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Simple Summary: Genomic association analyses for milk yield and milk quality traits including
mastitis were accomplished in a dairy cattle population from the harsh and challenging tropical
savanna climate of Bengaluru, India. A further effect of selection was due to social–ecological drivers,
i.e., specific constraints that are prevalent in small-sized family farms. As a time report, this study
identified footprints of selection among the dairy cattle breeds in this region. The genome-wide
association study (GWAS) identified two SNPs, rs109340659 and rs41571523, significantly associated
with test-day milk yield. Fibrosin-like 1 (FBRSL) and calcium voltage-gated channel auxiliary subunit
gamma 3 (CACN) were the respective annotated potential candidate genes. Furthermore, the genomic
regions under selection were associated with pathways and mechanisms involving ubiquitination,
cell signaling and immune response. Hence, contrasting dairy breeds genomically contributed to the
detection of genomic regions under selection, with strong effects on adaptation and overall disease
resistance.

Abstract: A study was designed to identify the genomic regions associated with milk production
traits in a dairy cattle population reared by smallholder farmers in the harsh and challenging tropical
savanna climate of Bengaluru, India. This study is a first-of-its-kind attempt to identify the selection
sweeps for the dairy cattle breeds reared in such an environment. Two hundred forty lactating dairy
cows reared by 68 farmers across the rural–urban transiting regions of Bengaluru were selected for
this study. A genome-wide association study (GWAS) was performed to identify candidate genes for
test-day milk yield, solids-not-fat (SNF), milk lactose, milk density and clinical mastitis. Furthermore,
the cross-population extended haplotype homozygosity (XP-EHH) methodology was adopted to
scan the dairy cattle breeds (Holstein Friesian, Jersey and Crossbred) in Bengaluru. Two SNPs,
rs109340659 and rs41571523, were observed to be significantly associated with test-day milk yield.
No significant SNPs were observed for the remaining production traits. The GWAS for milk lactose
revealed one SNP (rs41634101) that was very close to the threshold limit, though not significant.
The potential candidate genes fibrosin-like 1 (FBRSL) and calcium voltage-gated channel auxiliary
subunit gamma 3 (CACN) were identified to be in close proximity to the SNP identified for test-day
milk yield. These genes were observed to be associated with milk production traits based on previous
reports. Furthermore, the selection signature analysis revealed a number of regions under selection
for the breed-group comparisons (Crossbred-HF, Crossbred-J and HF-J). Functional analysis of these
annotated genes under selection indicated pathways and mechanisms involving ubiquitination, cell
signaling and immune response. These findings point towards the probable selection of dairy cows
in Bengaluru for thermotolerance.
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1. Introduction

Crossbreeding of Indian dairy cows (descript/native and non-descript) with exotic
breeds was introduced to boost milk production through rapid improvement in the native
germplasm [1]. Crossbreeding practices that formed the crossbred cattle ‘Taylor’ in Patna,
Bihar, were adopted in India as early as 1875 [2]. However, they were implemented on
a larger scale in 1963 with the introduction of the Intensive Cattle Development Project
(ICDP) as a component of the Special Development Program in the framework of the Third
Five-Year Plan [1]. Such crossbreeding programs played a significant role in placing India as
the world’s largest milk producer [1]. However, in the absence of a well-enforced breeding
policy, further crossing of the F1 progeny usually implies a productivity decline in the
F2 and subsequent generations [3]. Furthermore, extensive crossbreeding practices using
exotic cattle increase the population size of admixed cattle. Smallholder farmers retain
such admixed cattle typically in herds of 1 to 10 cows that are mostly bred by artificial
insemination [4]. Moreover, these herds do not have proper pedigree records or individual
animal performance, thereby lacking information for further genetic improvement. In such
a situation, where genetic improvement by traditional breeding schemes is hampered, ge-
nomic approaches could help in understanding genetic mechanisms that could be exploited
in practical breeding and selection schemes.

The availability of high-density single-nucleotide polymorphism (SNP) markers has
substantially enhanced the genomic selection process [5]. It is now possible to identify
genomic regions associated with traits of interest for future selection through genome-wide
association studies (GWASs) [5]. This analysis depends on linkage disequilibrium (LD)
between SNPs and the causal variants, implying the availability of both genotype and
phenotype data for the analysis [5]. The LD between SNP markers and causal variants in
an admixed population could be an outcome of the LD passed down from the parental pop-
ulation, also formed when crossing populations [6]. Furthermore, GWASs also contribute
to identifying potential candidate genes associated with economic and resilience traits.
Several researchers adopted such methodologies to identify potential candidate genes and
signatures of selection [7,8].

In recent years, a quite large number of studies focused on identifying selection
signatures in livestock and evaluating their potential to detect candidate markers associated
with economically important traits. Several statistical approaches have been developed to
detect selection signatures, including Tajima’s D-statistic [9], Fay and Wu’s H-statistic [10],
Composite of Likelihood Ratio (CLR) [11], extended haplotype homozygosity (EHH) [12],
cross-population extended haplotype homozygosity (XP-EHH) [12] and the integrated
haplotype score (iHS) [13]. The XP-EHH method is an extended approach of EHH and iHS
that compares long haplotypes between populations and identifies selected alleles based
on their respective high frequency or fixation within a single population [12]. The added
benefit of adopting this methodology is that it represents the recent signatures of selection,
thereby harboring genomic changes caused by recent selective pressures that may include
performance gain and breed formation [14].

A quite large number of studies worldwide focused on the detection of selection signa-
tures in cattle [15–18]. However, most of these studies considered commercially available
cattle breeds [14,17,18] or created divergent groups according to conventional traits [16,19]
by neglecting environmental or demographic characteristics as group stratification crite-
ria. Likewise, a major proportion of such studies were conducted in developed countries
having temperate climates, while limited reports address native breeds or crossbred cat-
tle in developing countries kept under harsh environmental conditions. As indicated
above, crossbreeding using assisted reproductive techniques (artificial insemination) is a
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widely practiced strategy in Indian dairy cows. Since predominantly smallholder farmers
practice dairy farming in Bengaluru, animals there are mostly subjected to natural and non-
systematic artificial selection in ongoing generations. Furthermore, exposure to multiple
environmental stressors like harsh climatic conditions, infectious diseases and low- and
poor-quality feed contributes to natural instead of artificial selection [15]. Such environ-
mental constraints are motivators for studies exploring the footprints of selection linked to
adaptation and production in dairy cattle reared under challenging tropical conditions.

Also, with regard to GWASs, numerous studies have been performed on dairy cattle
across the globe, but there is a scarcity of reports addressing the tropical environmental
context, especially for cow health traits. In such a context, genes with well-known effects
on commercial cow traits in developed countries might be switched off or on, pointing to
possible genotype-by-environment interactions. Likewise, to the best of our knowledge,
no previous study has focused on both GWASs and selective sweeps in Indian dairy cows
reared by smallholder farmers in a harsh tropical environment by applying “alternative”
selection strategies over decades.

Consequently, the aims of this study were (i) to perform a GWAS and to estimate
SNP-based genetic parameters for milk yield and mil- associated traits, as well as for clinical
mastitis, to identify important genomic regions and potential candidate genes associated
with variation in these traits and (ii) to compare selection signatures based on XP-EHH
considering exotic and crossbred cattle.

2. Materials and Methods
2.1. Study Location and Phenotypic Trait Recording

The study was conducted in the rising metropolitan city of Bengaluru in southern
India, where smallholder dairy farmers rear cattle across the rural–urban interface. A
total of 68 farms housing 240 lactating dairy cows with an age from 3 to 6 years were
selected for the study. All the selected animals were apparently healthy without any
visible signs of disease or infection. The animals reared in this region had favorable
hygiene scores with mild variation across the rural–urban interface [20]. The farms were
monitored for three seasons, “summer” (March–June), “monsoon” (July–October) and
“winter” (November–February) [21,22], for cow trait recording and for genotyping. All the
traits were recorded once per season. The phenotypic traits recorded included test-day
milk yield, milk composition traits (SNF, milk lactose, milk protein and milk density) and
a test for clinical mastitis. Approximately 30 mL of milk per cow was collected to assess
the milk composition variables using a Lactoscan Milk Analyzer (Softrosys Technologies,
Bengaluru, India). The mastitis test was performed for all four quarters of the udder using
the California Mastitis Test (CMT) following the protocol suggested by Kandeel et al. [23].
The overall CMT score of an animal during each recording was determined based on the
quarter with the highest CMT score. This was done to generate a data structure representing
a quite high infection status and pronounced phenotypic trait variation. The CMT scores
of negative, trace, 1, 2 and 3 were numerically recorded as 1, 2, 3, 4 and 5, respectively.
The survey stratification index (SSI) was used to distinguish the rural–urban interface
into “urban” (SSI < 0.3), “transition” or “peri-urban” or “mixed” (SSI: 0.3–0.5) and “rural”
(SSI > 0.5) [24]. The dairy cows were categorized into three genetic groups, crossbred,
exotic and native cattle. Holstein Friesian (HF) and Jersey (J) breeds comprised the exotic
group of animals, while the crossbred cattle were crosses of Holstein and Jersey with native
breeds. The native breeds involved in the study were predominantly Hallikar and a few
Khillar cows. For the genomic studies, we focused on comparisons and selection signatures
considering the exotic and crossbred cattle. In ongoing studies, additional consideration of
pure native breeds might contribute to inferring further sweeps of selection.
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The basic animal and farm information included breed, lactation number, lactation
stage and SSI. Furthermore, meteorological variables including temperature and humidity
were recorded on the farms at hourly intervals using VOLTCRAFT DL-121TH USB data
loggers. The temperature humidity index (THI) was calculated using the equation of the
National Research Council (NRC) [25]:

THI = (1.8 × T + 32) − (0.55 − 0.0055 × RH) × (1.8 × T − 26) (1)

where T is air temperature in degrees Celsius and RH is the relative humidity in percent.

2.2. Genotyping and Quality Control

Genotyping was conducted using the Illumina Bovine 50K SNP BeadChip V2 (96 cows)
and the Illumina Bovine 62K SNP BeadChip (144 cows) chips. Animals with low-density
genotypes were imputed to 62K, and after imputation, 45,054 SNPs were available from
213 genotyped cows. The SNPs were then processed for quality control using the software
package PLINK, version 2.0 [26]. SNPs with allele frequency lower than 0.05 and those
located on the sex chromosomes were discarded. All genotyped animals and SNPs had
call rates larger than 90% [27,28]. An overall missing genotype value of 6.337% was
calculated for the missing rate considering all markers and animals. Finally, 42,199 SNPs
from 126 cows were available for the genomic analyses.

2.3. Estimation of Genomic Parameters for Milk and Milk Traits

The genetic parameters for test-day milk yield, milk composition and clinical mastitis
were estimated using the BLUPF90 software package [29]. The variance components and
heritabilities were estimated using the average information restricted maximum likelihood
algorithm implemented in the AIREMLF90 program [30]. The observed heterozygosity,
expected heterozygosity and genomic inbreeding coefficient for the breeds were calculated
using PLINK [29] and the PreGSf90 program [31]. The statistical model for the genetic
analyses of test-day milk yield, milk composition and clinical mastitis was as follows:

y = Xb + Zg + Wpe + e (2)

where y is a vector of phenotypes, test-day milk yield, SNF, milk lactose, milk density
and clinical mastitis; b is a vector of fixed effects including breed (crossbred, exotic), test-
day THI (covariate), lactation number (1 (30 cows), 2 (36 cows), 3 (25 cows), 4 (21 cows),
5 (7 cows), >6 (7 cows)), lactation stage (<3 months (50 cows), 3–9 months (47 cows),
>9 months (29 cows)) and SSI (rural, mixed, urban); g is a vector of random genomic
effects, following N(0, Gσ2g) where G is a genomic relationship matrix [30] and σ2g is
the respective genomic variance; pe is a vector for permanent environmental effects; e is a
vector of random residual effects; and X, Z and W are incidence matrices for b, g and pe,
respectively.

2.4. Genome-Wide Associations and Gene Annotations

The GWAS for the milk traits considered the fixed effects from model (2) and was
performed using the BLUPF90 program [29]. The threshold level for the genome-wide
significance was a Bonferroni-corrected threshold (PBonf = 0.05/N, N = number of SNP
markers). Additionally, a less stringent significance threshold (Pls) of −log10 (0.00005) was
also applied.

The significant SNPs were considered for ongoing candidate gene annotations using
the Bos taurus ARSUCD1.2 genome assembly. A window size of 200 kb (100 kb upstream
and 100 kb downstream) for a significant SNP was defined to annotate potential candidate
genes. The functions of all identified genes were searched for manually based on published
literature and public databases.
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2.5. Selection Signature Analysis

The cross-population extended haplotype homozygosity (XP-EHH) approach [10]
was adopted to scan the dairy cattle breeds in Bengaluru for candidate regions under
selection. The previously mentioned imputed, filtered and quality-checked genotype data
consisting of Crossbred, Holstein Friesian, Jersey and native cow breeds were considered
for the analysis. The between-population selection signatures were assessed for the Cross-
bred_HF, Crossbred_J and HF_J breed groups. The XP-EHH scores were calculated for each
pairwise comparison using the rehh package in R. The positive and negative selection sig-
natures were detected based on the XP-EHH values and by setting the threshold of the top
0.1 percent for both tails of the distribution (lower and upper tails). The genes falling with
a window size of 200 kb (100 kb upstream and 100 kb downstream) from the potential
regions under selection (positive and negative) were annotated using the Bos taurus AR-
SUCD1.2 genome assembly. Bioinformatics analysis to assess the functional pathways and
enrichment was performed using the DAVID database.

3. Results
3.1. Genomic Heritabilities and Variance Component Estimates

The observed heterozygosity, expected heterozygosity and genomic inbreeding coeffi-
cients are depicted in Supplementary Table S1. Table 1 depicts the SNP-based heritabilities
and variance component estimates for the production traits and clinical mastitis. The
heritabilities for test-day milk yield, SNF, lactose and density were 0.25 ± 0.21, 0.13 ± 0.05,
0.20 ± 0.16 and 0.17 ± 0.23, respectively. Interestingly, among all traits, clinical mastitis
had the largest heritability with the smallest stand error of 0.48 ± 0.07.

Table 1. Number of genotyped animals; number of records; heritabilities (h2); and additive genetic
(σ2

g), permanent environmental (σ2
pe) and residual (σ2

e) variances with corresponding SEs (in
parentheses).

Trait Animals Records (n) h2 σ2
g σ2

pe σ2
e

Test-day milk yield 125 527 0.25
(0.21)

4.24
(3.59)

5.54
(3.45)

6.92
(0.49)

SNF 126 496 0.13
(0.05)

0.07
(0.03)

0.15 × 10−4

(0.46 × 10−3)
0.48

(0.04)

Lactose 126 524 0.20
(0.16)

0.024
(0.02)

0.001
(0.02)

0.096
(0.0068)

Density 126 496 0.17
(0.23)

1.42
(1.90)

2.31
(1.89)

4.40
(0.33)

Clinical mastitis 126 267 0.48
(0.07)

0.84
(0.18)

0.13 × 10−4

(0.11 × 10−2)
0.93

(0.11)

Records (n): number of records; SNF: solids-not-fat.

3.2. Genome-Wide Associations and Potential Candidate Genes

A GWAS was performed to identify the genetic variations associated with the traits
of interest, i.e., test-day milk yield, milk SNF, lactose, density and clinical mastitis. The
Manhattan plots for these traits are presented in Figure 1.

The GWAS revealed two significant SNPs, rs109340659 on BTA 17 and rs41571523 on
BTA 25, above Pls for test-day milk yield. The significant markers were associated with
two potential candidate genes, fibrosin-like 1 (FBRSL) and calcium voltage-gated channel
auxiliary subunit gamma 3 (CACN). No significant SNPs were detected for the remaining
traits. However, the GWAS for milk lactose revealed one SNP (rs41634101) very close to the
significance threshold, though not significant. This SNP, located on BTA 13, was annotated
with the genes ubiquitin-conjugating enzyme E2 V1 (UBE2V1), transmembrane protein 189
(TMEM189), ENSBTAG00000049867 and CCAAT enhancer-binding protein beta (CEBPB).
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SNPs according to a false discovery rate of 5%.

3.3. Selection Signatures

Figure 2 depicts the Manhattan plots for the standardized XP-EHH score including the
comparisons for the Crossbred-HF (Figure 2a; Crossbred: 37 cows; HF: 50 cows), Crossbred-
J (Figure 2b; Crossbred: 37 cows; Jersey: 7 cows) and HF-J (Figure 2c; HF: 50 cows; Jersey:
7 cows) dairy cow breed groups.

The negative XP-EHH values reflect selection signatures in Crossbred (for Crossbred-
HF and Crossbred-J comparisons) and in HF (for HF-J comparison) populations. Similarly,
the positive XP-EHH values reflect selection in the HF (Crossbred-HF comparison) and
Jersey (Crossbred-J and HF-J comparisons) breed groups. Based on the XP-EHH scores
and the threshold definition (top 0.1 percentile of positive and negative values) 178, 6 and
27 regions were found to be positively selected for the Crossbred-HF, Crossbred-J and
HF-J groups, respectively. Similarly, 181, 417 and 459 candidate regions were observed to
be negatively selected for the Crossbred-HF, Crossbred-J and HF-J groups, respectively.
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Further gene annotation analyses revealed 216, 5 and 39 genes to be associated with the
identified positive selection sweeps for the Crossbred-HF, Crossbred-J and HF-J groups,
respectively. The numbers of annotated genes with regard to negative selection and the
same group comparisons were 185, 353 and 340 genes, respectively.
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selection for each comparison.

3.4. Functional Analysis

Using the default settings in DAVID, the significantly enriched (p < 0.05) GO terms
and KEGG pathways were assessed. With regard to the genes associated with the positive
selection sweeps for each breed comparison, 23, 2 and 9 GO terms were significantly en-
riched (p < 0.05) for Crossbred-HF, Crossbred-J and HF-J comparisons, respectively. The
functional annotation clustering in DAVID created a further cluster of similar annotations,
contributing to an improved understanding of the functional mechanisms involved. The
functional annotation clustering of the positive selection sweeps for the Crossbred-HF com-
parison revealed a number of pathways associated with immune response. The respective
enrichment score was 0.81 (Figure 3).
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Similarly, functional annotations of the genes associated with negative selection sweeps
revealed 27, 19 and 22 GO terms for Crossbred-HF, Crossbred-J and HF-J comparisons,
respectively. The results for functional annotation clustering of the negative selection
sweeps for the Crossbred-HF, Crossbred-J and HF-J comparisons implied several clusters.
The identified clusters with the respective enrichment scores of 2.68, 12.26 and 1.44 are
depicted in Figure 4.

Further bioinformatics analysis was performed to identify the KEGG pathways as-
sociated with the identified genes under selection for the three breed-group comparisons.
Functional annotation clustering of the negative selection sweeps for Crossbred-HF de-
picted enriched KEGG terms (enrichment score: 1.22) including ovarian steroidogene-
sis (bta04913), prolactin signaling pathway (bta04917), cortisol synthesis and secretion
(bta04927), steroid hormone biosynthesis (bta00140) and Cushing syndrome (bta04934)
(Supplementary Table S1). Likewise, a number of KEGG terms were identified for the
Crossbred-J and HF-J comparisons. These clustering annotations depicted that a few stress-
related KEGG terms like oxidative phosphorylation (bta00190), thermogenesis (bta04714)
and pathways of neurodegeneration—multiple diseases (bta05022) were enriched both in
Crossbred-J and HF-J. A detailed overview of the functional annotation clustering of the
KEGG pathways for the negative selection sweeps is given in Supplementary Table S2.
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4. Discussion

The milk production and composition traits displayed a broad SNP-based heritability
range. Though a number of researchers have assessed the heritability estimates for milk
yield and milk composition traits in different dairy cattle breeds globally, there are minimal
reports based on dense genomic marker data in tropical countries. Furthermore, to the
best of our knowledge, this study is the first report addressing genetic and genomic
parameter estimations for milk traits in Indian dairy cows. In the present study, test-day
milk yield had a moderate heritability of 0.25 ± 0.21. This was similar to the values
(0.257 ± 0.063) reported for a Bangladesh native cattle breed [32] and those (0.26 ± 0.11)
for US Jersey cows [33]. Generally, milk production traits have a moderate heritability.
Only a few studies, mostly considering data from small family farms, have reported low
heritability estimates for milk yield of 0.12 (Chinese Holstein cows; [34]), 0.14 (Italian
Holstein cows; [35]) and 0.15 (Black Pied cattle; [36]). Higher estimates of 0.35 (German
Holstein cattle; [37]), 0.37 (Finnish Ayrshire; [38]) and 0.43 (Finnish Holstein Friesian; [38])
were reported in studies focusing on larger herds with large contemporary groups. The
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dairy cows in the present dataset are kept in production systems characterized by small herd
sizes (ranging from two to eight cows per herd) and minimal investments towards farming
system improvements. Furthermore, animals reared on family farms in tropical regions are
often exposed to severe environmental stressors [21]. In contrast to most commercial farms
and herds in developed countries, the majority of animals in the present dataset lacked
intense management and nutritional interventions to enhance production and alleviate
stress. Consequently, the genomic heritability for milk yield was similar to estimates from
another tropical region, i.e., Bangladesh [32], and also for subsets of populations reflecting
heat stress in developed countries such as the US [33]. Furthermore, the comparatively
large environmental variance compared to the additive genetic component indicates the
challenging environmental conditions that were not captured by the statistical model effects.
The inter-herd variations in milk yield due to feeding, breed, husbandry characteristics
or cow treatments as identified in phenotypic trait analyses in Bengaluru [21] cannot be
covered through the modeling of herd or SSI effects.

The genomic heritability estimate for SNF in this study for the Bengaluru cattle
population was 0.13 ± 0.05 and therefore smaller compared to estimates of 0.27 in US
Jerseys [33], 0.29 in Japanese Holsteins [39] or 0.36 in other large Jersey populations [40].
Lower heritability estimates for SNF comparable to our results ranging between 0.07
and 0.13 at different days in milk were reported by Cho et al. [41] for Korean Holstein
cows. In our study, the heritability for milk lactose was 0.20 ± 0.16. Only a few studies
estimated genetic parameters for lactose content because this trait is not considered in
official cattle breeding goals. Our genomic heritability was smaller compared to pedigree-
based estimates of 0.33 as reported by Tiezzi et al. [42] and Petrini et al. [43] in Holstein
cows and by Sneddon et al. [44] in a multi-breed population approach. The heritability for
milk density was 0.17. There is a lack of studies estimating the heritability for milk density
in dairy cows, but milk density is favorably correlated with SNF [45]. Quite large additive
genetic variances for milk density and SNF were reported by Kawahara et al. [39] from
pedigree-based analyses. Hence, the selective genotyping in our study might not reflect
the full genetic variation in the dairy cattle population from Bengaluru. Also for SNF, milk
density and lactose content, the residual variation was stronger than the additive genetic
variation. Again, nutritional variation between herds might inflate the residual variance
component.

Mastitis is among the most prevalent diseases in dairy cattle worldwide, causing
high economic losses [46], as well as in Bengaluru. Heritabilities for clinical mastitis vary
widely, from 0.01 to 0.42 [47,48]. In large commercial breeds, genomic and pedigree-based
heritabilities were smaller than 0.10 [49,50]. The wide range of heritabilities might be
due to the trait definition, the scoring system and the observer influence. In the present
study, the quite large heritability of 0.48 ± 0.07 for clinical mastitis may be due to estimates
relying on CMT scores and only two well-trained observers being responsible for health
trait recording. Accordingly, in a study by Alrawi et al. [46], the heritability for monthly
coded CMT scores in US Holstein cows ranged from 0.11 to 0.48. Also, Gonyon et al. [51]
determined a high heritability for clinical mastitis (0.23) for Pacific Northwest Holstein
cows using the CMT score. The study by Bouyai et al. [52] conducted on tropical Holsteins
proved that clinical mastitis recorded as a categorical trait with several scores contributed
to increased heritability estimates compared to a binary trait definition. However, in
their study, the SE for clinical mastitis with several categories was larger than that for
the binary disease. Additionally, the high prevalence of clinical mastitis (32.7%) in the
studied population might have contributed to the high CMT score (2.01) and the associated
pronounced phenotypic variation. As indicated above, we considered the CMT score
from the udder quarter indicating the highest level of infection pressure. Such a strategy
contributed to increased CMT values and phenotypic and genetic variations. Furthermore,
we recorded the disease indicator CMT under harsh environmental conditions. For the
estimation of genetic parameters of disease traits, Wagner et al. [27] suggested considering
only records from challenging environments, i.e., herds with a high infection pressure. In
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such herds, there was an obvious genetic differentiation for udder health among cows,
explaining the increased heritabilities. In well-managed herds, almost all cows are scored
as healthy, implying a shrinkage of genetic variation.

Regarding the GWAS for milk traits, only two SNPs were significantly associated with
milk yield. The quite small number of significant marker associations identified in the
current population may be due to the small cow sample size considered for genotyping.
Nevertheless, the identified SNPs were annotated with genes with well-known effects on
the trait of interest. Such previous reports for candidate genes could be supported by the
results for the harsh tropical environment of Bengaluru. The two SNPs identified for milk
yield were associated with two potential candidate genes, FBRSL and CACN. FBRSL1 plays
a vital role in a number of biological processes in mammals, like stem cell maintenance and
differentiation [53]. FBRSL1 was significantly associated with milk yield in Chinese Holstein
cows based on a GWAS for haplotypes [7]. In another genome-wide scan conducted on a
tropically adapted Indian composite crossbred dairy cattle breed (Vrindavani cattle), the
CACN gene was significantly associated with milk copper content [8].

The GWAS for milk lactose identified an SNP (rs41634101) close to the threshold
of significance. This SNP is located on BTA 13 in a close chromosomal neighborhood
to the genes UBE2V1, TMEM189, ENSBTAG00000049867 and CEBPB. The gene UBE2V1
codes a protein variant of the ubiquitin-conjugating E2 enzyme, playing a vital role in
ubiquitination, a type of posttranslational modification [54]. In a genome-wide profiling
study by Rani et al. [55] using microRNA expression in buffalo milk exomes, UBE2V1
was one of the target genes among the 10 most abundant exosomal microRNAs. CEBPB,
coding for a protein under the family of CCAAT enhancer-binding proteins, regulates genes
associated with proliferation and differentiation in a number of cell types. These groups of
proteins play vital roles in the development of the mammary gland and lactation [56,57].
Furthermore, CEBPB is essential for the expression of the beta casein milk protein [58].
Therefore, the identified candidate genes are of high relevance for milk production in
different countries, and this also seems to be true for the challenging environment of
Bengaluru, as indicated by the present results.

Another novel aspect of this study was the assessment of the selection sweeps among
the dairy cattle breeds in Bengaluru. The identification of selection signatures in livestock
populations might unravel genes and biological mechanisms associated with domestication,
breed development and artificial selection [5]. Knowledge of selection signatures could give
an inroad towards selection for economically important traits and also for adaptation and
tolerance traits. Researchers across the globe have adopted this approach in purebred [59],
composite breed [18] and admixed livestock populations [5,60]. The findings of the present
study give an overview of the regions under selection in dairy cow breed groups including
Holstein Friesian, Jersey and crossbreds in a tropical selection environment. The results
obtained in this study are in concordance with findings from gene expression analyses in
relation to heat stress in a smaller cattle population from Bengaluru, also highlighting the
importance of these genes in immune response mechanisms [22].

With regard to the functional annotation clustering, the Crossbred-HF comparison
revealed some interesting GO terms like ubiquitin protein ligase activity (GO:0061630),
protein kinase binding (GO:0019901), protein ubiquitination (GO:0016567), innate immune
response (GO:0045087) and positive regulation of I-kappaB kinase/NF-kappaB signaling
(GO:0043123). Most of these terms were associated with ubiquitination and immune re-
sponse. Functional annotation clustering confirmed similar GO terms for the negative
selection sweeps for Crossbred-HF, Crossbred-J and HF-J comparisons. The majority of
the terms were associated with ubiquitination, immune response and cell signaling. These
selection footprints support evidence for multiple stress mechanisms in dairy cows in
tropical regions. For example, Cheruiyot et al. [15] reported distinct selection sweeps in ad-
mixed cattle in Tanzania that were associated with adaptation and productive performance.
Ubiquitination plays a crucial role in ensuring protein homeostasis by removing unwanted
or damaged proteins [61]. This pathway regulates several basic cellular processes, few
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among them reflecting environmental stress, immune response and DNA repair mecha-
nisms [62]. The enrichment of these terms is of high relevance for cattle populations in
tropical savanna regions with long-lasting heat stress conditions [21]. In further causality,
molecular responses to heat stress were associated with the immune response mechanisms
of dairy cows [22]. Therefore, the results of the present study based on selective sweeps
substantiate such findings.

The KEGG pathways obtained upon functional clustering consisted of different terms.
Specifically, it is very interesting to observe a few stress-associated KEGG pathways for the
negative selection sweeps in Crossbred-HF, like cortisol synthesis and secretion (bta04927),
steroid hormone biosynthesis (bta00140), ovarian steroidogenesis (bta04913) and prolactin
signaling pathway (bta04917). The genes associated with these KEGG terms were steroid 17-
alpha-hydroxylase/17,20 lyase (LOC112441470), luteinizing hormone/choriogonadotropin
receptor (LHCGR), cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and
steroid 17-alpha-hydroxylase/17,20 lyase (LOC112444495). Similarly, the genes annotated
from the negative selection sweeps for Crossbred-J and HF-J depicted some enriched KEGG
terms including oxidative phosphorylation (bta00190) and thermogenesis (bta04714) with
high relevance for a tropical environment. The genes associated with these terms were
ATP synthase F1 subunit delta (ATP5F1D), cytochrome c oxidase copper chaperone COX17
(COX17), ubiquinol-cytochrome c reductase complex III subunit XI (UQCR11), UQCRQ, cy-
tochrome c oxidase subunit 7A1 (COX7A1), NADH: ubiquinone oxidoreductase subunit B4
(NDUFB4), NADH: ubiquinone oxidoreductase core subunit S7 (NDUFS7), and cytochrome
c oxidase subunit VIIb (COX7B). These genes are common for both breed comparisons
Crossbred-J and HF-J and indicate the genetic contribution of Jersey germplasm.

The present study has its uniqueness because it is based on data from smallholder
cattle farming systems in India reflecting a challenging tropical environment. The results
obtained from this study are of primary relevance for all stakeholders involved in cattle
farming. However, we also see some limitations. The quite large number of environmental
stressors (SSI, heat stress, husbandry and feeding conditions) complicate the statistical
modeling approaches and contribute to enlarged SE. Furthermore, in tropical countries,
genotyping and phenotyping remain a challenge, implying limitations in sample sizes.
Hence, the quite large SE accompanying genetic and genomic parameter estimates is a
common characteristic for studies conducted in developing countries. There are a few
reports addressing GWASs and selection signature analyses in Indian cattle populations
based on even smaller numbers (24 to 96 cows) [18,63,64]. We are aware of the small
sample size. Nevertheless, we identified and verified potential candidate genes in such
a small dataset for milk traits that previously had been reported in large-scale studies in
commercial breeds, indicating the reliability of the present study. Therefore, the findings
from this study stimulate ongoing research in tropical countries, considering genomic
mechanisms in the context of environmental challenges.

5. Conclusions

This study was the first of its kind aiming at the identification of genomic variants as-
sociated with milk production traits and the exploration of selection sweeps in dairy cattle
reared under challenging tropical smallholder production systems. Two SNPs, rs109340659
and rs41571523, were significantly associated with test-day milk yield. These SNPs were
located in close proximity to the FBRSL and CACN genes, which were suggested as poten-
tial candidate genes for adaptation and productivity under a tropical climate. Using the
XP-EHH methodology, several selection sweeps (positive and negative) were identified for
the breed group comparisons Crossbred-HF, Crossbred-J and HF-J. Ongoing bioinformatics
analyses revealed that these genes were associated with varied stress response mechanisms
and adaptation pathways. These functional mechanisms and pathways included ubiqui-
tination, immune response, cell signaling, cortisol synthesis and secretion, the prolactin
signaling pathway, steroid hormone biosynthesis and thermogenesis. This study not only
provides an insight into the genetic association towards milk production traits, but also
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gives an insight into the possible evolvement/selection of dairy cattle breeds in Bengaluru
for better thermotolerance in a harsh environment. Such findings are of great relevance
for researchers and policymakers to initiate ongoing studies in India or in other tropical
countries, i.e., to understand mechanisms of selection and genomics in the context of envi-
ronmental alterations. As the study is limited by a comparatively small sample size, it is of
utmost importance to further validate the results in ongoing genomic analyses in tropical
breeds reared under stressful conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12121483/s1, Table S1: Observed heterozygosity, expected
heterozygosity and inbreeding coefficient for exotic and crossbred cattle in the selected population.;
Table S2: The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways obtained based on
functional annotation clustering using DAVID for the negative selection sweeps of Crossbred-HF,
Crossbred-J and HF-J breed group comparisons.
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