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Supplemental File S1: Complex network centrality metrics: 
Degree, Betweenness, Eigenvector, and Pagerank.
Centrality measures have been widely used in network analyses to estimate the importance of nodes that 
compose a graph [5]. There are several formulations of centrality in the literature, and the decision of 
which one should be adopted depends on the target problem. For instance, in social networks, the notion 
of centrality or importance could be formulated as a degree of vertices since a high-degree may characterize 
a popular or a prestigious node or person. Conversely, in communication networks, the centrality of a 
node could be formulated as the number of shortest paths that include that vertex, since shortest paths 
are preferable to processing and forwarding messages. This appendix provides an overview of the centrality 
measures considered in this work.

An undirected graph G = (V, E) is a structure that consists of a finite set of vertices V and a finite set of 
edges E . The number of vertices in a graph G is given by the cardinality of the set of vertices, i.e., N ≡ |V|, 
while the number of edges comprises the cardinality of the set E . The vertices are also referred to as nodes or 
points of the graph and they are identified by labels. The edges (also called links or lines) are defined as E ⊆ (i, 
j)|(i, j) ∈ V 2 ∧ x 6= y and represent the linkage between pairs of nodes. An edge is said to be incident in nodes i 
and j and two nodes joined by an edge are referred to as adjacent or neighbouring [2, 4]. In a direct graph, the 
edges that comprise the graph carry on the notion of orientation. Thus, the edge between the nodes i and j are 
denoted by the ordered pair (i, j) 6= (j, i) and we say that the edge is ongoing in j and outgoing from i. There is 
also the situation in which the edges have a numerical value that quantifies the intensity of the connection 
between two nodes. The graphs that follow this representation is refereed to as

weighted graphs and are defined as G = (V, E , W), W ⊆ R+.
An unweighted graph G can be represented by a |V | × |V | matrix A, named as the adjacency matrix of 

graph G. The elements of the matrix A are given by:

aij =

{
1 if there is an edge from node j to node i

0 otherwise
(S1)

The adjacency matrix of a weighted graph can also store the weights of the edges. In this case, a special
value (e.g., a negative or a large value) may be used to represent missing edges. Figure S1 presents an 
example of a weighted and undirected graph, which we will use to exemplify the computation of the
centrality metrics presented in this appendix.

(a) Graph G.

A =



0 2 0 2 0 0 0
2 0 1 3 0 0 0
0 1 0 6 0 0 0
2 3 6 0 1 0 0
0 0 0 1 0 4 3
0 0 0 0 4 0 2
0 0 0 0 3 2 0


(b) Adjacency matrix.

Figure S1: Example of an undirected and weighted graph G with V = {A, B, C, D, E, F, G} and E = {(A, B) 7→ 
2, (A, D) 7→ 2, (B, C) 7→ 1, (B, D) 7→ 3, (C, D) 7→ 6, (D, E) 7→ 1, (E, F ) 7→ 4, (E, G) 7→ 3, (F, G) 7→ 2}.

Degree centrality
The number of neighbors of nodes provides meaningful information in terms of their importance. A node with
a high degree can be interpreted as an essential source of information or a node with a high influence capacity
[2]. Considering an undirected and weighted graph G, the degree centrality can be defined as:

cDi =
N∑
j=1

φij , φij =

{
1 aij > 0

0 otherwise
, i = 1, 2, · · · , N. (S2)
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where ci is the degree of node i and N is the number of nodes. The normalized degree centrality is defined
as:

ncDi =
cDi

N − 1
(S3)

Tables S1 and S2 show the absolute and the normalized degree centrality for each node of the graph 
presented in Figure S1.

Table S1: Degree centrality for the vertices in G.

cDA cDB cDC cDD cDE cDF cDG
2 3 2 4 3 2 2

Table S2: Normalized degree centrality for the vertices in G.

ncDA ncDB ncDC ncDD ncDE ncDF ncDG
0.333 0.500 0.333 0.667 0.500 0.333 0.333

Eigenvector centrality

Although the degree centrality measure provides meaningful information in terms of nodes importance, there
are some drawbacks with this measure that could prevent its proper use in some applications. Suppose that
node A is connected with other nodes that are themselves important, and also another node D is connected
to the same amount of nodes but with less importance. In this case, the degree centrality measure produces
equal scores for both nodes A and D, which might not be appropriate in some applications. The eigenvector
centrality tries to overcome this limitation by producing a centrality score that is proportional to the sum
of the scores of neighbors.

ci =
∑N

j=1 aijcj , i = 1, 2, · · · , N.
(S4)

c = Ac ≡ (A − I)c = 0

where vector c is the unknown centrality score, A is the adjacency matrix and N is the number of nodes.
This formulation leads to a homogeneous system which admits the trivial solution, i.e., c = 0 or non-trivial
solutions if det(A − I) = 0, which might appear in few cases. The standard procedure to solve this problem is
to multiply the left side of this equation by a constant λ, as shown in Equation (S5):

λcEi =
∑N

i aijc
E
j , i = 1, 2, · · · , N.

λc = Ac
(S5)

||vk||

where ciE is the eigenvector centrality of node i. Similarly, in the matrix notation, c is an N -dimensional 
vector whose entry i represents the centrality score of node i. This leads to the problem of finding the
eigenvalues (λ) and the eigenvectors (c) of the adjacency matrix A. Finally, the eigenvector centrality of all
nodes in graph G is the eigenvector associated with the dominant eigenvalue found for Equation (S5). There 
are several numerical algorithms that could be used to find the dominant eigenvector and its associate
eigenvalue, such as the power iteration method [4]. This method starts with a non-zero vector v0, for instance,

all-ones vector, and then iterates over the recurrent relation vk+1 = A·vk , until convergence. We can say that 
themethod converges if |λk − λk+1| < ε), where λk and λk+1 are the associate eigenvalues of the eigenvectors vk

and vk+1, respectively. Table S3 illustrates the eigenvector centrality obtained with the power iteration 
method, considering the graph presented in Figure S1.

Pagerank centrality
Similarly to the eigenvector centrality, the Pagerank centrality also encodes the centrality of a node con-
sidering the centrality score of its neighbors. In the eigenvector centrality, the importance of a node is
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Table S3: Computation of the Eigenvector centrality scores for graph G using the power iteration methods 
with an ε = 10−4.

Iteration ε cEA cEB cEC cED cEE cEF cEG
0 0.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.14857 0.5000 0.7500 0.5000 1.0000 0.7500 0.5000 0.5000
2 0.03000 0.7000 0.8000 0.7000 1.0000 0.8000 0.5000 0.5000
3 0.01240 0.6000 0.8000 0.6000 1.0000 0.6667 0.4333 0.4333
4 0.00565 0.6750 0.8250 0.6750 1.0000 0.7000 0.4125 0.4125
5 0.00263 0.6348 0.8174 0.6348 1.0000 0.6348 0.3870 0.3870
6 0.00124 0.6677 0.8339 0.6677 1.0000 0.6518 0.3754 0.3754
7 0.00058 0.6501 0.8279 0.6501 1.0000 0.6206 0.3641 0.3641
8 0.00028 0.6650 0.8368 0.6650 1.0000 0.6288 0.3583 0.3583
9 0.00013 0.6570 0.8335 0.6570 1.0000 0.6140 0.3531 0.3531
10 0.00006 0.6639 0.8380 0.6639 1.0000 0.6178 0.3502 0.3502

proportional to the sum of the integral centrality score of its neighbors, which means that a high centrality
node connected to many other nodes makes its neighbors have also a high centrality. In this context, a node
became important whether it has high connectivity or whether it has few connections with very important
neighbors [2]. This behavior is not desirable in the context that a node is not important just because it is
connected to one important node. Conversely, the Pagerank centrality adopts a different strategy to spread
importance: the centrality of a node is proportional to its neighbors’ centrality divided by its out-degree [3].
This means that a node highly connected share a small portion of its centrality to all other ones connected to it,
as defined in Equation (S6):

cPR
i = (1− q)

N∑
j=0

aij
cPR
j

koutj

+
q

N
, i = 1, 2, · · · , N. (S6)

where cPR
i is the Pagerank value for node i, kj is the out-degree of node j, if such degree is positive, or kj = 1

if the out-degree is zero. N is the number of nodes and q is a probability, or a damping factor, that controls
the mix between random walk and random jump, which are two stochastic processes used for modeling an
agent walking through the graph. These processes allows for measuring the probability of arriving at that
node after a large number of iterations [3]. Thus, the Pagerank values represent the probability of reaching
a node in the graph considering a random walk through the graph, starting from a random node. Finally, it
is important to notice that this formulation can be extended also for an undirected graph. In this case, the
random walk considers both directions of the edges.

Table S4 shows the Pagerank values for the graph introduced in Figure S1, considering the 
implementation of the Pagerank algorithm available in the Gephi software [1].

Table S4: Pagerank centrality for the vertices in G.

cPR
A cPR

B cPR
C cPR

D cPR
E cPR

F cPR
G

0.11 0.16 0.11 0.21 0.16 0.12 0.12

Betweenness centrality
The measures presented so far encode the centrality of a node considering the connections with its neighbors. 
In some situations, the interactions between two non-adjacent nodes depend on the other vertices in the path 
between those two nodes [4]. Betweenness centrality aims to measure the influence of intermediate nodes 
considering the shortest paths between two ones in a graph. I n this context, a node in a graph has a high 
centrality value, if it appears in many shortest paths connecting other nodes, as defined in Equation (S7):
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cBi =
N∑
j=1
j 6=i

N∑
k=1
k 6=i,j

njk(i)

njk
, i = 1, 2, · · · , N. (S7)

where N is the number of nodes, njk represents the number of the shortest paths from node j to node k and
njk(i) represents the number of the shortest paths from j to k that contain node i. For undirected graphs,
the normalized Betweenness centrality is defined as:

ncBi =
cBi

(N − 1)(N − 2)/2
(S8)

Tables S5 and S6 show the shortest paths and the numbers of njk and njk(i), considering our example 
presented in Figure S1. Finally, Tables S7 and S8 show the absolute and normalized Betweenness centrality 
scores for different nodes.

Table S5: Shortest paths from node j to node k, i.e., njk.

nAB nAC nAD nAE nAF nAG nBC nBD nBE nBF nBG nCD nCE nCF nCG nDE nDF nDG nEF nEG nFG

AB
ABC,
ADC

AD ADE ADEF ADEG BC BD BDE BDEF BDEG CD CDE CDEF CDEG DE DEF DEG EF EG FG

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table S6: Shortest path from node j to node k that contains the node i (first row) and the division result 
between njk(i) and njk (second row).

A B C D E F G

Shortest paths ∅ ABC ∅

ADC;ADE;ADFE;
ADEG;BDE;BDEF;
BDEG;CDE;CDEF;

CDEG

ADEF;ADFG;BDEF;
BDEG;CDEF;CDEG;

DEF; DEG
∅ ∅

njk(i)

njk
0 1/2 0

1/2; 1; 1;
1; 1; 1;
1; 1; 1;

1

1; 1; 1;
1; 1; 1;
1; 1

0 0

Table S7: Betweenness centrality for the vertices in G.

cBA cBB cBC cBD cBE cBF cBG
0.0 0.5 0.0 9.5 8.0 0 0

Table S8: Normalized Betweenness centrality for the vertices in G.

cBA cBB cBC cBD cBE cBF cBG
0.0 0.033 0.0 0.633 0.533 0.0 0.0
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