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Simple Summary: Cancer cells commonly escape cell death and proliferate endlessly. We review
the molecular mechanisms that are fundamental to this process and suggest that these changes also
lead to instability in the genetic make-up (genes and chromosomes) of putative cancer cells. In this
way, cells in the very early stages of cancer development acquire unlimited growth potential and also
develop cellular diversity, which may facilitate more aggressive cell behaviour and the development
of overt cancer. These observations have important clinical implications. We highlight a recent
sensitive technique to detect chromosome instability in cells that are shed into the saliva, which can
be used for the detection of the early stages of cancer of the mouth. In addition, we discuss new drug
developments that are designed to target chromosome instability and, therefore, eliminate potentially
dangerous cells before cancer development.

Abstract: An escape from cellular senescence through the development of unlimited growth potential
is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this
review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53
and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in
the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes,
therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity.
As a result of these changes, certain clonal cell populations likely gain the capacity to invade the
underlying connective tissue. We review the clinical implications of these changes and highlight a
new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely
sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies
and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed
to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to
prevent malignant transformations in OPMD.

Keywords: chromosome instability; cellular senescence; tumour development; oral cancer;
clinical implications

1. Introduction

Next-generation sequencing has transformed our understanding of the molecular
changes in head and neck squamous cell carcinoma (HNSCC), a term that includes oral
squamous cell carcinoma (OSCC). However, cancer genome-sequencing studies have
clearly shown that the majority of genetic alterations in a given cancer type are not shared
amongst all patients (inter-tumoral) [1], and there is also a striking degree of cell-to-cell
genetic heterogeneity within the same tumour (intra-tumoral) [2]. The fundamental driving
force of this heterogeneity is thought to be genomic instability [3].

Genome instability describes a spectrum of genetic alterations ranging from small
nucleotide changes (mutations, insertions, deletions) to extreme chromosomal alterations.
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In the present review, we focus on chromosome instability (CIN), which can be defined
as an increase in the rate of chromosomal change that manifests as both numerical and
structural alterations. By definition, CIN refers to the “rate” of chromosomal instability,
and aneuploidy refers to the “state” of chromosomal instability; however, for the purposes
of this review, the terms aneuploidy and CIN will be used interchangeably. The literature
also refers to somatic copy number alterations (SCNA) and, whilst we are aware that
SCNA can be considered as aneuploidy, we propose to continue with the term because
it is in common use in the literature. Changes in chromosome number (numerical or
whole CIN; W-CIN) are associated with the gains and losses of whole chromosomes and
are due to the mis-segregation of chromosomes during mitosis. By contrast, structural
CIN (S-CIN) is characterized by an increased rate of change in the chromosome structure
such as amplifications, deletions, inversions, duplications and balanced or unbalanced
translocations; S-CIN is commonly attributed to errors in the repair of DNA double-strand
breaks. Other terms that are commonly used include aneuploidy (the “state” of an abnormal
chromosome number, rather than the “rate” seen in CIN), somatic copy number alterations
(SCNA) and chromothripsis (genetic chaos).

The impact of CIN in cancer has been described predominantly in terms of advanced
tumour progression, drug resistance and clinical outcome [4–6]. Early work showed that
CIN was also associated with malignant transformation [7,8] but, apart from the fact that
CIN has been identified in pre-invasive carcinomas [9], relatively little is known of the
causes of CIN and the role of CIN in the early stages of tumour development.

In the present review, we examine the possibility that the development of aneuploidy
is closely associated with an escape from cellular senescence. Both CIN and escape from
senescence occur early in carcinogenesis; therefore, in this study, we have focused on their
role in the malignant transformation of oral potentially malignant disorders (OPMD). Our
observations, however, can also be used as a paradigm for epithelial cancers other than
OSCC, particularly those of the upper aerodigestive tract and of keratinocyte origin.

2. Pathogenesis of OPMD
2.1. Clinical Characteristics

HNSCC and OSCC are world health problems and annually account for approxi-
mately 800,000 and 350,000 new cases and 450,000 and 170,000 deaths, respectively. OSCC
can be preceded by oral potentially malignant disorders (OPMD) that manifest as white
(leukoplakia) and/or red (erythroplasia) lesions of the oral mucosa. Neither leukoplakia or
erythroplasia can be attributable to any other recognizable condition. The transformation
rate for leukoplakia is 2.6–3.5% and for erythroplasia is 14.5–50.0%. The gold standard
to assess the potential for malignant transformation is the degree of epithelial dysplasia,
and figures of 4.8%, 15.7% and 26.7% are currently accepted for mild, moderate and severe
dysplasia, respectively [10]. However, the accuracy of the histological interpretation can be
confounded by intra- and inter-observer variation and the presence of reactive epithelial
atypia to oral pathogens.

A variety of other oral disorders (oral submucous fibrosis, oral lichen planus, actinic
cheilitis, discoid lupus erythematosus, dyskeratosis congenita, Fanconi’s anaemia) also
have a propensity for malignant change, but they are associated with disease-specific
pathological mechanisms so are not considered further in this review.

2.2. Limitations of Current Models of Progression

Historically, the transition to malignancy in epithelial tissues has always been inter-
preted as being linear. Clinicians, for example, view tumour progression as the transition
from normal oral mucosa to OPMD to OSCC, while histopathologists define it as normal
oral mucosa to mild/moderate/severe dysplasia to OSCC. From a molecular perspective,
neoplastic progression has been described as a continuum of sequential, multiple somatic
mutations that lead to the selection of a more dominant cell phenotype. Unfortunately,
there is very little evidence to support this view. In the oral environment, for example,



Biology 2023, 12, 103 3 of 19

not all OPMD are dysplastic; severe dysplasia may remain dormant or even regress; mild
dysplasia may progress to cancer; and the clinical appearance of OPMD and OSCC often
overlaps making it difficult, if not impossible, to determine whether OPMD has preceded
or has occurred concurrently with the development of OSCC. Further, it is now recognized
that OSCC can present clinically de novo, without being preceded by a precursor lesion. It
can always be argued that cancer phenotypes simply progress so quickly through a step-
wise morphological continuum that many of the steps are not clinically observable, but the
linear theory of cancer development ignores the fact that the phenotypic and genotypic
characteristics of putative tumour cells evolve over time [11].

Recently, we reviewed the role of so-called driver genes and tumour suppressor genes
in the pathogenesis of OPMD and identified a level of complexity and inter-connectedness
not previously described [10]. Despite this information, our capacity to predict malignant
transformation in OPMD is limited and has not been translated into clinical practice. This
might be explained in terms of a failure to compute sufficient numbers of the predictive
factors, threshold levels of key proteins and signalling pathways are never taken into
account, and tissue complexity is invariably ignored. However, an alternative view is that
the majority of cancer cells are genetically unstable, and it is this instability that leads to the
continued evolution of tumour populations. This feature also compounds the difficulty of
accurately predicting malignant transformation in potentially malignant disorders.

2.3. Somatic Copy Number Alterations (SCNA)

One of the most extensive studies of SCNA in OPMD involved 256 OPMD and
69 paired OSCC [12]. In this study, dysplasia and paired OSCC invariably shared a common
ancestry, but approximately one-third of dysplasias had independent SCNA and mutations.
Wood and colleagues [12] challenged the commonly held view that the transition from
dysplasia to malignancy occurred by way of a random accumulation of genomic changes,
because there did not appear to be a step-wise appearance of sub-clones, where each new
sub-clone replaced its ancestor. The precancerous field may promote the emergence of a
variety of high-risk dysplasias, and, once developed, many lesions could progress simul-
taneously to OSCC. Wood and colleagues [12] observed that whilst low-grade dysplasia
was more likely to have fewer genomic changes than high-grade dysplasia, high-grade
dysplasia and OSCC were almost indistinguishable. These authors suggested that the
trigger for invasion was more likely to be an additional gene mutation or some other
transcriptomic or environmental change.

2.4. Driver Genes

Recently, Gerstung et al. [13] used the findings of the Cancer Genome Atlas (2015)
to reconstruct the life history and evolution of HNSCC. Primary driver mutations in the
development of HNSCC involved TP53, CDKN2A, TERTp, NOTCH1, AJUBA, PIK3CA and
CASP8 [13]. This list of driver genes, however, was not particularly comprehensive, because
other studies have also identified a broad spectrum of gene abnormalities in OSCC that are
likely to contribute to tumour development and progression (FAT1, EGFR, CCND1) [14].
Additional factors [13] are also recognized as being associated with oral epithelial tumour
progression, including epigenetic changes, alterations of micro- and long non-coding RNA,
involvement of Wnt/β-catenin and NF-κB signalling and changes to DNA damage repair
molecules, together with anomalies in immune regulatory cells/molecules and the tumour
microenvironment, which are not discussed in the present review.

Abnormalities of TP53 and CDKN2A are common genetic anomalies in OPMD/OSCC.
Some 80% of HPV-negative OSCC show inactivation of TP53, either through gene mutation,
LOH or increased expression of MDM2; when HPV is present (oropharyngeal cancers),
the HPV E6 viral oncoprotein attenuates p53 expression; in these circumstances, TP53
mutations are uncommon. There is a substantial volume of evidence that the inactivation
of TP53 correlates with the malignant transformation of OPMD [15–19], but it is cautionary
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to note that only a small proportion of OPMD progresses to OSCC, despite the prevalence
of p53 inactivation (>50%).

p16INK4A inactivation is an important biomarker of malignant transformation in
OPMD [20–25]. There is evidence that dysfunction of p16INK4A precedes p53 mutations
in some OPMD keratinocytes [26], whilst other studies report that it is independent of p53
mutations [27]; such findings suggest that p53 and p16INK4A are regulated differently [28].

3. Cellular Senescence

Cellular senescence was originally defined as an irreversible cell cycle arrest that is dis-
tinct from quiescence, terminal differentiation and apoptosis, although, more recently, the
definition was broadened to include other forms of senescence-related phenotypes [29,30].
It occurs following multiple rounds of cell division (replicative senescence) or in response to
a broad spectrum of stresses including DNA damage, oxidative damage, hypoxia, signalling
imbalances, activation of oncogenes and cancer-related therapy and ageing [29,30].

3.1. Senescence in Keratinocytes

The common effectors of senescence in oral keratinocytes are p53 and pRB/p16INK4A.
The p53 tumour-suppressor gene was initially identified as the “guardian of the genome”
based on its ability to mediate a G1 arrest following DNA damage. p53 is now known to
act in many cellular processes including cell cycle checkpoints, DNA repair, senescence,
apoptosis, angiogenesis and surveillance of genome integrity. p53 responds to DNA
damage and either activates p21WAF1/Cip1 to initiate cell cycle arrest for DNA repair or,
if there is irreparable DNA damage, induces apoptosis [31]. In this way, genomic stability
is maintained. Activation of p53 is associated with an increase in its half-life, together with
conformational changes mediated by phosphorylation [32,33] and other post-translational
modifications [34]. As a result of these functions, p53 has been regarded as a suppressor of
gene amplification [35] and aneuploidy [36]. By contrast, CDKN2A is a gene that encodes
the cyclin-dependent kinase inhibitors p16INK4A [37] and p14ARF [38]. p16INK4A binds
to and inhibits the kinase activity of CDK4/6 and prevents RB phosphorylation [37]. RB
remains associated with transcription factor E2F1, thereby preventing the transcription
of E2F1 target genes that are essential for transition through the G1-S phase of the cell
cycle [39]. By contrast, p14ARF stabilizes p53 and leads to either senescence [38,40] or
cell cycle arrest via a p53- and p21CIP1/WAF1-dependent mechanism [41]. However,
the induction of G2 cell cycle arrest by p14ARF ultimately leads to cell death through
apoptosis [42].

3.2. Escape from Cellular Senescence

Senescence has been observed in premalignant lesions of several cancer types [43,44],
where it acts as a suppressor of early malignant changes [45]. Later, senescence has the
capacity to promote tumour development [46], tumour progression [45,47], tissue plastic-
ity [48] and stem cell activation [49] through the production of the senescent associated
secretory phenotype (SASP). Parkinson and colleagues have argued strongly that escape
from cellular senescence through inactivation of TP53 and CDKN2A, together with the
emergence of telomerase activity, leads to the development of the immortal phenotype in
human keratinocytes [50–55]. These genetic changes and telomerase deregulation are near
ubiquitous event in HNSCC in vitro [51] and in vivo [1].

Disabling p53 extends the proliferative lifespan of fibroblasts but not keratinocytes,
whereas knockdown of p16INK4A has no effect on its own. However, the combined
knockdown of both p53 and p16INK4A induces a phenomenon that resembles crisis in
both cell types [56,57]. Interestingly, in keratinocytes cultured in serum-free conditions,
p16INK4A accumulates following proliferative exhaustion [45,51] and is associated with
a hyper-motile phenotype seen in carcinoma both in situ and in experimental wounding
in vitro [58]. This form of senescence is bypassed when cells are cultured on collagen type
I, when either p53 or p16INK4A are disabled, and by inhibition of the TGF-β pathway [58].
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The question remains as to whether the molecular mechanisms that are associated
with an escape from cellular senescence also drive other aspects of cell behaviour, namely,
the development of chromosome instability.

4. Development of Aneuploidy
4.1. Telomeres

Telomeres are repeats of DNA sequences (TTAGGG) at the ends of human chro-
mosomes that, together with their associated proteins, are collectively referred to as the
shelterin complex; these structures ensure that the ends of human chromosomes are not per-
ceived as DNA double-strand breaks by the DNA damage-response machinery [59]. Loss of
capping proteins causes telomere shortening and inappropriate joining by non-homologous
end joining, which produces dicentric chromosomes.

There is a considerable volume of evidence to show that short telomeres are a charac-
teristic of ageing and age-associated diseases (telomeropathies) such as pulmonary diseases,
acquired bone marrow failure syndromes, metabolic disorders and neurodegenerative dis-
eases, amongst others [60]. Telomere attrition occurs in parallel with the loss of replicative
lifespan, and, therefore, proliferative arrest eventually occurs by way of the activation of
the p53-p19ARF and p16INK4A-Rb signalling pathways. In circumstances where these
signalling pathways are intact (i.e., telomeropathies), cells with shortened telomeres eventu-
ally progress to senescence and/or apoptosis. In malignancy, however, p53 and p16INK4A
are commonly inactivated, while telomerase is activated, with the result being that cells are
able to survive chromosomal breakage, thereby causing the development of aneuploidy
and the amplification, deletion and translocation of cancer-relevant genes [61]. Certain
factors are known to cause both cellular senescence and CIN, but the normal paradigm is
that CIN leads to cellular senescence [60].

Short telomeres have been demonstrated in OPMD [62,63], in agreement with other
findings from a variety of cancer precursor lesions [64–66]. More robust data, however, are
required to determine the value of telomere length as a biomarker of tumour development
in OPMD. Interestingly, short telomeres in peripheral blood leukocytes also predispose
patients with oral premalignant lesions to OSCC, presumably as a result of telomere
attrition [67].

4.2. Telomerase Expression in Squamous Epithelium

The telomerase enzyme complex consists of dyskerin (DKC1), TERT (telomerase
reverse transcription), TERC (telomerase RNA) and other telomerase-related genes.

There is substantial evidence that telomerase activity is highest in the dividing cells
of the basal layer of squamous epithelia and that it is down-regulated in the suprabasal
layers [68,69] by both transcriptional [70,71] and post-transcriptional [71] mechanisms.
Interestingly, telomerase not only prevents telomere attrition [72] but also gradually resolves
other forms of DNA damage foci located at the telomeres [73,74]. These observations are
entirely consistent with other findings that show normal telomere lengths in normal tissue
in close proximity to cancers and pre-malignancies, with the latter pathology having short
telomeres despite having detectable telomerase. Furthermore, mortal keratinocytes derived
from OSCCs have telomeres of a comparable length to those of normal keratinocytes (J
Fleming, K Hunter, EK Parkinson, PR Harrison, unpublished data). Taken together, these
findings raise the possibility that putative cancer cells may be derived from telomerase-
deficient keratinocytes and that, following crisis, telomerase is deregulated, SCNA develops
in parallel, and cells progress to malignancy [27,50,51,75].

The corollary of the above data is that telomerase acts as a tumour suppressor, pre-
sumably by counteracting the effects of telomere erosion. It has been shown, for example,
that aneuploidy induces replication stress, leading to telomeric DNA damage, p53 acti-
vation and p53/Rb-dependent premature senescence in human fibroblasts, an effect that
is abrogated by telomerase expression [76]. Further, TERC knockout mice appear to be
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particularly susceptible to cancer [64,77], again re-emphasising the tumour-suppressor
effect of telomerase.

4.3. Telomerase Expression in Epithelial Malignancy

Mutations in hTERT are reported in approximately 50% of OSCC [78,79]. Similarly,
defects of the genes associated with the telomerase complex are reported in oral pre-
malignancies, and these mutations are predisposed to OSCC [80], so they may have predic-
tive value. Dorji et al. [81] examined hTERC in OPMD and demonstrated that progression
to malignancy occurred in 9 of 10 lesions with hTERC over-expression and in 1 of 20 cases
that retained a normal hTERC copy number. There is also evidence that hTERC as well as
hTERT can be rate-limiting for telomerase activity [82].

In cell culture models of human cancer, the dysfunction of the p53 and pRB/p16INK4A
pathways leads to the bypass of replicative senescence [83] and extensive telomere erosion,
which, ultimately, leads to the formation of complex chromosomal abnormalities [84,85].
Amongst other things and in conjunction with TERTp mutations [86], these chromosomal
changes very likely contribute to the deregulation of telomerase [84] and the develop-
ment of the immortal phenotype, which is a hallmark of cancer [87]. There is abundant
evidence that telomere erosion [88] and telomerase deregulation occurs in many human
cancers, including HNSCC [89], and that it invariably precedes the development of malig-
nancy [53,54].

4.4. Telomere Dysfunction Co-Operates with Inactivation of TP53 and CDKN2A

The combined loss of p53 and p16INK4A is virtually ubiquitous in HPV-negative
HNSCC cell lines and tumours [1]. With regard to p53, there is a strong correlation between
TP53 mutation and CIN in human solid tumours [90–94]. Li Fraumeni syndrome (LFS),
where individuals have TP53 germ-line mutations, has been particularly informative in this
context. In LFS individuals, medulloblastomas and acute myeloid leukaemias show chro-
mothripsis [95], and fibroblasts show progressive accumulation of aneuploid cells [96,97],
in a similar way to normal human and murine fibroblasts with exogenous expression of
TP53 missense mutations [98–100]. Further, LFS individuals who develop cancer have an
increased germ line copy-number variation [101], suggesting that aneuploidy following
TP53 loss of function leads to tumourigenesis. Taken together, studies in LFS indicate that
TP53 mutation leads to the development of aneuploidy. The data are entirely consistent
with early studies [102] and with the recent analysis of 21,633 TCGA tumour samples
across 33 cancer types (including HNSCC), which show a close correlation between TP53
mutation and CIN [103].

Intriguingly, Elmore et al. [104] showed that telomere shortening, rather than the loss
of p53 function, was accountable for chromosome instability in Li Fraumeni syndrome,
whereas p53 inactivation triggered cellular immortalization. These observations are con-
sistent with the finding that inactivation of p53 and p16INK4A in oral premalignant and
malignant cells results in only minor chromosomal alterations but, following telomerase
deregulation and cellular immortalization, extensive SCNA and LOH are observed [50,75],
suggesting that the emergence of cells from crisis [27] is a key and rate-limiting step in
tumour progression. Evidence to support this hypothesis comes from reports that a combi-
nation of telomerase deficiency and short telomeres coupled with p53 haplo-insufficiency
results in widespread carcinoma development and extensive SCNA in mice [59], some of
which are syntenic with those seen in humans [105].

TP53-associated gain-of-function phenotypes (changes in gene expression, clonal
growth in vitro, tumourigenicity, metastatic capacity) have been identified in vitro and
in vivo, and these cells are invariably aneuploid. Redman-Rivera et al. [106] recently
extended these observations and demonstrated that the gain of function phenotypes is
independent of p53 alterations and correlates with increased aneuploidy.

With respect to p16INK4A, there is limited information linking CDKN2A inactivation
with the development of aneuploidy. However, multiple centrosomes arise in RB compro-
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mised cells [92], and the sequential loss of p15INK4B and p16INK4A leads to centrosome
duplication, CIN and enhanced proliferation in non-immortalised human cells [107,108].

4.5. CIN and Driver Genes Other than TP53 and CDKN2A

NOTCH1 is the second-most-frequently mutated gene in HNSCC after TP53. Loss
of NOTCH1 leads to changes in p21WAF1/Cip1 and Wnt/beta-catenin signalling, which
result in a decrease in keratinocyte differentiation, increased numbers of keratinocytes in
the stem cell compartment [109], alterations in cellular senescence [110–112] and changes
in epithelial integrity with the development of a wound-like environment [113]. These
observations support findings in mice, where targeted deletion of NOTCH1 results in
epidermal hyperplasia and the development of skin tumours [114]. Consistent with this
tumour-promoting role is the fact that NOTCH1 mutations occur with increased frequency
during the ageing of oesophageal epithelium and are exacerbated by ethanol and smok-
ing [115]. However, what may be key to this tumour-promoting activity is that oncogenic
NOTCH induces polyploidy mitosis and depolyploidization that result in SCNA and
aneuploidy [116]. These findings are consistent with the fact that NOTCH activation is
associated with tetraploidy and enhanced chromosomal instability in meningiomas [117].
Possible sources of CIN, SCNA and LOH in squamous epithelium are depicted in Figure 1.
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Blue suprabasal nuclei and light 
purple cytoplasma indicate
telomerase-deficient keratinocytes 

Black basal nuclei and dark purple 
cytoplasm indicate telomerase-
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?

Figure 1. Possible sources of CIN, SCNA and LOH in squamous epithelium. The schematic of
squamous epithelium takes into account the many reports that telomerase activity is confined to
the proliferative compartment of the tissue and that telomere attrition is minimal in normal tissue.
The suprabasal keratinocytes (blue nuclei, light purple cytoplasm) are telomerase-deficient, whereas
the basal keratinocytes (black nuclei, dark purple cytoplasm) have sufficient telomerase activity
to largely suppress telomere attrition and genomic instability; the latter occurs via chromosome
end fusions (fusion–bridge–breakage cycles). It is proposed that neoplastic lesions evolve and
progress from telomerase-deficient suprabasal cells and generate SCNA during cellular crisis, prior
to immortalization and telomerase de-regulation. Implicit to this process are the end-to-end fusion of
chromosomes and the formation of anaphase bridges. In anaphase bridges that link anaphase plates
(dark blue), the arrow indicates the fused chromosome ends (black). CIN, chromosome instability;
SCNA, somatic copy number alterations; LOH, loss of heterozygosity.

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that binds
ligands of the EGF family and activates several signalling cascades to convert extracellular
cues into mitogenic responses. EGFR over-expression is common in OSCC [118], corre-



Biology 2023, 12, 103 8 of 19

lates with tumour progression [119] and is associated not only with gene amplification
but also with multiple centromere copies of chromosome 7, due to centromere region
amplification [120]. These findings are consistent with early work demonstrating trisomy
of chromosome 7 in non-malignant bronchial epithelium from lung cancer patients and
individuals at a high risk for lung cancer [121].

The CCND1 gene encodes cyclin D1, a member of the highly conserved cyclin family.
Cyclins function as regulators of specific kinases (CDK4/CDK6), with activity that is
required for G1/S transition. The amplification of CCDN1, leading to cyclin D1 over-
expression, is common in OSCC (15–55% of tumours), correlates with oral epithelial tumour
progression [75] and is associated with both the non-diploid status of tumours [122] and
with CIN [123]. It has been suggested that the amplification of EGFR and CCND1 are
coordinated and together have an additive effect in the progression of OSCC [124], but this
so-called coordination requires experimental verification.

Phosphatidylinositol-4-5-biphosphonate 3-kinases (PI3K) are a family of enzymes that
play a pivotal role in transducing the signals involved in a diverse group of cellular func-
tions including cell growth, differentiation, motility, survival and intracellular trafficking.
The PI3K/AKT/mTOR pathway is activated by tyrosine kinase receptors such as EGFR
and can be antagonized by PTEN (phosphatase and tensin homologue). In HNSCC, the
pathway is activated by the oncogenic mutation of PIK3CA, PTEN inactivation through
mutation or post-translational modification or over-expression of EGFR [125,126]. The
pathway is activated in oral dysplasias showing progression to OSCC [127–129]. Emerging
evidence indicates that activation of the PI3K pathway can induce and/or allow cells to
tolerate CIN [130]. Recently, Zhang and Kschischo [103] showed that high levels of PI3K
expression are associated with PIK3CA gene amplification, rarely co-occur with somatic
mutations of PIK3CA and PTEN and are associated with high S-CIN. Further, deletion
of PTEN leads to aneuploidy and tumour development [131,132], which is perhaps not
surprising, since PTEN is involved in the maintenance of genomic integrity [133].

As far as we are aware, there are no published data linking abnormalities of FAT1,
AJOUBA and CASP8 with genomic instability.

4.6. Spindle Assembly Checkpoints (SAC)

SAC alterations are common causes of aneuploidy and, recently, over-expression of
BUBR1 and Mad2 in OPMD and are associated with malignant transformation independent
of histological grade [134]; however, the sample numbers are relatively low (n = 52) in
this study. Moreover, mutations in SAC genes are yet to be reported in HNSCC, and no
functional mutations in BUBR1 are identified in an early study [135].

4.7. Anaphase Bridges

Anaphase bridges are DNA threads stretching between two sister chromatids. They
arise during DNA replication at times of stress [136,137] and facilitate DNA cohesion. Nor-
mally, the bridges are resolved during the S phase, but some persist and can be identified
using DNA dyes (Hoechst stain) during anaphase. If they are not removed, however, they
lead to gross chromosomal rearrangements and loss of genetic material from at least one of
the daughter cells when the bridge eventually breaks [59,138], which, invariably, leads to
cell death. In the cells that survive, aneuploidy ensues due to unbalanced chromosomal
alterations and chromosomal non-disjunctions [83]. However, the deregulation of telom-
erase occurs in parallel and results in telomere addition [139] and this, in turn, results in
a reduction in the number of dicentric chromosomes and anaphase bridges [84,140,141].
The result is the bulk population of cells escapes crisis and becomes immortal, thereby
facilitating tumour progression [64,84,140,141].

Interestingly, post-crisis cancers with de-regulated telomerase appear to be continu-
ously evolving. For example, both established cell lines and tumours in vivo still display a
low frequency of anaphase bridges (approximately one in six/seven anaphases [64,141],
and, even in HeLa cell populations, clones of cells that have low telomerase activity and
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shortened telomeres can enter crisis; only when the cells up-regulate telomerase do they
start proliferating again [139]. Parkinson and colleagues showed that similar phenomena
are present in OSCC lines and tumours [141]. Thus, immortal tumour cell populations
seem to exist in a balanced state that favours both continuous proliferation and constantly
evolving SCNA.

Recognition of the dynamic state of the tumour genotype has important implications.
Studies of the clonal heterogeneity of tumours based on extensive single cell sequencing
and SCNA reflect only a “snapshot” of tumour evolution, and, therefore, the data are likely
unreliable for the development of new therapeutic modalities. Further, the assessment
of malignant transformation in OPMD using genetic criteria might be improved if it was
undertaken before the lesions entered crisis, although this, in turn, is challenging because
of the heterogeneity inherent in any biopsy sample.

5. Function of Aneuploidy
5.1. Tumour Promotion

Aneuploidy is considered to be an enabling hallmark of cancer [87] and is a near
ubiquitous characteristic of malignancy. It promotes the cancer phenotype (increased cell
proliferation, decreased differentiation and apoptosis), overcomes functional defects (pro-
motion of anchorage independent growth, immune escape) and creates genetic complexity,
which leads to further evolutionary selection and the development of a “mutator” pheno-
type that favours proto-oncogene expression and the loss of tumour suppressor genes [142].
Taken together, aneuploidy promotes the cancer phenotype [143–145] and leads to en-
hanced proliferation and spontaneous immortalization [146], altered metabolism [147],
transcriptional reprogramming [148], immune evasion [149], migration [150] and invasion
and metastases [151].

5.2. Tumour Suppression

Despite these traditional views, current thinking indicates that aneuploidy can also
suppress malignant cell growth [150,152]. In these circumstances, cellular “fitness” appears
to be damaged, leading to a reduction in cell growth and the development of metabolic
and proteotoxic stress. Single-chromosome gains, for example, suppress tumourigene-
sis [146,150,153]. The contradiction between aneuploidy’s capacity to act as a promoter
and suppressor of malignant cell growth is described as the aneuploidy paradox [154]. To
explain this anomaly, aneuploidy-coping mechanisms are proposed, which include changes
in gene expression and the accommodation of proteotoxicity and metabolic stress [155,156].
Indeed, extra copies of the TP53 gene are reported to reduce cancer incidence in mice whilst
ageing normally [157].

Recent data show that the situation may be more complicated than first thought. The
degree of aneuploidy [158,159], the site of aneuploidy [158] and the genetic background under
which aneuploidy operates [160] appear to be important in defining oncogenic potential.

6. Does Aneuploidy Initiate Cancer?

Aneuploidy frequently arises early in epithelial cancer [66], but whether it is an
initiator of tumorigenesis is unclear [161]. In humans, there is a paucity of information
to support this hypothesis, although patients with variegated aneuploidy syndrome are
predisposed to childhood cancers [162], and mathematical modelling in colorectal cancer
supports a role for chromosomal instability as a tumour initiator [163].

Most of what is known is derived from mouse models of CIN [164], and, because there
is an increased incidence of spontaneous tumours in these animals, it has been concluded
that aneuploidy is sufficient to initiate cancer. However, the mouse tumour phenotypes in
these studies show incomplete penetrance: tumours typically only emerge after long latency
periods and, in some models, require a carcinogen to induce tumour formation. Further, the
molecular abnormalities that induce aneuploidy in these animal models, namely, defects
of spindle assembly checkpoints or their downstream components, are extremely rare in
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human tumorigenesis. Therefore, what might be more important in tumour initiation are
the spectrum of proto-oncogenes that are activated and the array of tumour suppressor
genes that are lost as a result of aneuploidy.

7. Keratinocyte Cell Lines from OPMD

Parkinson and colleagues [50–54] showed that keratinocyte cultures from OPMD are
either immortal or mortal in vitro. The former cell type is characterized by the loss of
TP53 and CDKN2A, telomerase activation and extensive SCNA and LOH. In contrast,
mortal keratinocytes have wild-type TP53 and CDKN2A pathways and minimal genetic
abnormalities. Nevertheless, these OPMD-derived genetically stable keratinocytes can be
distinguished from normal keratinocytes by their resistance to suspension-induced terminal
differentiation and an altered transcriptional profile [50–54,165]. Taken together, the data
show that inactivation of TP53 and CDKN2A, activation of telomerase and extensive
SCNA and LOH are associated with an escape from senescence and the development of an
immortal phenotype.

Veeramachaneni et al. [75] examined SCNA in the OPMD keratinocyte cultures that
were derived by Parkinson and colleagues, showing that those cells that originated from
lesions that were known to progress to OSCC (D19, D20, D35) had −3p and −8p with
homozygous deletion of FHIT (3p14.1) and CSMD1 (8p23.2). In two of these cultures
(D19, D35), there were +3q, +5p, +7p +20 and −13p, −13q, −18p, −18q, +20. In contrast,
OPMD keratinocytes derived from lesions that did not progress to OSCC (D34, D4, D9,
D38) showed only focal SCNAs involving FHIT (2/4 cultures), CSMD1 (3/4 cultures) and
gains of chromosome 20 (3/4 cultures). These results are consistent with the findings of
Wood et al. (2017), who examined SCNA in cells from low- and high-grade oral dysplasias;
keratinocytes from tissues with a greater propensity for malignant change showed −3p, +3q,
−4p, +5p, −5q, +7p, +7q, +8q, −9p, −11p, −11q, +12p, −18q. The biological significance
of these chromosome anomalies is yet to be determined.

Using a microcell-mediated chromosome transfer, Vasudevan et al. [160] explored the
impact of inducing different trisomies of individual chromosomes on metastatic behaviour.
Trisomy of chromosome 5 promoted the metastatic capacity of HCT116 colon cancer cells
through the partial induction of EMT. Trisomies of chromosomes 3, 8, 18 and 21 had only
minor effects in invasion and cell motility assays, and trisomy of chromosome 13 inhibited
invasion in vitro. In OPMD, therefore, the duplication of chromosome 5p and the loss of
13p and 13q may facilitate the invasion of putative tumour cells, and, in these circumstances,
the induction of EMT facilitates cells escaping from the boundaries of the basement mem-
brane and the establishment of a primary tumour. Vasudevan et al. [160] concluded that
aneuploidy could act as either a tumour promoter or suppressor, but they were cautious
in their interpretation of the data because the changes described for HCT116 were not seen
in TERT-transformed retinal pigment epithelial cells, suggesting that the effect of specific
aneuploidies was context-dependent and related to the genetic and epigenetic background of
the target cells. It is also notable that HCT116 shows mismatch binding defects that lead to
DNA-damage tolerance [166], which may influence the observed phenotype.

In a parallel approach, de Boer et al. [27] examined the genetic profile of keratinocytes
from the surgical margins of OSCC; whilst this is a recognised approach to study cancer
development, particularly when investigating field carcinogenesis, the presence of ma-
lignant cells in the tissue samples cannot be excluded. The genetic picture was varied
(9/27 cultures had TP53 mutations; 8/13 cultures had inactivation of CDKN2A; there
was SCNA in the absence of somatic mutations; 2/27 cultures showed complete absence
of SCNAs and this was unrelated to the outcome of the tissue of origin) [27]. We com-
bined our own SCNA data [73] with the findings of de Boer et al. [27], and the data show
that (1) SCNA was uncommon in mortal keratinocytes (24/32 cultures had no SCNA;
3/32 cultures had only one chromosomal alteration) and that (2) the presence of SCNA
appeared to be linked to inactivation of TP53 and CDKN2A. An incidental finding was
that NOTCH1 mutations were associated with inactivation of CDKN2A (3/5 cultures).
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Our interpretation of these observations is that the acquisition of major SCNAs in non-
tumourigenic cultured premalignant keratinocytes does not usually occur until cell crisis
in vitro is bypassed and telomerase is activated. With regard to events in vivo, escape
from cellular senescence through inactivation of TP53 and CDKN2A, plus activation of
telomerase, parallels the evasion of crisis in vitro.

8. Hypothesis: The Role of Genetic Instability in the Development of OSCC

The concept that cancer evolution follows Darwinian guidelines and leads to the
somatic selection of tumour cells has been questioned recently [167]. Vendramin et al. [167]
argued that tumour development and progression, for example, are catastrophic events
rather than gradual changes, and both neutral evolution and the role of ageing are likely
to play a role in carcinogenesis [167]. Further, recent evidence suggests that the spectrum
of chromosomal changes that are associated with aneuploidy is not random but shows
reproducible patterns during tumorigenesis [159,168].

In Figure 2, we propose a hypothesis to account for the role of genetic instability
in the development of OSCC. We suggest that during the premalignant stage of OSCC
development, namely, OPMD, putative cancer cells become progressively immortalised by
the inactivation of both TP53 and CDKN2A and the activation of telomerase. The result is
that these cells not only have an unlimited growth potential but also are able to survive
chromosomal breakage, leading to the development of aneuploidy and the amplification,
deletion and translocation of cancer-relevant genes. Further, aneuploidy leads to the
development of cell diversity and the evolution of cell clones that have the capacity to
invade the underlying connective tissue and form primary tumours. If aneuploidy can be
considered as a catastrophic event, our proposal is consistent with the work of Vendramin
and colleagues [167]. However, we acknowledge that a variety of factors, including the
genetic composition of the tumour cells [169,170] and the tumour environment [171,172],
amongst others, influence the complex process of invasion.
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Figure 2. Hypothesis to account for the importance and consequences of genetic instability during
the premalignant stage in the development of oral squamous cell carcinoma. The proposal is that
during the clinical (normal oral mucosa to OPMD to OSCC) and histological (normal oral mucosa
to dysplasia to invasive OSCC) development of oral squamous cell carcinoma, putative cancer
cells become progressively immortalised by the inactivation of both TP53 and CDKN2A and the
activation of telomerase. The result is that these cells not only have an unlimited growth potential
but, also, are able to survive chromosomal breakage leading to the development of aneuploidy and
the amplification, deletion and translocation of cancer-relevant genes. Further, aneuploidy leads to
the development of cell diversity and the evolution of cell clones that have the capacity to invade the
underlying connective tissue and form primary tumours.
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9. Concluding Remarks

The current methodology to assess chromosomal instability has practical difficulties [173]
and, therefore, is of limited value in the prediction of malignant transformation. Further,
surgical intervention to obtain the appropriate tissue/cell samples is uncomfortable, invariably
precludes regular follow-up and, often, is not genetically representative of the tissue of origin.
Recently, a new PCR-based assay called the repetitive element aneuploidy sequencing system
was described [174], which detects aneuploidy in as little as 3pg of DNA, can be used in a
broad range of liquid biopsies and has a sensitivity of 80% when combined with data from
somatic mutation analysis and standard protein biomarkers [174]. Similarly, aneuploidy
and gene-mutation profiles were used recently to detect malignant nerve sheath tumours
in plasma [175]. These techniques lend themselves to the detection of malignant change in
OPMD, particularly as saliva analysis abrogates the need for a surgical biopsy.

A characteristic feature of CIN is drug resistance [4], and, therefore, it is particularly
challenging to develop drugs that eliminate aneuploid cells [176]; this situation is com-
pounded by intra-tumoral heterogeneity [2]. Nevertheless, appropriate drug development
is likely to be rewarding not least because CIN is a near-ubiquitous characteristic of ma-
lignant human tumours, though it is extremely rare in normal tissues. At the moment,
there are no drugs available in clinics that can be used specifically to inhibit chromosome
errors [177], though advances are starting to be made. Aneuploid cells, for example, show
increased perturbation of the core components of the SAC; restoration of KIF18A, a mi-
totic kinesin, leads to a normal response to SAC inhibition [178]. Further, Zhang and
Kschischo [103] showed that cells with W-CIN are susceptible to treatment with a BRAF
inhibitor (PLX-4032), and those with S-CIN respond to Afatinib, Lapatinib and Austocystin.
It remains to be determined whether these drugs will be clinically effective in the control of
tumours and potentially malignant disorders in vivo.

Three further approaches also might be used to detect the vulnerabilities of aneuploidy
cells: a wide range of drug sensitivity screens, the use of immune checkpoint inhibitors to
determine why aneuploid tumours induce weak immune responses and the use of whole
genome cDNA, CRISPR and RNAi libraries to modulate gene expression and examine the
effect on cancer genotypes [150].
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