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Simple Summary: We used carbon and nitrogen stable isotopes as ecological tracers to investigate
isotopic niche overlap between 21 odontocete (toothed whale) species inhabiting neritic, mesopelagic,
and bathypelagic waters. Results showed a clear niche separation for the bathypelagic Gray’s beaked
whales (Mesoplodon grayi) and sperm whales (Physeter macrocephalus), but high isotopic niche overlap
and potential interspecific competition for neritic and mesopelagic species. This study represents
the first insights into the coexistence of odontocetes in a biodiverse hotspot and provides a critical
baseline for a system already undergoing ecosystem changes via ocean warming and its subsequent
effect on prey abundance and distribution.

Abstract: Species occurring in sympatry and relying on similar and limited resources may partition
resource use to avoid overlap and interspecific competition. Aotearoa, New Zealand hosts an extraor-
dinarily rich marine megafauna, including 50% of the world’s cetacean species. In this study, we used
carbon and nitrogen stable isotopes as ecological tracers to investigate isotopic niche overlap between
21 odontocete (toothed whale) species inhabiting neritic, mesopelagic, and bathypelagic waters.
Results showed a clear niche separation for the bathypelagic Gray’s beaked whales (Mesoplodon grayi)
and sperm whales (Physeter macrocephalus), but high isotopic niche overlap and potential interspecific
competition for neritic and mesopelagic species. For these species, competition could be reduced via
temporal or finer-scale spatial segregation or differences in foraging behaviour. This study represents
the first insights into the coexistence of odontocetes in a biodiverse hotspot. The data presented here
provide a critical baseline to a system already ongoing ecosystem change via ocean warming and
subsequent effects on prey abundance and distributions.

Keywords: diet; dolphins; stable isotopes; nitrogen; carbon; feeding ecology; trophic relationships; SGD14

1. Introduction

An ecological niche is defined as a region in a multi-dimensional space of biotic and
abiotic conditions that affect the welfare and viability of a species [1]. These dimensions can
generally be divided into three main groups: temporal (i.e., diel foraging patterns or annual
migrations), spatial (both horizontal and vertical), and trophic (i.e., trophic level, diet
composition). The competitive exclusion principle, also known as the Gause principle or
Gause’s law [2], states that two species cannot exist at constant population numbers if they
are competing for the same limited resource and thus occupy the same ecological niche. To
avoid competitive exclusion, co-occurring species can attain niche differentiation through
resource partitioning via any of the three dimensions (temporal, spatial, or trophic) [1,2].
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Knowledge of an animal’s diet is fundamental to understanding its habitat require-
ments, movement, and functional position in the food web [3–5]. Such data inform the
degree of interactions between different taxa, as well as the grade of dietary specialisa-
tion and hence foraging plasticity of a species [6–8]. Stable isotope analysis enables an
animal’s niche to be quantified using the concept of “isotopic niche” [9], with bulk carbon
heavy-to-light isotopic ratios (δ13C) providing information on likely carbon sources relat-
ing to feeding habitat [10–12], and bulk nitrogen isotopic ratios (δ15N) informing trophic
level [13,14] and foraging ecology [15–18].

Aotearoa, New Zealand is home to an extraordinarily rich marine fauna, including
50% of the world’s cetacean species [19,20]. Of these, 35 are odontocetes (toothed whales),
which are apex- and mesopredators that play a crucial part in maintaining ecosystem
health [20]. Due to New Zealand’s latitudinal spread and isolated geographical location,
these species occupy a range of different habitats, ranging from shallow coastal and shelf
areas over deep ocean trenches to subantarctic waters [21,22]. While a degree of inherent
spatial segregation between taxa is expected given their different habitat requirements and
foraging behaviour, many species generally overlap in their distribution [19]. To minimise
interspecific competition, predators occupying the same habitat usually practise resource
partitioning by exploiting available prey differently [23,24]. Alternatively, or in some
cases, additionally, predators segregate spatially or temporally to avoid competition [25,26].
Besides being home to a diverse cetacean community, New Zealand is also a hotspot for
cetacean stranding events, including live single and mass stranding events, as well as
dead ‘beachcast’ specimens that wash ashore [27–29]. While many of these stranding
events involve species that regularly occur in New Zealand’s Economic Exclusion Zone,
occasionally even vagrant Antarctic species are recorded on New Zealand shores (New
Zealand National Strandings Database, Department of Conservation).

In this study, we investigated the isotopic niche of 21 odontocete species occurring
in New Zealand waters using skin samples collected from live-stranded and beach-cast
individuals. We hypothesised that species with similar habitat requirements would occupy
their own respective isotopic niche, thus avoiding interspecific resource competition.

2. Materials and Methods
2.1. Sample Collection

We collected skin samples originating from live strandings or fresh to mild beach-
cast events (herein collectively referred to as ‘stranded’) around the New Zealand coast
(41◦18′ S, 174◦47′ E; Figure 1) between 2010 and 2021. Any carcass believed to be less
than 24 h old, as determined by the presence of rigour mortis, the condition of the skin,
and the turgor, clarity, and moisture of the eye, was defined as ‘fresh’ (codes 1 & 2 from
IJsseldijk, et al. [30]). Carcasses with early stages of visible decomposition, including eyes
and skin degradation, were considered ‘mild autolysis/decomposition’ (code 3) [30,31].
Animals were sexed anatomically or genetically (see Appendix A.1 for details). Sam-
pling of both sexes occurred across independent animals only (i.e., individuals deemed
to be maternally independent based on species-specific total body length as outlined by
Jefferson, et al. [32]). As ontogenetic diet shifts affect isotopic values, we conservatively
excluded any animals whose total body length did not fall clearly within the expected
range of an independent animal from this study. We systematically sampled skin tissue
comprising the complete epidermal layer from stranded carcasses and stored them in 95%
ethanol or frozen at −20 ◦C upon collection [31].

We analysed samples from a total of 21 species, representing a wide diversity of
habitats [19], represented by five families (Ziphiidae, Delphinidae, Physeteridae, Kogiidae,
and Phocoenidae, Table 1).
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Figure 1. Locations for 21 species of cetaceans (denoted by shape and colour) sampled in New
Zealand between 2010 and 2021. Sample size for each species is denoted in parentheses. Bathymetry
is depicted with darker shades of blue representing deeper waters (data from the National Institute
of Water and Atmospheric Research (NIWA) under a CC BY license, with permission from NIWA
original copyright [33]).

Table 1. Suess-corrected carbon (δ13C) and nitrogen (δ15N) isotope values and sample sizes (n) for
independent odontocete species sampled in Aotearoa, New Zealand, 2010–2021. Values are given as
mean ± 1 SD. See Figure 2 for an illustration of habitat zones.

Group Species Latin Name Preferred Habitat n δ13C δ15N

Neritic

Bottlenose
dolphin

Tursiops
truncatus Temperate coastal to pelagic waters [34] 10 −16.99 ± 0.50 14.83 ± 0.81

Hector’s
dolphin

Cephalorhyncus
hectori hectori Coastal waters [35] 10 −16.91 ± 0.63 15.26 ± 0.70

Meso-
pelagic

Common
dolphin

Delphinus
delphis Coastal waters [36] 18 −17.45 ± 0.72 14.11 ± 1.31

Dusky dolphin Lagenorhynchus
obscurus Neritic waters above continental shelves [37] 13 −17.48 ± 0.48 12.84 ± 1.34

False killer whale Pseudorca
crassidens Pelagic waters [38] 2 −18.20 ± 1.46 13.82 ± 0.17

Killer whale Orcinus orca Coastal to offshore, tropical to polar waters [39] 15 −16.75 ± 0.31 15.43 ± 0.49
Long-finned pilot

whale
Globicephala

melas edwardii Cold temperate oceanic to shelf waters [40] 22 −17.45 ± 0.71 12.84 ± 1.04

Pygmy killer whale Feresa attenuata Tropical oceanic waters [41] 3 −17.19 ± 0.35 14.50 ± 0.08
Pygmy sperm whale Kogia breviceps Pelagic waters [42] 10 −17.59 ± 0.49 14.14 ± 0.46

Risso’s dolphin Grampus griseus Offshore waters [43] 4 −18.32 ± 1.90 13.80 ± 1.15
Short-finned pilot

whale G. macrorhynchus Tropical to warm temperate, oceanic to shelf waters [40] 4 −16.8 ± 0.11 13.62 ± 0.85

Striped
dolphin

Stenella
coeruleoalba Waters outside the continental shelf, oceanic [44] 10 −17.74 ± 0.49 12.88 ± 0.51
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Table 1. Cont.

Group Species Latin Name Preferred Habitat n δ13C δ15N

Bathy-
pelagic

Arnoux’s beaked
whale Berardius arnuxii Southern hemisphere waters, between 24◦S and

Antarctica [45] 1 −27.16 9.63

Cuvier’s beaked
whale

Ziphius
cavirostris Oceanic deep waters [46] 3 −17.74 ± 0.26 13.64 ± 1.54

Gray’s beaked whale Mesoplodon grayi Temperate deep waters [47,48] 11 −17.95 ± 0.65 13.03 ± 0.86
Southern bottlenose

whale
Hyperoodon

planifrons Deep waters south of 30◦S [49] 1 −17.34 13.69

Sperm whale Physeter
macrocephalus Deep waters, tropical to sub-polar [50] 16 −17.24 ± 0.50 14.54 ± 0.62

Strap-toothed whale Mesoplodon
layardii

Temperate and subantarctic waters in the Southern
Hemisphere [51] 2 −23.03 ± 0.16 11.42 ± 0.17

Polar

Hourglass
dolphin L. cruciger Pelagic-oceanic, polar waters [52] 2 −19.27 ± 0.05 8.85 ± 0.18

Southern right whale
dolphin

Lissodelphis
peronii

Circumpolar subantarctic and cool-temperate Southern
Ocean waters [53] 2 −20.06 ± 0.22 10.78 ± 0.66

Spectacled
porpoise

Phocoena
dioptrica

Cool temperate, sub-Antarctic, and Antarctic oceanic
waters [54] 5 −19.17 ± 0.65 9.51 ± 0.61
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2.2. Stable Isotope Analysis

We used δ13C and δ15N data as proxies for habitat and trophic position, respectively.
We analysed skin samples from 164 individuals across 21 odontocete species (Table 1,
Figure 1). Skin samples stored in ethanol were placed under a fume hood or a stream of
nitrogen gas until the ethanol had fully evaporated. Frozen samples were slowly defrosted
at room temperature. Using a stainless-steel scalpel, we cut each sample into about 0.2 mm
fine slices, equivalent to approximately 10 mg of skin, and then oven dried them for at least
48 h.

We sealed 0.5–1.0 mg of dried homogenised sample into tin capsules, which were
subsequently analysed using a DELTA V Plus continuous flow isotope ratio mass spec-
trometer linked to a Flash 2000 elemental analyser with a MAS 200 R autosampler (Thermo
Fisher Scientific, Bremen, Germany), as detailed in Peters, et al. [55]. Repeat analysis of
international NIST standards produced data accurate to within or better than 0.15‰ for
both δ13C and δ15N, and a precision of better than 0.24‰ for δ13C and 0.22‰ for δ15N.

Isotopic ratios were calculated as:

δX =
[(

Rsample/Rstandard

)
− 1
]
× 1000 (1)

where X is 13C or 15N, and Rsample and Rstandard are the 13C/12C and 15N/14N ratios
in the sample and standard, respectively. See Peters, et al. [55] for more details on the
analytical protocol.
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2.3. Lipid Extraction

Cetacean skin is known to have a high lipid content [16,56,57], which can lead to
decreased δ13C values due to the 12C enrichment in the lipids [58]. Several of our bulk
isotope sample analyses had a mass ratio of carbon and nitrogen (C:N) > 3.5, indicating lipid
content of the tissue and thus lipid “contamination” of the carbon isotope value [59–61].
To account for the effect of lipid content on δ13C values, tissue samples need to either be
lipid-extracted chemically a priori, or results need to be mathematically corrected a posteriori
(normalisation). A combination of these two methods can also be applied by chemically
analysing a subset of the samples to then develop a species-specific mathematical correction
formula, which has cost-benefits compared to chemical lipid extraction of all samples.

To develop a mathematical normalisation formula specific to our study species, we
lipid-extracted a subset of 74 samples across species, selected to cover the range of measured
C:N mass ratio values (from 3.0 to 8.6). Freeze-dried material was sub-sampled and
wrapped in GF/C filters prior to lipid extraction on a DIONEX 200 accelerated solvent
extraction system (ASE). Samples were transferred to 22 mL s/s ASE cells and extracted
three times with dichloromethane at 70 ◦C and 1500 psi for a static hold time of five minutes.
All samples were heated to 40 ◦C in an oven overnight following extraction, to evaporate
off any traces of solvent prior to isotope analysis.

We calculated a δ13C lipid-correction factor using averaged bootstrapped linear regres-
sion analysis of the δ13C values of the original bulk (non-lipid-extracted) and lipid-extracted
samples (see Appendix A.2 for details and correction formulae). Using this factor, we math-
ematically corrected non-lipid extracted δ13C values for samples with C:N mass ratios > 3.5.
For samples with C:N mass ratios < 3.5, we used the original bulk non-lipid corrected δ13C
values. As lipid extraction can affect δ15N values [62–64], we used the non-lipid extracted
δ15N values for all samples.

Since the samples were collected over a span of twelve years (2010–2021), we applied
a correction of –0.022‰ year−1 [65] referenced to the year 2021 to carbon isotope values
of all samples to account for the “Suess effect” (changes in the δ13C values of atmospheric
carbon dioxide (CO2) due to the burning of fossil fuels) [65,66].

2.4. Analysis

We assigned all species to one of four groups based on their most common known dis-
tribution and habitat in New Zealand waters see Table 1 in [19]: neritic habitat (bottlenose
dolphin Tursiops truncatus, Hector’s dolphin Cephalorhyncus hectori hectori); mesopelagic
habitat (common dolphin Delphinus delphis, dusky dolphin Lagenorhynchus obscurus, false killer
whale Pseudorca crassidens, killer whale Orcinus orca, long-finned pilot whale
Globicephala melas edwardii, pygmy killer whale Feresa attenuata, pygmy sperm whale
Kogia breviceps, Risso’s dolphin Grampus griseus, short-finned pilot whale G. macrorhynchus,
striped dolphin Stenella coeruleoalba); bathypelagic habitat (Arnoux’s beaked whale
Berardius arnuxii, Cuvier’s beaked whale Ziphius cavirostris, Gray’s beaked whale
Mesoplodon grayi, southern bottlenose whale Hyperoodon planifrons, sperm whale
Physeter macrocephalus, strap-toothed whale Mesoplodon layardii); and polar habitat (hour-
glass dolphin L. cruciger, southern right whale dolphin Lissodelphis peronii, spectacled
porpoise Phocoena dioptrica) (Table 1, and see Figure 2 for illustration of habitat zones). We
calculated the mean and standard deviation of δ15N and δ13C values for all species except
for Arnoux’s beaked and southern bottlenose whales, for which only one specimen per
species was available.

Ten species had n ≥ 10 (Table 1), allowing for statistical analyses. We compared mean
δ13C and δ15N values between these species using a two-sample randomisation test with
10,000 permutations at a 0.05 level. This test compares the difference of the mean isotopic
values between two species with the difference obtained by randomly allocating the values
among the two species [67]. Randomisation tests do not assume normal distribution or
homogeneity of variances and hence are an excellent test to use for small sample sizes and
biological data [67].



Biology 2022, 11, 1179 6 of 25

While the remaining 11 species had sample sizes <10, we have included their data
in a descriptive sense as, due to the rarity of these samples for most of these cetaceans,
their results certainly hold value. For these species, our data were often biased towards
males. For most species with n ≥ 10, data were reasonably balanced between sexes, except
for sperm whales, which were all male. However, overall sample sizes were too low to
investigate sex-specific differences within species.

We used six different Layman metrics (δ13C range, δ15N range, total area (TA), mean
distance to centroid (CD), mean nearest neighbour distance (MNND), and standard devia-
tion of nearest neighbour distance (SDNND) to compare isotopic niches between species
(see Appendix A.3 for metric definitions). All Layman metrics were bootstrapped with
replacement (n = 10,000, indicated with a subscript ‘boot’) based on the smallest sample size
in the data set (neritic: n = 10; pelagic: n = 10; bathypelagic: n = 11) to enable statistical
comparison between species [67,68]. To further assess niche widths and isotopic niche
overlap for each species, we followed a Bayesian approach using multivariate ellipse-based
metrics [69]. This method is particularly useful when comparing groups with small sample
sizes, as it corrects for the influence of outliers. We calculated standard ellipse areas (SEA),
which are the bivariate equivalent to standard deviation in univariate analyses, and further
calculated SEA corrected (SEAC) to minimise bias introduced by small sample sizes. In
addition, we calculated the Bayesian SEA (SEAB) using 1000 posterior draws to statistically
compare niche width between species. The SEAB was used to calculate the niche overlap
between species of the same habitat group, which was calculated as the proportion of the
total SEAB for each species, respectively. All statistical analyses were done using R version
4.1.0 [70]. We calculated Layman metrics and SEAs with the R package SIBER (Stable
Isotope Bayesian Ellipses in R [69]).

3. Results

Mean isotopic values for both δ13C and δ15N differed between the 10 species with
n ≥ 10 (randomisation test, Tables 2 and A1, Figure 3), with all species showing differences
in either δ13C or δ15N values or both compared to at least seven of the remaining nine
species. Of all the pairings, 52.5% (21/40) differed in both δ13C and δ15N values, 7.5% of
pairings (3/40) differed only in δ13C values, and 25.0% (10/40) differed only in δ15N values.

Table 2. Pairwise comparisons (randomisation test) of δ13C and δ15N isotopic values be-
tween odontocete species with n ≥ 10 within each habitat group. Colour denotes the level
of difference (at 0.05 significance level): dark blue = difference in both δ13C and δ15N isotopic
values, light blue: difference only in δ15N isotopic values, white = no difference. Neritic
group (yellow): BD = bottlenose dolphin, HD = Hector’s dolphin, mesopelagic group (orange):
CD = common dolphin, DD = dusky dolphin, KW = killer whale, LPW = long-finned pilot whale,
PSW = pygmy sperm whale, SD = striped dolphin, bathypelagic group (green): GW = Gray’s beaked
whale, SBW = southern bottlenose whale, SW = sperm whale. Dark grey indicates matrix diagonal,
light grey fields refer to species not in the same habitat. See Table A1 for p-values.

Neritic Mesopelagic Bathypelagic
Species BD HD CD DD KW LPW PSW SD GW SW

BD
HD
CD
DD
KW
LPW
PSW
SD
GW
SW
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3.1. Neritic Group

Bottlenose and Hector’s dolphins did not differ in their mean isotopic values for
either δ13C or δ15N (randomisation test: δ13C p = 0.373, δ15N p = 0.106, Tables 2 and A1,
Figures 3 and A2a). Hector’s dolphins exhibited a larger SEAB compared to bottlenose dol-
phins. However, the probability for Hector’s dolphins to have higher values for the isotopic
metrics considered was low (35.3–68.0%) except for the δ13C range (76.1%, Table 3a). Their
SEABs overlapped substantially (bottlenose dolphin = 41.0%, Hector’s dolphin = 34.0%,
Table 4, Figures 4a and 5a).

3.2. Mesopelagic Group

Common dolphins had lower δ13C and δ15N mean isotopic values than killer whales,
and higher δ15N values than long-finned pilot whales and striped dolphins (randomisation
test, p = ≤ 0.007, Tables 2 and A1). Of the six mesopelagic species analysed, common
dolphins had the largest SEAC and SEAB (Table 3b), and they were more likely to have
higher bootstrapped values in most Layman metrics than killer whales and striped dolphins,
and in all Layman metrics compared to pygmy sperm whales (Table 5). SEAB overlap for
common dolphins was highest with killer whales (50.0%), smallest with striped dolphins
(11.0%) and intermediate with the remaining pelagic species (19.0–27.0%) (Table 4).
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Table 3. Isotopic niche metrics (including the six Layman metrics) for adult odontocetes with
n ≥ 10. SEA = standard ellipse area, SEAC = standard ellipse area corrected for small sample size,
SEAB = Bayesian SEA, TA = total area, CD = mean distance to centroid, MNND = mean nearest
neighbour distance, SDNND = standard deviation of nearest neighbour distance, see supplementary
material for metric definitions. The subscript ‘boot’ indicates that the value (mean) has been generated
via bootstrapping. Probability refers to the probability of the respective bootstrapped metric being
larger in one species over another across all draws.

(a) neritic odontocetes

Metrics Bottlenose dolphin Hector’s dolphin Probability (%)
N 10 10
SEA 1.02 1.31
SEAC 1.15 1.47
SEAB 0.78 0.99
δ13C range 1.64 1.80
δ13C rangeboot 1.35 1.59 76.1% HD > BD
δ15N range 2.40 2.28
δ15N rangeboot 2.10 1.93 64.7% BD > HD
TA 1.76 2.52
TAboot 1.82 2.01 59.1% HD > BD
CD 0.84 0.85
CDboot 0.78 0.78 51.1% BD > HD
MNND 0.36 0.48
MNNDboot 0.33 0.35 56.6% HD > BD
SDNND 0.24 0.22
SDNNDboot 0.26 0.28 56.1% HD > BD

(b) mesopelagic odontocetes (for probability %, see Table 4)

Metrics Commondolphin Dusky
dolphin Killer whale Long-finned

pilot whale
Pygmy
sperm whale

Striped
dolphin

N 18 13 15 22 10 10
SEA 2.01 1.33 0.37 2.03 0.71 0.74
SEAC 2.14 1.46 0.39 2.13 0.80 0.84
SEAB 2.98 1.14 2.00 2.48 2.67 1.58
δ13C range 2.46 1.59 1.10 2.63 1.52 1.87
δ13C rangeboot 2.03 1.32 0.88 2.08 1.29 1.44
δ15N range 4.83 4.53 2.14 4.64 1.37 1.75
δ15N rangeboot 3.63 3.68 1.46 2.93 1.21 1.33
TA 5.39 2.93 0.86 6.73 1.33 1.65
TAboot 4.66 3.06 0.74 3.54 1.03 1.10
CD 1.32 1.20 0.46 1.00 0.60 0.55
CDboot 1.24 1.14 0.45 0.98 0.56 0.53
MNND 0.45 0.47 0.20 0.45 0.36 0.39
MNNDboot 0.60 0.48 0.23 0.53 0.25 0.26
SDNND 0.31 0.20 0.23 0.41 0.21 0.35
SDNNDboot 0.38 0.35 0.21 0.43 0.20 0.27

(c) bathypelagic odontocetes

Metrics Gray’s beaked whale Sperm whale Probability (%)
N 11 16
SEA 1.35 0.58
SEAC 1.50 0.62
SEAB 1.46 1.45 98.0% GW > SW
SEAB overlap 0.03 0.09
δ13C range 2.35 1.62
δ13C rangeboot 1.81 1.43 65.7% GW > SW
δ15N range 2.51 2.50
δ15N rangeboot 2.33 1.81 73.7% GW > SW
TA 2.98 1.51
TAboot 2.66 1.57 78.7% GW > SW
CD 0.85 0.60
CDboot 0.85 0.62 86.6% GW > SW
MNND 0.49 0.24
MNNDboot 0.36 0.31 64.1% GW > SW
SDNND 0.40 0.26
SDNNDboot 0.34 0.27 65.4% GW > SW
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Table 4. Bayesian niche overlap (40%) for each species (left column) with each other species (top
row) in their habitat group for species with n ≥ 10. Species abbreviations: Neritic group (yellow):
BD = bottlenose dolphin, HD = Hector’s dolphin, mesopelagic group (orange): CD = common dol-
phin, DD = dusky dolphin, KW = killer whale, LPW = long-finned pilot whale, PSW = pygmy sperm
whale, SD = striped dolphin, bathypelagic group (green): GW = Gray’s beaked whale, SW = sperm
whale. Dark grey indicates matrix diagonal, light grey fields refer to species not in the same habitat.

Species BD HD CD DD KW LPW PSW SD GW SW
BD 0.41
HD 0.34
CD 0.19 0.50 0.27 0.22 0.11
DD 0.26 >0.01 0.54 0.22 0.23
KW 0.30 >0.01 >0.01 0.02 >0.01
LPW 0.28 0.39 >0.01 0.06 0.24
PSW 0.64 0.15 >0.01 0.18 0.05
SD 0.31 0.42 >0.01 0.63 0.04
GW 0.03
SW 0.09
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Dusky dolphins, together with long-finned pilot whales, had the lowest mean δ15N
values of all mesopelagic species (12.84± 1.34‰, Table 1, Figures 3 and A2c). They differed
from common dolphins in both δ13C and δ15N mean isotopic values (randomisation test,
p = 0.001, Tables 2 and A1), but not compared to long-finned pilot whales and striped
dolphins. For all Layman metrics except SDNND, dusky dolphins were more likely to have
higher bootstrapped values compared to killer whales, pygmy sperm whales, and striped
dolphins (Table 5). They showed high SEAB overlap with long-finned pilot whales (54%)
and moderate overlap with common dolphins, striped dolphins, and pygmy sperm whales
(22.0–26.0%) (Table 4).

Killer whales had lower mean δ13C values (−16.75 ± 0.31‰) and higher mean δ15N
values (15.43 ± 0.49‰, Table 1, Figures 3 and A2c) than the other six mesopelagic species
analysed (randomisation test, all p ≤ 0.001 Tables 2 and A1). Killer whales were also likely
to have smaller values for almost all Layman metrics compared to the other mesopelagic
species (Table 5). Their SEAC was the smallest compared to the other mesopelagic species,
but this was not reflected in their SEAB. Killer whales overlapped in SEAB only with
common dolphins (30.0%, Table 4).

Long-finned pilot whales, together with dusky dolphins, had the lowest δ15N values
of the six mesopelagic species analysed (12.84 ± 1.04‰, Table 1, Figures 3 and A2c). This
difference was significant when compared to killer whales (for both δ13C and δ15N values),
and to common dolphins and pygmy sperm whales (for δ15N, randomisation test, p≤ 0.001,
Tables 2 and A1). Long-finned pilot whales had the second highest SEAC and were likely
to have higher bootstrapped values in most Layman metrics compared to killer whales,
pygmy sperm whales, and striped dolphins (Table 5). They overlapped in SEAB with dusky
dolphins (39.0%), common dolphins (28.0%), and striped dolphins (24.0%) (Table 4).

Pygmy sperm whales had the second lowest δ13C value (−17.59 ± 0.49‰) and the
second highest mean δ15N value (14.14 ± 0.46‰) of the six mesopelagic species analysed
(Table 1, Figures 3 and A2c). They had lower mean isotopic values for both δ13C and
δ15N compared to killer whales, but higher mean δ15N values than dusky dolphins, long-
finned pilot whales, and striped dolphins (randomisation test, p ≤ 0.007, Tables 2 and A1).
They were likely to have lower values for most Layman metrics than common and dusky
dolphins, as well as long-finned pilot whales (Table 5). Although pygmy sperm whales
had the second smallest SEA and SEAC, this was not reflected in their SEAB (Figure 5b).
They showed high SEAB overlap with common dolphins (both 64%) and moderate overlap
with long-finned pilot whales (18%) and dusky dolphins (15%, Table 4).
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Table 5. The probability of each respective bootstrapped metric being larger in one species over
another across all draws for mesopelagic species with n ≥ 10. Species abbreviations: CD = common
dolphin, DD = dusky dolphin, KW = killer whale, LPW = long-finned pilot whale, PSW = pygmy
sperm whale, SD = striped dolphin. Probabilities ≥ 90% are highlighted in bold.

Species Metric CD DD KW LPW PSW SD

Common dolphin (CD)

SEAB 84.2 100.0 54.1 99.4 99.1

δ13C range 94.7 99.5 44.8 95.5 85.6
δ15N range 47.5 99.5 68.4 100.0 99.9
TA 83.0 100.0 72.1 100.0 99.8
CD 63.9 100.0 79.9 1000 99.9
MNND 74.1 99.3 62.5 99.2 98.2
SDNND 60.1 89.9 50.4 92.8 75.2

Dusky dolphin (DD)

SEAB 15.8 100.0 17.2 95.0 93.1
δ13C range 5.1 89.4 8.3 56.7 41.8
δ15N range 52.3 99.4 67.5 100.0 99.5
TA 17.0 99.6 44.7 98.8 96.3
CD 36.1 99.9 70.2 99.6 99.2
MNND 25.9 96.8 40.9 95.1 93.0
SDNND 39.9 83.2 43.1 88.0 66.5

Killer whale (KW)

SEAB 0.0 0.0 0.0 5.9 5.0
δ13C range 0.5 10.5 0.9 7.0 10.5
δ15N range 0.5 0.6 13.1 62.3 57.2
TA 0.0 0.4 0.6 24.6 32.0
CD 0.0 0.1 0.7 18.6 31.8
MNND 0.7 3.2 2.7 40.6 38.1
SDNND 10.1 16.8 16.7 53.0 33.5

Long-finned pilot whale (LPW)

SEAB 45.9 82.8 100.0 99.2 99.2
δ13C range 53.9 91.6 99.1 93.4 84.2
δ15N range 31.4 32.4 86.8 97.3 93.1
TA 27.9 55.3 99.4 98.4 95.7
CD 20.1 29.8 99.3 98.1 96.7
MNND 37.5 59.1 97.3 96.7 94.6
SDNND 49.6 56.9 83.3 86.5 69.4

Pygmy sperm whale (PSW)

SEAB 0.6 5.0 94.0 0.8 44.4
δ13C range 4.4 43.0 92.9 6.5 34.8
δ15N range 0.0 0.0 35.9 2.6 33.1
TA 0.0 1.2 75.4 1.6 48.5
CD 0.0 0.4 81.4 1.9 57.8
MNND 0.8 4.9 59.4 3.3 46.8
SDNND 7.2 12.0 47.0 13.5 31.2

Striped dolphin (SD)

SEAB 0.9 6.9 95.0 0.9 55.6
δ13C range 14.4 58.1 89.3 15.8 65.2
δ15N range 0.1 0.5 42.8 6.3 66.9
TA 0.2 3.7 68.0 4.3 51.5
CD 0.1 0.8 68.2 3.3 42.2
MNND 1.8 7.0 61.9 5.4 53.2
SDNND 24.8 33.5 66.5 30.6 68.8

Striped dolphins had lower mean δ13C and δ15N values compared to killer whales’
mean isotopic values (randomisation test, p < 0.001, Tables 2 and A1) and lower mean δ15N
values than common dolphins and pygmy sperm whales (randomisation test, p ≤ 0.003,
Tables 2 and A1). They were likely to have lower values for most Layman metrics than
long-finned pilot whales, common, and dusky dolphins (Table 5). Striped dolphins had
the second smallest SEAC and SEAB (Table 3b, Figure 5b), overlapping in SEAB with
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long-finned pilot whales (63.0%), dusky dolphins (42.0%), and common dolphins (31.0%)
(Table 4).

The mean isotopic values of false killer whales, pygmy killer whales, Risso’s dolphins,
and short-finned pilot whales fell within the δ13C and δ15N ranges of the other mesopelagic
species. Notably, Risso’s dolphins (n = 4) had a large SD for δ13C (1.9‰).

3.3. Bathypelagic Group

Gray’s beaked whales had lower mean δ13C and δ15N values than sperm whales
(Gray’s beaked whales δ13C −17.95 ± 0.65‰, δ15N 13.03 ± 0.86‰, sperm whales
δ13C−17.24± 0.5‰, δ15N 14.54± 0.62‰, randomisation test: p≤ 0.001, Tables 1, 2 and A1,
Figures 3 and A2e). Gray’s beaked whales had higher values than sperm whales for all
Layman metrics except bootstrapped MNND (Table 3c). The probability of Gray’s beaked
whales having higher values was high for SEAB (98.0%) and CD (86.6%), and low to mod-
erate for all other values (64.1–78.8%, Table 3c, Figure 5c). Both species barely overlapped
in their respective SEABs (Gray’s beaked whales = 4.0%, sperm whales = 9.0%, Table 4,
Figures 4c and 5c).

Mean values for Cuvier’s beaked whales and the single values for southern bottlenose
whales aligned with Gray’s beaked whales. Arnoux’s beaked whale had the lowest δ15N
value of all species in the bathypelagic group (9.6‰). Furthermore, of all the samples
analysed here, Arnoux’s beaked whale had by far the lowest δ13C value (−27.16‰), fol-
lowed by the two samples of strap-toothed whales (mean δ13C = −23.03 ± 0.16‰, Table 1,
Figure A1).

3.4. Polar Group

Of all the species in this study, hourglass dolphins and spectacled porpoises had
the lowest mean δ15N value, (8.85 ± 0.18 and 9.51 ± 0.61‰, respectively). Of the three
odontocetes in the polar group, the two southern right whale dolphins had the lowest
mean δ13C value (−20.06 ± 0.22‰) and the highest mean δ15N (10.78 ± 0.66‰, Table 1,
Figures 3 and A2g).

4. Discussion

Understanding how species navigate interspecific competition is a challenge across
practically all ecological spheres. However, when dealing with some of the most poorly
understood cryptic bathypelagic species, such as beaked whales, for which almost nothing
is known about their ecology, this challenge is even greater. In this study, we show differing
levels of isotopic niche partitioning among 21 odontocete species inhabiting three different
habitats (neritic, meso-, and bathypelagic) within New Zealand waters. Our findings
demonstrate the considerable overlap of stable isotopic niches among species, highlighting
the need for extended assessment of foraging ecology between key overlapping species
using multiple dietary markers to ascertain the full extent of overlap using complimentary
methods of diet assessment. Furthermore, we use the most common feeding habitat for
each species to compare species within each habitat. It is possible that a portion of feeding
behaviour takes place in other habitats as well.

4.1. Neritic Group

Bottlenose and Hector’s dolphins, which both inhabit New Zealand’s neritic waters,
demonstrated high isotopic overlap and little evidence for trophic segregation. For Hector’s
dolphins, stomach content analyses indicate a diet of predominantly small and often
juvenile fish and squid from throughout the water column [71]. Like many small delphinids,
Hector’s dolphins appear to be relatively opportunistic feeders. Typically, their diets reflect
prey species availability, which differs between regions [71], and may also be affected by
opportunistic feeding, such as observed feeding behind trawlers [72].

Bottlenose dolphins (Tursiops truncatus) are known to occur in New Zealand as two
morphologically different ecotypes, coastal and oceanic [73,74]. In this study, we only
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included individuals of the coastal ecotype. The diet of bottlenose dolphins globally varies
between locations and populations, with a variety of fish and squid species described [34].
Isotopic values for bottlenose dolphin skin collected from free-ranging individuals in
Doubtful Sound, South Island, New Zealand, yielded similar isotopic values to those
presented here (δ13C = –16.5± 0.38‰, δ15N = 15.1± 0.36‰, n = 11, [75]). Results suggested
that the local dolphin population mainly feeds on reef-associated and demersal fishes [75].

Given their shared use of coastal waters and similar foraging ecology as opportunis-
tic generalists, we expected Hector’s and bottlenose dolphins to differ in their respec-
tive isotopic niches as a method of avoiding resource competition, which does not seem
to be the case. As it is possible for different food resources to show similar isotopic
composition [76,77], we cannot completely exclude the possibility of trophic segregation
based on stable isotope data alone. Two coastal delphinid species in Queensland, Australia,
the Australian humpback (Sousa sahulensis) and the snubfin dolphin (Orcaella heinsohni),
also showed high isotopic niche overlap [78]. In this case, their co-existence was attributed
to subtle differences in habitat use and prey selection [78]. However, those two species are
similar in size and can exploit the same prey species. In the case of Hector’s and bottlenose
dolphins, the smaller mouth gape makes it highly unlikely for Hector’s dolphins to be able
to feed on adults of fish species such as mullet and snapper, which have been documented
as prey species of bottlenose dolphins (Massey University unpublished data). However, it
is possible that Hector’s dolphins feed on juveniles of the same prey species as bottlenose
dolphins. Furthermore, there may be spatial or temporal segregation between the species,
which reduces direct competition and thus enables their coexistence.

4.2. Mesopelagic Group

Odontocetes in the mesopelagic group varied widely in niche space and Layman
metrics, although we noted considerable overlap between species. For example, common
dolphins exhibited the largest isotopic niche of all mesopelagic species, which reflects their
generalist status, mainly feeding opportunistically on locally abundant small schooling
fish or cephalopods [79–81]. Furthermore, rather than exclusively foraging offshore, in
New Zealand the species is abundant within inshore coastal waters, such as the Hauraki
Gulf [82]. Such a shallow coastal habitat likely widens the foraging niche of the population,
as it includes a range of benthic species [55,79]. Indeed, common dolphins overlapped most
(50%) in the Bayesian niche with killer whales, and least (11%) with striped dolphins, which
is considerably smaller compared to an overlap of 45% observed with striped dolphins in
the Mediterranean Sea [7].

Long-finned pilot whales demonstrated the second largest isotopic niche (Figure 4b),
which overlapped with common, dusky, and striped dolphins. The large δ13C and δ15N
ranges reported for this species indicate that long-finned pilot whales in New Zealand
waters forage over a range of different habitats and prey of different trophic levels [83].
Based on stomach content studies, the diet of long-finned pilot whales in the Southern
Ocean appears to be dominated by adult cephalopods, with local variation in the number
of different species consumed [84–86]. Cephalopods are generally an important part of the
diets of mesopelagic dolphins [87,88], which may explain the niche overlap of long-finned
pilot whales with these species.

Striped dolphins demonstrated a small niche which overlapped substantially with
long-finned pilot whales (63%), dusky (42%), and common dolphins (31%). Like long-
finned pilot whales, striped dolphins are typically observed further offshore [19], and
they likely forage in deep waters [89]. In other locations, the species is known to feed on
cephalopods, fish, and secondarily on crustaceans [90–92]. Compared to the Mediterranean
Sea, striped dolphins in New Zealand waters exhibited a larger isotopic niche [7]. While
dietary similarities exist between regions, no detailed dietary information exists for New
Zealand waters. A deep-water cephalopod-heavy diet would explain the high niche overlap
with long-finned pilot whales.
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Like common dolphins, dusky dolphins displayed a large δ15N range, indicating
high trophic variety throughout the population, although the mean δ15N value was lower
than in common dolphins. Dusky dolphins feed on small schooling fishes, targeting
some of the same species as common dolphins, such as anchovy (Engraulis australis),
garfish (Hyporhamphus ihi), and pilchard (Sardinops neopilchardus) [79,93,94]. However,
although generally using the same mesopelagic habitat type throughout their range in
New Zealand waters, dusky and common dolphins rarely occur in the same location [95],
which may allow overlap in prey species. Niche overlap between dusky dolphins and
common dolphins was not as high as between dusky dolphins and long-finned pilot whales
(26% vs. 63%).

Pygmy sperm whales signalled a small niche area and δ15N range, and their Layman
values were likely to be lower compared to the other mesopelagic species, except killer
whales. Despite the samples having been collected in five different years between 2009
and 2021, pygmy sperm whales had a small isotopic niche, indicating little diversity in
basal resources. Similarly, to long-finned pilot whales, the diet of pygmy sperm whales
consists mainly of oceanic cephalopods caught in depths of up to 1100 m, with smaller
proportions of fish and crustaceans [96–99]. However, niche overlap was three times as
high with common dolphins (64%) than with long-finned pilot whales (18%), suggesting
more competition with common dolphins. Given the greater potential foraging depth of
pygmy sperm whales compared to common dolphins [79,100,101], it is likely that vertical
niche stratification alleviates competition between these two species.

As expected, based on what is known about their foraging ecology as apex preda-
tors, [39], killer whales had the highest mean δ15N values of all species analysed here.
Killer whales are generalist predators with a diet that includes both fish and marine
mammals [39]. However, local populations can be highly specialised in foraging and
hunting strategies, with some populations primarily feeding on fish [102–104] and others
almost exclusively on marine mammals [102,105]. In New Zealand, killer whales are doc-
umented to regularly feed on stingrays [106] and sharks [107,108], with marine mammal
predations also recorded [109]. In locations where prey specialisation occurs, stable iso-
tope analysis has been able to quantify inter-individual dietary variation, showing higher
δ15N values for individuals feeding on marine mammals compared to those feeding on
fish [104,110–112]. Interestingly, the isotopic niche of killer whales in this study was the
smallest of all mesopelagic species, suggesting little isotopic variety in their diet and limited
inter-individual differences, which is further confirmed by the low Layman metrics values.
Our killer whale data comprise samples from six stranding events (two mass strandings
and four single strandings). It is possible that the eleven animals deriving from the two
mass strandings (five and six animals, respectively) skew the data somewhat, particularly
if the mass stranded animals comprised part of the same group and foraged in the same
area and on similar prey prior to stranding.

Risso’s dolphins and false killer whales had the lowest mean δ13C values (−18.32 ± 1.90‰
and −18.20 ± 1.46‰, respectively) of the mesopelagic species, indicating that these ani-
mals likely foraged further offshore than the other species. While nothing is known about
the diet of Risso’s dolphin in New Zealand, false killer whales are known to feed coop-
eratively with oceanic bottlenose dolphins on Kahawai (Arrips trutta) off North Island,
New Zealand [113] and travel large distances across north-eastern New Zealand [114].
Contrastingly, mean δ13C values of pygmy killer whales (−17.19 ± 0.35‰) and short-
finned pilot whales (−16.8 ± 0.11‰) suggested feeding in waters closer to shore, similar to
killer whales. However, sample sizes for these four species were low, preventing isotopic
niche analyses.

Overall, species in the mesopelagic group showed less niche differentiation than
similar species conglomerates in other locations [5,115,116]. This suggests that competition
between species is reduced through other mechanisms, such as fine-scale spatial or temporal
segregation. Furthermore, the samples analysed here originate from various locations
around New Zealand, which itself spans a large latitudinal range (S 34.5–47). It is possible
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that local populations of some species differ in their foraging ecology, which could change
their isotopic overlap with local competitors. For most of the mesopelagic species analysed
here, there is little information about either their diet or fine-scale distribution in New
Zealand waters. Consequently, they may be feeding on abundant prey, allowing coexistence,
or alternatively consuming different prey with similar isotopic compositions, which would
remain undetected through bulk stable isotope analysis. Furthermore, vertical niche
segregation via differences in foraging depths could also be at play.

4.3. Bathypelagic Group

Although sperm whales and Gray’s beaked whales are both species that forage in the
deep sea, they have almost no overlap in their core isotopic niche. Due to their deep-water
habitat and generally elusive nature, little is known about the foraging ecology and diet
of beaked whales [51]. Prey items for species of the genus Mesoplodon are thought to
include small mesopelagic squid, fish, and also crustaceans [117]. However, the stomachs
of three Gray’s beaked whales from Brazil, South Africa, and the Indian Ocean did not
contain any squid, indicating this species may feed primarily on fish [117]. While very little
information is available on the diet of beaked whales in New Zealand waters, identifiable
hard part remains from the stomachs of five Gray’s beaked whales included lanternfish
(Myctophidae), as well as other mid-water fish and squid remains [118].

Although the New Zealand sperm whale diet is dominated by oceanic cephalopods, it
also includes demersal fish [119]. As males tend to eat more demersal fish than females [50],
this likely reflects the distributional bias towards males below 42◦ latitude [120], which
is echoed in our data as all 16 animal samples were males. Sperm whales had higher
δ15N values than Gray’s beaked whales, suggesting that they feed on larger prey. The
considerable size difference between the two species (total body length range of individuals
analysed here: sperm whales = 1105–1677 cm, Gray’s beaked whales = 305–490 cm) and the
resulting difference in energy requirements is consistent with this assumption. Although
sperm whales are known to be capable of hunting very large prey such as giant squid
(Architeuthis spp.) [50], they predominantly feed on smaller squid (<1 m length) in New
Zealand [119,121], which may still be larger than the prey consumed by the comparatively
smaller Gray’s beaked whales.

While the Gray’s beaked whale samples analysed here were collected across five dif-
ferent years and at least six different stranding events, the sperm whale samples originated
from three stranding events (two mass strandings and one single stranding) across two
years. The two groups of three and twelve animals had likely been foraging in similar
habitats, respectively. Therefore, it is not surprising that the Layman metrics values were
generally higher for Gray’s beaked whales, reflecting higher inter-individual differences
and larger niche width (Figure 5b). However, these differences could also reflect a genuine
broader variety in prey consumed by Gray’s beaked whales compared to sperm whales.

Sperm whales in New Zealand exhibit subtle seasonal differences in their forag-
ing patterns [122] and can also display different foraging strategies depending on their
location [123]. Our data were most similar to the mean isotopic values observed in
Kaikōura, New Zealand, in the winter months [122], which matches the temporal dis-
tribution (May–July) of 13 out of the 16 sperm whale samples included in this study. The
remaining group of three sperm whales had lower δ15N and δ13C values, suggesting that
they likely foraged elsewhere. Interestingly, their isotopic values were closer to those of the
Gray’s beaked whales, suggesting that niche overlap between these two species could be
higher in some locations than observed here.

Gray’s beaked whales stranded along the coast of Tierra del Fuego, Argentina, showed
15% niche overlap with Cuvier’s beaked whales [124]. The three Cuvier’s beaked whales
included here had similar isotopic values to Gray’s beaked whales as well as the southern
bottlenose whale. While little is known about the southern bottlenose whale diet, stomach
contents of stranded individuals suggest that they mainly feed on cephalopods [125], similar
to northern bottlenose whales (H. ampullatus) [126–128]. While we did not have a sufficient



Biology 2022, 11, 1179 16 of 25

sample size to allow for isotopic niche comparison for all beaked whale species presented
here, mean isotopic values of δ15N and δ13C did indicate some degree of niche overlap
between Gray’s and Cuvier’s beaked whales, as well as southern bottlenose whales too.

Conversely, the two strap-toothed beaked whales demonstrated lower mean δ15N
values compared to the other beaked whales, except for the Arnoux’s beaked whale,
indicating they likely feed on small prey. Most cephalopods found in the stomachs of strap-
toothed beaked whales in New Zealand ranged between 20–100 g and were approximately
15 cm in length, matching the species’ small gape caused by fully erupted teeth in adults,
and thus their adaptation to relatively small prey [129]. Prey items to date identified include
bathypelagic squid including Chiroteuthidae, Cranchiidae, and Histioteuthidae [118]. The
low δ15N values observed for the Arnoux’s beaked whale and the two strap-toothed beaked
whales included here indicate some level of resource partitioning among species, which
could alleviate interspecific competition. However, the low δ15N values also suggest that
these animals have been feeding in Antarctic or subantarctic waters, which may have
exposed them to different prey than the other bathypelagic species.

4.4. Polar Group

Hourglass dolphins have been observed feeding in surface waters along the Antarctic
convergence [52], and their diet likely includes fish and squid [130]. Similarly, southern
right whale dolphins mainly occur between the subtropical and the Antarctic convergences
where they feed on fish and squid [53]. Due to their remote oceanic habitat, next to nothing
is known about the diet and behaviour of spectacled porpoises, although they are suspected
to also forage on fish and squid in cold waters near the Antarctic convergence [54].

From the three species in the polar group, southern right whale dolphins had the
highest δ15N and the lowest δ13C values, while spectacled porpoises and hourglass dol-
phins had similar isotopic values. Mean δ13C values for all three species ranged between
−20.06 and −19.17‰, which suggests that these individuals were likely not feeding at the
polar front, which would have resulted in lower δ13C values [131]. Based on the isotopic
values of the individuals analysed here, spectacled porpoises and hourglass dolphins likely
overlap in prey and foraging habitat. Stable isotopes from bone collagen collected from
strandings in Tierra del Fuego, Argentina, indicated a similar pattern for the three polar
species included here, with high isotopic similarity for spectacled porpoises and hourglass
dolphins, and higher δ15N values for southern right whale dolphins [132].

To date, no consensus exists on the turnover time of cetacean skin, and estimates
range from several days [133,134] to several months [135]. Given that the samples analysed
here originate from animals that were stranded in New Zealand, it is possible that these
individuals had already been feeding outside of their usual polar habitat for a consid-
erable time, which means that their isotopic values may not reflect these species’ usual
foraging ecology.

5. Conclusions

We present the first comparative isotopic niche assessment of New Zealand’s odon-
tocetes. Aside from Gray’s beaked whales and sperm whales, which show clear niche
separation, all species overlapped substantially in their isotopic niche with at least one
other species in the same habitat. Our findings suggest other mechanisms must be at play
to reduce interspecific competition and thus enable coexistence in New Zealand’s biodi-
verse waters. Many of the species included here are unlikely to be directly observed while
foraging owing to their elusive nature, offshore/deep-water habitat and/or foraging be-
haviour. Accordingly, future studies would benefit from a combined approach that extends
bulk stable isotope analyses and includes fatty-acid and compound-specific stable isotopes
alongside to provide a deeper understanding of the diet of these species. Where relevant,
these analyses would support stomach content studies, which could further be assisted
using metabarcoding of prey. Furthermore, bulk stable isotopes of hydrogen, sulphur, and
oxygen may provide increased resolution on habitat use and resource pathways [136–138].
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Since interspecific competition only occurs when the resource that the species compete
for is limited [23,24], studies are required to examine the extent of species competition
by assessing prey abundance, fine-scale habitat use, foraging depths, and differences be-
tween local populations for odontocete species in New Zealand. While this study clearly
highlights the many remaining unknowns in foraging ecology and potential interspecific
competition of New Zealand’s odontocete community, it presents an important founda-
tional step, particularly considering current and future ecosystem changes such as ocean
warming and fishery pressures causing alterations to prey abundance and distributions.

Author Contributions: Conceptualization, K.J.P. and K.A.S.; formal analysis, K.J.P. and S.J.B.; data
curation, K.A.S. and E.L.B.; writing—original draft preparation, K.J.P.; writing—review and edit-
ing, all authors; visualization, K.J.P. and K.A.S.; project administration, K.J.P. and K.A.S.; funding
acquisition, K.A.S., K.J.P. and G.J.P. All authors have read and agreed to the published version of
the manuscript.

Funding: Funding for this project was provided by the PADI Foundation (K.J.P.) and Massey Univer-
sity Research Fund (K.A.S.). During part of this study, K.J.P. was supported by an Australia Awards
Endeavour Research Fellowship, and a Postdoc Grant from the University of Zurich. K.A.S. was
supported by a Royal Society Te Aparangi Rutherford Discovery Fellowship (2019–2024). B.H. was
supported by a Massey University Doctoral Scholarship and a Wildbase Trust research grant.

Institutional Review Board Statement: This project was completed under Department of Conserva-
tion permits 39239-MAR and Rnw/NO/2009/06 issued to Massey University.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available at https://github.com/kjopeters/Peters-et-al-2022
-Biology-Stable-Isotopes.

Acknowledgments: We are grateful to Julie Brown, Josette Delgado, Anna Kilimnik, Greg Olsen,
and Rahul Peethambaran at NIWA for conducting the stable isotope analyses, and all Department of
Conservation staff and Tangata Whenua who facilitated the collection of tissue samples used in this
study. We also thank Théo Pinheíro, Rebecca M. Boys, Emily Palmer, and Odette Howarth for their
dedicated assistance with lab work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Extended Methods

Appendix A.1. Molecular Sexing

We extracted DNA from the skin using the Qiagen DNeasy Blood and Tissue Kits
according to standard protocol. Molecular sexing was undertaken by targeting the SRY and
ZFX gene loci [139]. We carried out PCR in 25 µL volumes using the MyTaq™ DNA poly-
merase kit (Bioline, Eveleigh, Australia), including: 0.3 µM of the primers PMSRYF [140],
ZFX0582F, and ZFX0923R [141]; 0.6 µM of the primer TtSRYR [139]; and 50–75 ng of tem-
plate DNA. Thermocycling entailed an initial denaturation at 92 ◦C for 30 s followed by
35 cycles of 94 ◦C for 30 seconds, 41 ◦C for 45 s, and 72 ◦C for 45 s, following the protocol
as described in Rosel [139]. We ran the PCR products plus a negative control on a 2.8%
agarose gel at 80 V for 1 h, to observe the separation of amplicons indicating male (two
bands) or female (one band).

Appendix A.2. Mathematical Lipid Correction

For the remaining species, we used a bootstrapping approach to derive a sample
correction formula that is robust against outliers. We randomly selected a subset of 80%
of all lipid-corrected samples (n = 74). We then used a linear regression analysis of the
δ13C values of the original whole (non-lipid-extracted) and lipid-extracted samples in this

https://github.com/kjopeters/Peters-et-al-2022-Biology-Stable-Isotopes
https://github.com/kjopeters/Peters-et-al-2022-Biology-Stable-Isotopes
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subset. We repeated this process 1000 times and used the average coefficients from these
1000 replicates to derive our final correction formula:

δ13CLEC = 0.5301486× δ13C− 7.322335 (A1)

where δ13C is the non-lipid extracted value and δ13CLEC is the mathematically corrected
value. For common dolphins, we used a previously published species-specific correction
formula [55] as this one performed slightly better for this species.

δ13CLEC = 0.5409× δ13C− 7.4674 (A2)

Appendix A.3. Details on Layman Metrics

We used six different Layman metrics [69,142] to measure niche variation between
different odontocete species:

(1) δ15N range: distance between the highest and lowest δ15N values (i.e., max δ15N—min
δ15N). Measure of trophic length of the community.

(2) δ13C range: distance between the highest and lowest δ13C values (i.e., max δ13C—min
δ13C). Estimates the diversity of basal resources.

(3) Total area (TA): total area of the convex hull comprising all data points. Measure of
the total amount of niche space occupied and an indication of niche width.

(4) Mean distance to centroid (CD): average Euclidean distance of each sample to the
centroid. Measure of niche width and sample spacing.

(5) Mean nearest neighbour distance (MNND): mean of the Euclidean distances to each
sample’s nearest neighbour. Measure of the density and clustering of individuals.

(6) Standard deviation of nearest neighbour distance (SDNND): measure of the even-
ness of spatial density and the packing of individuals. Low SDNND values indicate a
more even distribution of trophic niches.

Table A1. Results of pairwise comparisons (randomisation test) of δ15N and δ13C isotopic values
between odontocete species with n ≥ 7. Significant values (at 0.05 level) denoted in bold. Neritic
group (yellow): BD = bottlenose dolphin, HD = Hector’s dolphin, mesopelagic group (orange):
CD = common dolphin, DD = dusky dolphin, KW = killer whale, LPW = long-finned pilot whale,
PSW = pygmy sperm whale, SD = striped dolphin, bathypelagic group (green): GW = Gray’s beaked
whale, SW = sperm whale. Dark grey indicates matrix diagonal, light grey fields refer to species not
in the same habitat.

δ15N
δ13C

BD HD CD DD KW LPW PSW SD GW SW

BD 0.106
HD 0.373
CD 0.007 0.001 0.001 0.473 0.003
DD 0.451 <0.001 0.494 0.005 0.463
KW 0.001 <0.001 <0.001 <0.001 <0.001
LPW 0.496 0.446 0.001 0.001 0.485
PSW 0.286 0.294 <0.001 0.288 <0.001
SD 0.134 0.104 <0.001 0.132 0.256
GW <0.001
SW 0.001
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