model. Moreover, gut dysbiosis has been suggested to play an
important role in the pathogenesis of inflammation and metabolic disease, and Pu’er tea
was known to possess cholesterol- and lipid-lowering effects through modulation of gut
microbiota [19,20]. Hence, whether the UA-lowering effect of strictinin could be partially
attributed to modulation of intestinal microbiota was also evaluated.

2. Materials and Methods
2.1. Chemicals and Reagents

Strictinin was purified from Pu’er tea according to the protocol developed previ-
ously [14]. Potassium oxonate (uricase inhibitor) and allopurinol (XOD inhibitor) were
bought from Sigma-Aldrich (St. Louis, MO, USA). MCC950 (NLRP3 inhibitor) was ob-
tained from Cayman Chemical (Ann Arbor, MI, USA). Primary antibodies against NLRP3,
pro-caspase-1, and ASC were purchased from Abcam (Cambridge, MA, USA). Primary
antibodies against caspase-1 and JNK were purchased from Epitomics (Cambridge, MA,
USA). Primary antibody against IL-1β was purchased from PeproTech (Rocky Hill, NJ,
USA). Primary antibodies against GAPDH, p-NF-κB, NF-κB, p-ERK1/2, ERK1/2, and
p-JNK as well as horseradish peroxidase-conjugated anti-mouse and anti-rabbit secondary
antibodies were supplied by the Cell Signaling Technology (Beverly, MA, USA).

2.2. Cell Culture

Mouse hepatic cell line AML12 was supplied by the American Type Culture Collection
(ATCC® CRL-2254). The cells were amplified in DMEM/F-12 (Gibco; Thermo Fisher
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Scientific, Inc., Billings, MT, USA) with the supplementation of 10% fetal bovine serum
(Gibco), 100 µg/mL of penicillin and streptomycin, 5 µg/mL of ITS-M (Simply Biologics,
Miaoli, Taiwan), and 40 ng/mL of dexamethasone (Sigma-Aldrich, Darmstadt, Germany).
The cultured cells were incubated under the atmosphere of 5% CO2 at 37 ◦C, and then
plated on a 10 cm dish (approximately 800,000 cells per plate) for the following experiments.

2.3. Cell Viability Assay

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was
employed to assess cytotoxicity. AML12 cells were loaded into 96-well plates (approxi-
mately 8000 cells per well). After incubation with strictinin concentrations of 50, 100, 250,
or 500 µM for 24 h, the cells were rinsed with phosphate buffered saline (PBS). Thereafter,
100 µL of 10% MTT solution was applied to the wells and they were further incubated for
2 h at 37 ◦C. The MTT solution was decanted after incubation, and 100 µL of dimethyl
sulfoxide (DMSO, Sigma-Aldrich) was supplied to the wells to dissolve the crystals. An
enzyme-linked immunoassay (ELISA) analyzer (Cayman Chemical, Ann Arbor, MI, USA)
was employed to detect the optical density of each well at a wavelength of 595 nm. All
experiments were executed in triplicates.

2.4. Detection the Production of UA and IL-1β

AML12 cells were rinsed with PBS and then treated with xanthine (UA precursor) of
100 or 200 µM with or without strictinin of 100 or 250 µM. After incubation for 4 and 24 h,
100 µL of medium was taken to determine the concentration of UA using the Uric Acid
Assay Kit following the producer’s protocol (Cayman Chemical, Ann Arbor, MI, USA). The
content of IL-1β in the supernatant was measured by a commercial IL-1β Mouse ELISA Kit
(Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA). All tests were executed in
triplicates according to the manufacturer’s instructions.

2.5. Western Blotting Analysis

Cell lysates were collected by centrifugation (10,000× g) at 4 ◦C for 30 min. After cen-
trifugation, the proteins in the supernatant were subjected to separation by sodium dodecyl-
sulfate polyacrylamide gel electrophoresis, and transferred onto a polyvinylidene difluoride
membrane. The membrane was immersed in 5% non-fat milk for 1 h prior to incubation
with the primary antibodies at 4 ◦C overnight. Primary antibodies against GAPDH (1:5000),
NLRP3 (1:1000), caspase-1 (1:1000), pro-caspase-1 (1:1000), ASC (1:1000), p-NF-κB (1:1000),
NF-κB (1:1000), IL-1β (1:1000), p-ERK1/2 (1:1000), ERK1/2 (1:1000), p-JNK (1:1000), and
JNK (1:1000) were used in the immunological detection. Membranes were rinsed with
Tris-buffered saline containing 0.1% Tween® 20 (TBST) 3 times prior to incubation with
secondary antibodies at 37 ◦C for 1 h. Then, the target protein bands were imaged using the
enhanced chemiluminescent reagent (Invitrogen) and quantitated by the iBright Imaging
Systems (iBright FL 1000; Thermo Fisher Scientific, Inc., Waltham, MA, USA).

2.6. In Vivo Experiment

8-week-old male ICR mice (BioLASCO Taiwan Co., Ltd., Taipei, Taiwan) were allowed
to freely access to tap water and the regular rodent diet following the guidelines for animal
protection. They were housed in plastic cages within the Laboratory Animal Center of the
National Cheng Kung University Medical College under a 12 h/12 h light and dark cycle
in a pathogen-free room at 24 ± 2 ◦C and 50 ± 10% relative humidity with an approval no.
108240. The mice were allocated into six groups with comparable body weight (b.w.) in
each group (n = 3); (1) control group: normal diet without any treatment, (2) hyperuricemic
group: administered with potassium oxonate (PO) of 400 mg/kg b.w., (3) positive control
group: PO of 400 mg/kg b.w. + allopurinol (AP) of 10 mg/kg b.w., (4) strictinin-400 group:
PO of 400 mg/kg b.w. + strictinin (ST) of 400 mg/kg b.w., (5) strictinin-700 group: PO of
400 mg/kg b.w. + ST of 700 mg/kg b.w., and (6) strictinin-1000 group: PO of 400 mg/kg
b.w. + ST of 1000 mg/kg b.w. PO and AP were suspended in saline while ST was in water.
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After fasting for 1 h, PO was given to mice by oral gavage followed by AP or various
concentrations of ST approximately 1 h later. The experiment was conducted for 7 days
and all animals were sacrificed on the last day. Samples of blood and organs were collected
for further analyses, including detection of uric acid level and XOD activity as well as
histological staining.

2.7. Detection of XOD Activity

XOD activity in serum or liver was determined using the Xantine Oxidase Fluorometric
Assay Kit (Cayman Chemical, Ann Arbor, MI, USA) following the producer’s protocol.
Serum samples were diluted with the XOD sample buffer. Liver tissue was extracted with
the lysis buffer, and the supernatant after centrifugation was collected for analysis. Each
sample of 50 µL was loaded into a well in the 96-well plates, mixed with the assay cocktail,
and incubated at 37 ◦C for 45 min. The fluorescence was measured with excitation/emission
wavelengths of 540/595 nm and the OD value was calculated for the final concentration.

2.8. Histopathological Analysis

Kidney and liver samples were fixed directly in 3.7% formalin for 7 days at room
temperature. Serial sections (5 µm in thickness) of kidney and liver were dehydrated
through different dilutions of ethanol, and then embedded in paraffin. Prior to hematoxylin
and eosin staining, the sections were hydrated with ethanol gradient and washed with
tap water. The morphology of renal cells and hepatocytes were observed under a light
microscope, the Olympus CK40 (Olympus, Tokyo, Japan).

2.9. Analysis of Microbiota

The feces were collected from mice after sacrifice, and sent to the Tri-I Biotech Inc.
(Taipei, Taiwan) for analysis of gut microbiota. Microbial DNA fragments were first
extracted with the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany). Subse-
quently, the fragments corresponding to the V3–V4 hypervariable region of 16S rDNA were
amplified with 341F and 805R primers. The PCR amplified fragments were isolated by us-
ing the QIAquick PCR Purification Kit (Qiagen). After amplification, DNA fragments were
collected and further purified by the AMPure XP beads (Beckman Coulter, Indianapolis,
IN, USA) and the MinElute Gel Extraction Kit (Qiagen). Finally, a library was constructed
with the Celero™ DNA-Seq System (1–96) (NuGEN, Redwood City, CA, USA). Sequencing
data were obtained by using the Illumina MiSeq™ System (Illumina Inc., San Diego, CA,
USA). Sequences with similarity higher than 97% were classified into identical operational
taxonomic units.

2.10. Statistical Analysis

The in vivo and in vitro data are expressed as the mean ± standard deviation (SD).
Student’s t-test was used for the experimental data to compare the differences between
two groups. When the p-value was <0.05, the differences were considered statistically
significant. The experiments were performed at least three times.

3. Results
3.1. Effects of Strictinin on XOD Activity, UA Production, and IL-1β Expression in AML12 Cells
Treated with Xanthine

Cytotoxicity of strictinin (50, 100, 250, and 500 µM) to AML12 cells was examined first
and the results showed that cell viability was significantly reduced when strictinin was
supplemented at a concentration of 500 µM (Figure 1A). Therefore, strictinin of 100 and
250 µM was used in the following detection process. As shown in Figure 1B, the XOD activ-
ity in AML12 cells treated with xanthine (100 or 200 µM) for 4 h was significantly elevated
in comparison with the control group, and the significant elevation of XOD activity was
substantially attenuated when strictinin (100 or 250 µM) was supplemented. Similarly, UA
production in AML12 cells treated with xanthine for 4 or 24 h was significantly enhanced,
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and the enhancement of UA production was mostly abolished when strictinin was sup-
plemented (Figure 1C). Inflammation was observed in AML12 cells treated with xanthine
of 100 µM for 4 or 24 h as the IL-1β expression was detected, and the xanthine-induced
inflammation was significantly inhibited when strictinin of 250 µM was supplemented
(Figure 1D).
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Figure 1. Effects of strictinin (ST) on cell viability (A), XOD activity (B), UA production (C), and
IL-1β expression (D) of AML12 cells. Cell viability of AML12 cells was examined in the presence of
ST concentrations of 50, 100, 250, and 500 µM. Quantitative assays of XOD activity, UA production,
and IL-1β expression were performed when AML12 cells were treated with xanthine (100 or 200 µM)
and/or ST (100 or 250 µM) for 4 or 24 h. Data are presented as mean ± SD from three independent
experiments. * p < 0.05 compared with control. # p < 0.05 compared with xanthine alone groups.

3.2. Inhibition of Strictinin on the ERK1/2, JNK, and Xanthine-Induced NLRP3
Inflammasome Activation

XOD activity might lead to the activation of NLRP3 inflammasome, a modulator
involved in various inflammation pathways, and ERK and JNK have been shown to play
key roles in signal transduction in response to inflammation [6,21]. As shown in Figure 2A,
JNK instead of ERK was activated after xanthine treatment, while strictinin supplement
successfully inhibited the activation of ERK and JNK. Furthermore, xanthine treatment
significantly enhanced the activation of NF-κB while strictinin supplement decreased the
expression of NF-κB. Additionally, xanthine treatment for 6 h significantly upregulated the
expressions of NLPR3, ASC, caspase-1, and cleaved caspase-1; the elevated expressions of
these NLRP3 inflammasome components were reduced when strictinin was supplemented
(Figure 2B).
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Figure 2. Effects of xanthine and strictinin (ST) on signal transduction and NLRP3 inflammasome
pathways in AML12 cells. Western blot analysis was conducted with cell lysates from AML12 cells
after treatment with xanthine (100 µM) and/or ST (250 µM) for 6 h. Representative images and
quantitation of the Western blot are shown for the protein expressions related to signal transduction
pathway (A) and NLRP3 inflammasome pathway (B). GAPDH was an internal control for Western
blot analysis. Data are presented as mean ± SD from three independent experiments. The densitome-
try readings of Western blot analysis was shown in Supplementary Materials, Figure S2. * p < 0.05
compared with control.

To further clarify whether the anti-inflammatory effect of strictinin was indeed regu-
lated through inhibition of NLRP3 inflammasome activation, AML12 cells were treated with
MCC950, an NLRP3 inflammasome inhibitor, alone or in combination with xanthine. Simi-
lar to the results of strictinin supplementation (Figure 2), treatment using MCC950 (1 µM)
decreased the activation of ERK, JNK, and NF-κB (Figure 3A), and reduced the expressions
of NLPR3, ASC, caspase-1, and cleaved caspase-1 (Figure 3B). Next, caspase-1-silenced
AML12 cells were used to confirm that strictinin inhibited inflammation through down-
regulation of NLRP3 inflammasome activation. After silencing caspase-1, the expression
of cleaved IL-1β was significantly decreased, particularly in the strictinin-supplemented
groups (Figure 3C). Strictinin seemed to play an important role in inhibiting XOD activity,
NLRP3 inflammasome activation, and UA production in hepatocytes.
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Figure 3. Downregulation of strictinin (ST) on signal transduction and NLRP3 inflammasome
pathways. Western blot was conducted with cell lysates from AML12 cells after treatment with
xanthine (100 µM) and/or inhibitor MCC950 (1 µM) for 6 h. Representative images and quantitation
of the Western blot are shown for the protein expressions related to signal transduction pathway
(A) and NLRP3 inflammasome pathway (B). NLRP3 inflammasome-related protein expressions
were detected in caspase-1-silenced AML 12 cells (caspase-1 -/-) treated with xanthine and/or ST
for 24 h (C). GAPDH was an internal control for Western blot analysis. Data are presented as
mean ± SD from three independent experiments. The quantification data for Figure 3C is shown in
Supplementary Materials, Figure S1. The densitometry readings of Western blot analysis was shown
in Supplementary Materials, Figure S3. * p < 0.05 compared with control. # p < 0.05 compared with
xanthine alone groups.
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3.3. UA Lowering and XOD Inhibition of Strictinin in Mice Treated with Potassium Oxonate

A hyperuricemia animal model using mice treated with potassium oxonate (PO), a
uricase inhibitor, was employed to evaluate the beneficial effects of strictinin in vivo. The
body weight of mice treated with PO and allopurinol was found to increase gradually
while no significant change was observed for the body weight of mice in the other groups
(Figure 4A). No significant differences were detected for the function parameters of liver
and kidney, including values of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic
transaminase (GPT) (C), and creatinine (CRE) (Figure 4B–D). The blood urea nitrogen (BUN)
value was slightly different among groups but not statistically significant (Figure 4E). The
liver XOD activity in PO-treated mice was elevated in comparison with the control group,
and the elevation was significantly reduced when mice were supplemented with allopurinol
or strictinin (Figure 4F). Similarly, the serum UA level in PO-treated mice was elevated
in comparison with the control group, and the elevation was significantly reduced when
mice were supplemented with allopurinol or strictinin (Figure 4G). The results were in
agreement with the observation in the cellular model (Figure 1), indicating that strictinin
inhibited liver UA production and XOD activity. Histopathological assessment revealed
that no significant damage was observed in the liver tissues of mice from all the groups, and
that slight damage with tubular dilation was observed in the kidney tissues of PO-treated
mice while no significant damage was observed in the kidney tissues of PO-treated mice
supplemented with strictinin (Figure 4H). It seemed that the slight damage in the kidney
caused by PO treatment could be rescued by the supplementation of strictinin.
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Figure 4. Effects of strictinin (ST) in PO-treated hyperuricemia C57BL/6 mice. PO-treated mice
were supplemented with allopurinol (AP) or ST. Changes in body weight (A), glutamic oxaloacetic
transaminase (GOT) (B), glutamic pyruvic transaminase (GPT) (C), creatinine (CRE) (D), blood
urea nitrogen (BUN) (E), XOD activity (F), and serum uric acid production (G) were measured.
Histopathological assessment of mice kidney and liver tissues are shown by representative images
(H). Renal tubular dilation is indicated by arrows. Scale bar = 50 µm. * p < 0.05 compared with the
control groups. # p < 0.05 compared with the PO-treated groups. Data are presented as mean ± SD
from three independent experiments.
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3.4. Beneficial Effects of Strictinin on the Gut Microbiota

The impacts of strictinin on gut microbiota of mice after ingestion were evaluated. The
taxonomy profiling results showed that no significant difference of Firmicutes/Bacteroidetes
(F/B) ratio was observed among the animal groups (Figure 5A). Furthermore, the Venn dia-
gram results showed that 1579 species were shared between the PO-treated group and the
control group, 1586 species between the strictinin-treated group and the control group, and
1536 species between the PO+strictinin-treated group and the PO-treated group (Figure 5B).
The difference of bacteria between two groups was further analyzed using Linear Discrimi-
nant Analysis (LDA). Significant change in Porphyromonadaceae, Psychrophilus, Jeotgalicoccus,
Staphylococcaceae, Bacillales, and Bacilli was detected between the PO-treated group and
the control group (Figure 5C). Significant change in Psychrophilus, Jeotgalicoccus, Eqorem,
Staphylococcus, Staphylococcaceae, and Bacillales was detected between the strictinin-treated
group and the control group (Figure 5D). Significant change in Psychrophilus, Jeotgalicoccus,
Staphylococcaceae, Bacillales, and Staphylococcaceae was detected between the PO+strictinin-
treated group and the PO-treated group (Figure 5E).
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Figure 5. Analysis of mouse gut microbiota. Taxonomy composition bar plots indicate bacterial phyla
in the control group (C.1–C.3), PO-treated group (PO.1–PO.3), strictinin-treated group (ST.1–ST.3),
and PO+strictinin-treated group (PO+ST.1–PO+ST.3) (A). Venn diagram was created based on the
Operational Taxonomic Unit (OTU), which showed the correlation of number of species between
different treatment groups (B). The cladograms show the results of Linear Discriminant Analysis
(LDA) of the significant difference in the abundances of gut microbiota between the PO-treated group
and the control group (PO_C) (C), between the strictinin-treated group and the control group (ST_C)
(D), and between the PO+strictinin-treated group and the PO-treated group (PO+ST_PO) (E) (n = 3
in each group).

Detailed analysis of bacterial species with a significant difference between the PO-
treated group and the control group showed that the proportions of Clostridium alde-
nense, Clostridium lavalense, Clostridium septicum, Clostridium saccharolyticum, and Butyrici-
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coccus pullicaecorum were significantly elevated, while those of Clostridium thermosuccino-
genes, Marvinbryantia formatexigens, and Ruminococcus lactaris were significantly reduced
(Figure 6A). When the strictinin-treated group was compared with the control group,
the proportions of Clostridium clostridioforme, Proteocatella sphenisci, and Ruminococcus lac-
taris were significantly elevated, while those of Clostridium saccharolyticum, Clostridium
cellulovorans, Clostridium bolteae, Clostridium symbiosum, Clostridium lavalense, Clostridium
saccharolyticum, and Staphylococcus sciuri were significantly reduced (Figure 6B). When the
PO+strictinin-treated group was compared with the PO-treated group, the proportions of
Clostridium thermosuccinogenes, Marvinbryantia formatexigens, and Ruminococcus lactaris were
significantly elevated, while those of Clostridium aldenense, Clostridium cellulovorans, Clostrid-
ium lavalense, Clostridium saccharolyticum, Clostridium symbiosum, Ruminococcus gauvreauii,
Roseburia faecis, and Ruminococcus gnavus were significantly reduced (Figure 6C).
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Figure 6. Metastats analysis of 16S rRNA operational taxonomic unit clustering using sequence
similarity. Significant species-level changes were identified between the PO-treated group and
the control group (PO_C) (A), between the strictinin-treated group and the control group (ST_C)
(B), and between the PO+strictinin-treated group and the PO-treated group (PO+ST_PO) (C). (n = 3
in each group).

4. Discussion

Hyperuricemia is a condition where the UA level in a patient’s blood is abnormally
elevated, clinically defined as >7 mg/dL (420 µM) in men and >6 mg/dL (360 µM) in
women [22]. UA of high concentration tends to precipitate in body tissues or body fluids;
therefore, persistent hyperuricemia presumably leads to the formation of urate crystals,
a risk factor for various metabolic disease [6,23]. XOD is a key enzyme involved in the
conversion of xanthine and hypoxanthine to UA in the liver [24]. The increase of XOD
activity may lead to the over-synthesis of UA, and thus is also regarded as an indicator of
hyperuricemia [25]. Clinically, UA-lowering (hypouricemic) drugs effectively alleviate the
painful hyperuricemia-induced symptoms; however, the commonly used hypouricemic
drugs, such as allopurinol and febuxostat, have been reported to cause renal and gastroin-
testinal toxicity, kidney and liver damage, and myelosuppression [26,27]. Searching for
potential hypouricemic compounds from natural sources might be an adequate approach
to identify new hypouricemic drugs. In this study, strictinin, an antioxidant found in Pu’er
tea [28,29], was examined in the established xanthine-treated hepatocyte model and in the
PO-induced hyperuricemia animal model. The results indicated that strictinin effectively
reduced UA production by inhibiting XOD activity according to both in vitro and in vivo
studies. The data suggest that strictinin is a potential hypouricemic agent.
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Xanthine has been reported to induce inflammation through the NLRP3 pathway [6];
hence, the anti-inflammatory effects of strictinin against the NLRP3 activation in AML12
cells were evaluated. For the first time, the urate-lowering effect of strictinin was attributed
to its anti-inflammation via inactivation of the NLRP3 pathway in the cell model. Ac-
cording to our results, treatment with strictinin was found to inhibit the expression of
NLRP3, caspase-1, and IL-1β (Figure 3). IL-1 is known to be a sign of inflammation and is
related to cancer and tumor development [30]. A previous study showed that strictinin
treatment modulated the PI3K/AKT/GSK3β pathway in triple negative breast cancer [31]
and blocked IL-8 mRNA expression in normal human epidermal keratinocytes [32]. In
this study, strictinin was shown to block the activation of the ERK1/2, JNK, and NF-κB
pathways, which have been noticed to be inflammation-related. The NF-κB pathway has
been reported to be upstream of IL-1β and NLRP3 [30], and is now recognized as an
inflammation pathway involved in various diseases including urate nephropathy [6].

Our present results also showed that xanthine activated the NLRP3 inflammasome
pathway, while strictinin inhibited the NLRP3 inflammasome activation (Figure 3). No-
tably, silenced caspase-1 expression in AML12 cells significantly reduced IL-1β production,
confirming that strictinin inhibited inflammation through the downregulation of NLRP3 in-
flammasome activation. It is consistent with our previous study showing that pterostilbene,
a natural stilbene compound found in berries and grapes, prevented the high-adenine-
induced urate nephropathy. This was characterized by renal inflammation and fibrosis,
and mainly regulated by TGF-β production and NLRP3 inflammasome pathway acti-
vation [6]. Therefore, we strongly suggest that xanthine can induce hyperuricemia in
the kidney and inflammation in liver through the activation of NF-κB/NLRP3 inflam-
masome pathway; whereas strictinin supplementation can reduce UA production and
inflammation through modulating NLRP3 inflammasome pathway. Moreover, it has been
shown that xanthine treatment activated xanthine oxidase, a key enzyme involved in the
production of reactive oxygen species (ROS), and thus might induce ROS production in-
directly [33]. Since strictinin is also known to possess anti-oxidative effects [29], it is also
possible that the ROS production induced by xanthine treatment can be inhibited by the
strictinin supplementation.

The human gut microbiota is composed of thousands of bacterial species. Gut mi-
crobiota is also known as the “forgotten organ” due to its vital contribution to human
health [34]. In a previous study, significant changes were observed in the gut microbiota of
high-purine-induced hyperuricemia rats, suggesting that renal diseases might also result
in an imbalance of gut microbiota [35]. In this study, a relatively high abundance of several
species including Clostridium septicum was detected in PO-treated mice in comparison with
the control group (Figure 6). Clostridium septicum has been shown to cause aortic aneurysms,
which were associated with high mortality and malignancy of colon cancer [36]. Meanwhile,
the abundance of Clostridium thermosuccinogenes, an attractive production organism for the
metabolism of organic acids and succinic acid from lignocellulosic biomass-derived sugars,
was reduced in the gut microbiota of PO-treated mice in comparison with the control group.
The results suggested that PO-treated hyperuricemic mice might have a relatively high
abundance of gut microbiota related to inflammation.

Clostridium was reported to be prevalent in obese patients with various metabolic
disorders [37] and in obese children with asymptomatic hyperuricemia [38]. In this study,
the proportions of some Clostridium species including Clostridium aldenense [39], Clostridium
lavalense [40], Clostridium cellobioparum [41], and Clostridium symbiosum [42], which have
been reported to be related to infection and inflammation, were significantly reduced in
the gut microbiota of mice treated with strictinin (Figure 6B,C). The result seemed to be in
agreement with a previous study showing that strictinin isolated from Pu’er tea possessed
anti-obesity effects [43]. In addition, the abundance of Staphylococcus sciuri, which has
been shown to contribute to autoimmune diseases and anti-microbial resistance [44], was
significantly reduced in the gut microbiota of strictinin-treated mice in comparison with the
control group (Figure 6B). The results suggested that strictinin might reduce inflammation
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and infection via modulation of gut microbiota. This suggestion was consistent with
previous reports showing that Pu’er tea extracts could alleviate intestinal inflammation
and dextran sulfate sodium induced colitis in mice by regulating gut microbiota [45,46].

Recent studies indicated that some species of Ruminococcus might be associated with
Crohn’s disease, the most common subtype of inflammatory bowel disease [47]. Roseburia
spp. were reported to affect various metabolic pathways, and were assumed to be associ-
ated with several diseases, including irritable bowel syndrome, obesity, type 2 diabetes,
nervous system conditions, and allergies [48]. In this study, the proportions of Ruminococcus
gnavus, Ruminococcus gauvreauii, and Roseburia faecis were significantly reduced in the gut
microbiota of PO+strictinin-treated mice in comparison with those in the gut microbiota
of PO-treated mice (Figure 6C). Taken together, the results suggested that hyperuricemia
might alter the gut microbiota that was linked to intestinal inflammation, and that strictinin
supplementation significantly changed multiple bacterial species that could promote the
development of a healthy gut microbiota with protective potential against inflammatory-
related diseases. However, most of the phyla and genus are still left unclassified, which
calls for further investigation for the effects of strictinin on the modulation of these genera.

The content of strictinin in the dry weight of Pu’er tea ranges from 2 to 10% [14,15].
Daily consumption of tea infusion from 10 g Pu’er tea is commonly acceptable for tea
drinkers. Therefore, daily uptake of strictinin up to 500–1000 mg seems to be safe according
to the empirical drinking behavior. However, safety issues for taking strictinin of a high
dosage as a drug has not been addressed so far. Notably, cell viability of AML12 mouse
hepatocytes was dose-dependently reduced by strictinin concentrations of 50–500 µM,
and the reduction was found statistically significant when the strictinin concentration
was 500 µM (Figure 1A). Moreover, NLRP3 and Caspase-1 were slightly upregulated by
strictinin supplementation (100 or 250 µM) though the upregulation was not statistically
significant (Figure 2). Taken together, one should be cautious for the development of
strictinin as a drug or functional supplement. Definitively, more evaluation, such as toxicity
of strictinin in high dosages, should be executed prior to its practical utilization.

5. Conclusions

In this study, alleviation of hyperuricemia by strictinin supplementation was observed
in AML12 mouse hepatocytes treated with xanthine. It seemed that xanthine induced UA
production and inflammation in hepatocytes through the NF-κB/NLRP3 inflammasome
pathway, and that strictinin supplementation played a role in the inhibition of inflammation-
related pathways, such as ERK1/2, JNK, NF-κB, and NLRP3 inflammasome activation.
Consistently, the urate lowering effect, renal protection, and the beneficial effects of stric-
tinin on the development of gut microbiota were observed in an animal model using mice
treated with potassium oxonate. It is suggested that strictinin is not only a protective agent
to reduce UA production, inflammation, and renal damage but also a health ingredient to
improve gut microbiota composition.
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biology12020329/s1, Figure S1: The quantitation of the Western blot showed protein expressions.
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are shown in Figure 3A–C.
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