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Simple Summary: When human remains are recovered, it is important to identify the individual for
multiple reasons, including reuniting the individual with family members. In cases when human
remains are incomplete, it can be challenging to identify the individual. This research found a
highly successful method for identifying a person’s affinity by using measurements of the inner ear
cavity. Since the inner ear is housed in a bony region that survives extremely well, the potential for
identifying human remains is exciting. Researchers developed functions that can identify with 90.8%
and higher accuracy between three different population samples using measurements from the bony
labyrinth alone. These methods are non-destructive and quick to make, and plug into the functions
developed in this research. This research points to potential for this method and calls for additional
samples to be added to the data base to help with more identifications in the future.

Abstract: Population affinity identification is important for reconstructing the biological profile of
human skeletal remains. Most anthropological methods for predicting population affinity rely on
complete crania or cranial parts. However, complete parts are frequently not found in forensic and
bioarchaeological contexts. In contrast, the petrous portion of the cranium presents a unique rate
of preservation in the field. Therefore, this study aimed to develop stepwise discriminant function
formulae to determine population affinity using measurements on three-dimensional models of the
human adult bony labyrinth. The sample utilised consisted of 30 German, 38 African Zulu, and
30 Oneota individuals. A total of four function equations were developed. The function involving all
three populations presented an average accuracy of 90.8%. Mathematical equations were also derived
to discriminate between Zulu and Germans (91.2%), Zulu and Oneota (95.5%), as well as Oneota
and Germans (96.7%). These results indicate this new method of population affinity identification is
highly successful, even with fragmentary remains.

Keywords: forensic science; forensic anthropology; population affinity; cranium; bony labyrinth;
inner ear

1. Introduction

In forensic anthropology, assessing the population affinity of human skeletal remains
comprises one of the primary steps for personal identification [1,2]. For this purpose, the
cranium is the most frequently utilised anatomical part due to its increased heritability,
which often allows the craniofacial morphology to preserve the underlying genetic structure
of individuals [3].

The most widely applied methodology involves the macroscopic observation of cranial
non-metric traits that tend to vary substantially across population affinities [1,4]. Never-
theless, the accuracy of this method can be largely affected by the skills and subjective
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experience of each researcher performing the analysis. Moreover, the accuracy and precision
of this observational technique have rarely been verified using statistical analyses [4].

A series of other studies have developed craniometric methods for population affinity
identification, usually based on linear discriminant function analysis (e.g., [5–10]. The
precision of measuring cranial dimensions has been verified in most of these previous
works. Some of them have reported excellent accuracy rates (e.g., [11]), which seem to
exceed the accuracy reported recently for morphoscopic techniques [4].

However, further testing of these craniometric methods has demonstrated that their
accuracy rates substantially drop when applied to different anthropological samples or
modern forensic cases (e.g., [6,11,12]). This is often explained as the result of various factors
of secular change, which extensively affect craniofacial variation across populations of
distinct geographical and chronological backgrounds [13]. Consequently, craniometric
methods for population affinity identification tend to be population specific and require
systematic refinement [8,14]. Furthermore, most of the aforementioned methods require
intact crania or cranial parts (e.g., vault or face), which are often missing from osteological
contexts [2].

The petrous portion of the cranium is likely the most frequently found bone element
at both crime scenes and archaeological sites [15], and it can even survive cremations
unharmed [16]. However, until now, no methods have been developed to determine
population affinity using the bony labyrinth of the adult human skull. This could be due
to the particular anatomical position of the bony labyrinth in the skull that prevents its
measurement using traditional craniometric techniques.

In this framework, this study aims to propose a new and precise metric method for
determining the population affinity of human skeletal remains using biometric data of
documented adult bony labyrinths. The sample analysed involves individuals of European,
African, and Native American origin.

2. Materials and Methods

The samples used in this study consist of crania from 98 modern human adults of
known sex and affinity from three geographic populations. Table 1 lists all specimens
used. The Norris Farms Oneota sample dates to A.D. 1300, and was studied through
permissions of the Illinois State Museum collections. The Zulu sample dates to the Early
20th century and was studied with the permission of the Richard Dart collection at the
Univ. of the Witwatersrand, South Africa. The German sample dates to the 19th century in
Baden-Württemberg and was studied with the permission of the Osteological collections at
the E.K. Universität Tübingen.

Table 1. Sample demographics *.

Sample Males Females Total

Norris Farms Oneota 16 14 30 *
Zulu 17 21 38

German 17 13 30
Total 50 48 98

* For the Norris Farms Oneota sample, both the left- and right-side bony labyrinth were available for 18 of
30 individuals. Analyses use mean values from the right and left variables, except for the 12 Oneota individuals,
for which only right-side variables are used.

The virtual reconstruction of the crania was performed at each collection site. The Zulu
sample was scanned at the Palaeosciences Centre Microfocus X-ray Computed Tomography
(CT) Facility, University of the Witwatersrand with a Nikon Metrology XTH 225/320 LC
at 100 kV, 105 µA, with an exposure of 500 ms per image, resolution between 60 and
120 µm, and a 1.8AI filter. The German sample was scanned at the Paleoanthropology High
Resolution CT Laboratory, Eberhard Karls University Tübingen, using a Phoenix v|tome|x
microCT scanner (General Electric) and 180 kV, 120 µA, 2500 images per scan with an
exposure of 200 milliseconds (ms) per image and a resolution between 101 and 116 µm with
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a 0.1Cu filter. The slices pixel size was between 0.101 × 0.101 mm and 0.116 × 0.116 mm.
The Norris Farms Oneota individuals were scanned with X-ray source energy settings at
150–180 kV and between 120 and 200 lA, with 2400 views and two–three samples per view.
Slice thicknesses ranged from 0.0615 to 0.0781 mm, depending on specimen size. The field
of view ranged from 63 to 82 mm, with pixel sizes ranging from 0.0615 to 0.0781 mm.

When available, both the right and left bony labyrinths were segmented utilising
Avizo software (FEI Company, Hillsboro, OR, USA). Measurements of the three semi-
circular canals and cochlea were made following Osipov et al. [17] by one of us (AU) on
generated 3D virtual endocasts. Measurements included the width and height of each
semi-circular canal and cochlea in millimetres (mm) (see Table S1 for a list of abbreviations
and Uhl et al. [18] and [19] for more details). Following previous work (i.e., [17,18,20,21]),
the mean of the left and right sides was used for analyses. The Oneota sample had fewer
left temporal bones (n = 18) available for study than right temporal bones (n = 30); thus, for
12 of the Oneota, we did not use the mean and instead use the right-side measurements.
Despite some individuals having only the right side, inspection of the accuracy was highly
homogenous across all functions, for all samples, meaning the Onoeta had no considerable
differences (see Results section).

To assess intra-observer error, five individuals were measured three times each. The
percent error for each measurement of the semi-circular canals and cochlea was below 5%,
ranging from 0.76% to 3.35% (See Table S2 and [18]).

Using stepwise discriminant analysis, we created new cross-validated discriminant
functions based on the samples studied here, which can be used to estimate the affinity of an
unknown individual. All assumptions of discriminant function analysis were met [22,23].
The accuracy of each function was computed based on the discriminant scores of indi-
viduals both prior and post cross-validation (following a “leave one out classification”
procedure) [23]. Furthermore, for each of the newly created discriminant functions, kappa
statistics were applied to assess the level of agreement. To apply each newly created func-
tion to an individual of unknown affinity, the corresponding measurement is multiplied by
the function coefficient for that variable. The resulting values are added to the function’s
constant [23].

3. Results

Table 2 presents the summary descriptive statistics for the bony labyrinth measure-
ments obtained. The aforementioned statistical tests demonstrated that all variables utilised
have multivariate normality and do not present outliers. In all four discriminant func-
tion analyses performed, the Box’s M was shown to be non-significant, allowing for a
variance–covariance matrix to be used. The repeatability analyses verified that there was
no significant (p-value < 0.05) intra-observer error.

In three of the four discriminant analyses, based on the Wilk’s lambda statistics, the
best-discriminating variable for population affinity determination was ChwM (Table 2).
Contrastingly, in the analysis discriminating between Zulu and German individuals, the
measurement PSChM was the most useful variable for the stepwise analysis.

The function equations were built based on the unstandardised coefficients calculated
(Table 3). For each function, the centroid of each population sample was computed. When
classifying a newly found specimen, the process involves the multiplication of its measure-
ments with their associated coefficients, followed by the addition of these quotients to the
constant. Consequently, the sum (Y) is compared to the group centroids for each sample
(Table 3), which were calculated based on the weighted group centroid values. The form of
the equation is the following:

Y = b1 × X1 + b2 × X2 + b3 × X3 + . . . + bi × Xi + a (1)

where: “b1 − bi” = regression coefficients (unstandardised coefficients), “X1 − Xi” = the
value of each variable, “a” = constant, and “i” = the number of predictor variables.
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Table 2. Stepwise discriminant function analysis of the bony labyrinth *.

Functions Wilks’ Lambda
Statistic Exact F Statistic d.f. 1 d.f. 2 Sig.

Function 1: All groups (Germans, Zulu, Oneota)

ChwM 0.307 107,107 2 95,000 <0.001
PSChM 0.238 49,285 4 188,000 <0.001
PSCMR 0.215 35,896 6 186,000 <0.001
CwM 0.193 29,410 8 184,000 <0.001
CMR 0.170 25,988 10 182,000 <0.001
SLIM 0.156 23,014 12 180,000 <0.001

Function 2: Germans and Zulu

PSChM 0.639 37,299 1 66,000 <0.001
SLIM 0.572 24,331 2 65,000 <0.001
ChM 0.517 19,924 3 64,000 <0.001

LSChw 0.461 18,392 4 63,000 <0.001
ChwM 0.433 16,212 5 62,000 <0.001
CwM 0.341 19,664 6 61,000 <0.001

Function 3: Zulu and Oneota

ChwM 0.273 175,914 1 66,000 <0.001
ASCwM 0.232 107,452 2 65,000 <0.001
ASChw 0.206 82,353 3 64,000 <0.001
LSCMR 0.190 67,011 4 63,000 <0.001

(Removed ASCwM) 5

Function 4: Germans and Oneota

ChwM 0.244 179,220 1 58,000 <0.001
<0.001PSChw 0.219 101,631 2 57,000

* At each step, the variable that minimises the overall Wilks’ lambda is entered. Minimum partial F to enter is 3.84;
maximum partial F to remove is 2.71. F values are all significant at p < 0.001 level.

Table 3. Canonical discriminant function coefficients.

Functions Unstandardised
Coefficients 1

Structure
Matrix 2

Standardised
Coefficients Group Centroids

Function 1: All groups (Germans, Zulu, Oneota)

ChwM −2025 −0.921 0.307

Germans: −1.704
Zulu: −0.461
Oneota: 2.288

PSChM 10,561 −0.291 −1.202
PSCMR 4444 −0.198 1.227
CwM −19,100 0.529 0.2746
CMR 0.014 0.111 −2.422
SLIM 4849 −0.140 0.074

(constant) −7410

Function 2: Germans and Zulu

PSChM 1.031 0.541 0.611

Germans: 1.542
Zulu: −1.217

SLIM −0.110 −0.158 −0.597
ChM 29.012 0.385 −6.497

LSChw 4.893 0.312 0.334
ChwM 89.589 0.328 6.925
CwM 29.012 0.090 7.753

(constant) −132.254

Function 3: Zulu and Oneota

ChwM 18.081 0.804 1.015
Zulu: 1.778

Oneota: −2.253
ASChw 14.660 0.202 0.552
LSCMR −2.514 −0.131 −0.554

(constant) −29.374
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Table 3. Cont.

Functions Unstandardised
Coefficients 1

Structure
Matrix 2

Standardised
Coefficients Group Centroids

Function 4: Germans and Oneota

ChwM 11.804 0.931 0.859
Germans: 1.857
Oneota: −1.857

PSChw 6.590 0.537 0.372
(constant) −21.793

1 Unstandardised canonical discriminant functions evaluated at group means. 2 Pooled within-groups correlations
between discriminating variables and standardised canonical discriminant functions.

The accuracy rates of the four functions developed are demonstrated in Table 4, for
both the original and the cross-validation samples. In the first two analyses, there are slight
differences between the accuracy rates of the original sample and the cross-validated one
(misclassification of a few individuals). In all four analyses, Kappa statistics revealed that
there was “almost perfect” (k-value ranged between 0.814 and 0.933) agreement between
the predicted and the actual population affinity of individuals (Table 4) [24].

Table 4. Accuracy of classification results of the original and cross-validated 1 samples.

Functions

Predicted Group Membership

Germans Zulu Oneota Total
Average (%)

N % N % N %

Function 1: All groups (Germans, Zulu, Oneota)
Original 25/30 83.3 34/38 89.5 30/30 100.0 90.8

Cross-validated 24/30 80.0 34/38 89.5 28/30 93.3 87.8
Function 2: Germans and Zulu

Original 27/30 90 35/38 92.1 91.2
Cross-validated 26/30 86.7 35/38 92.1 89.7

Function 3: Zulu and Oneota
Original 36/38 94.7 29/30 96.7 95.6

Cross-validated 36/38 94.7 29/30 96.7 95.6
Function 4: Germans and Oneota

Original 28/30 93.3 30/30 100.0 96.7
Cross-validated 28/30 93.3 30/30 100.0 96.7

1 Cross-validation is performed only for those cases in the analysis. In cross-validation, each case is classified by
the functions derived from all cases other than that case.

In the first analysis (including all three population samples), the average accuracy rate
was 90.8% for the original sample and 87.8% for the cross-validated one. All Oneota indi-
viduals were diagnosed correctly. Among the misclassified individuals, five were females
and four were males. In the second analysis (including the German and the Zulu samples),
the mean accuracy was 91.2% for the original sample and 89.7% for the one resulting after
cross-validation. The incorrectly classified individuals involved three males and three
females. The third equation, which discriminates between Zulu and Oneota individuals,
presented an accuracy rate of 95.6% for both the original and the cross-validated samples.
Only two females and one male were misclassified. Similarly, the function discriminating
between Oneota and Germans correctly classified 96.7% of individuals. In both the original
and the cross-validated samples, only two German females were incorrectly diagnosed.

4. Discussion

The results of this study demonstrated that the human adult bony labyrinth can be
used to assess population affinity with significant accuracy and precision. The slight drop
in the accuracy rates in the cross-validated samples of the two first analyses did not result
in substantial lowering of the predictive potential of the derived discriminant function
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equations (Table 4). The correct classification rate was slightly lower in the first analysis
(involving three sample groups) than in the other three (each of them involving two sample
groups). The highest rate was achieved by the function equation discriminating between
Oneota and German individuals (96.7%). For all functions, a highly similar number of
males and females was correctly assigned.

In the literature, multiple studies have developed methods for determining population
affinity using the human adult skull. One recent study utilised various statistic means to
test the accuracy of using cranial non-metric traits for population affinity determination [4].
Based on that study, mean correct prediction rates reached 87.8%.

Other studies have reported similarly high accuracy rates utilising craniometric di-
mensions (e.g., [5,6,8,10]. Steyn and Işcan [11] have reported an average accuracy of 98% in
determining population affinity in a sample of South African black and white individuals,
based on 13 standard cranial and 4 mandibular measurements. These authors have also
developed mathematical equations for incomplete cranial remains (i.e., the vault and facial
skeleton). However, standard craniometric measurements usually require complete crania
or cranial parts, which are frequently absent or damaged in forensic and bioarchaeological
contexts [2]. In these cases, the bony labyrinth, which presents excellent preservation
rates [15] can be used for considerably accurate population affinity estimation.

The accuracy of craniometric methods for population affinity identification is usu-
ally not consistent among populations of different geographical backgrounds [25]. This
is possibly due to substantial craniometric variation across population groups. [11,13].
Similar remarks have been made concerning the metric methods that rely on postcranial
measurements [25], which also present high accuracy rates (e.g., [26]. In this study, our
method was considerably accurate for a population sample from an entirely different
geographical and chronological background. This could suggest that the bony labyrinth
preserves population history extremely well, most likely as a reflection of its surrounding
temporal bone morphology, which has also been found to sustain signals of population
history well [27,28]. Nevertheless, this result does not necessarily signify that population
affinity is not a factor of variation in the human bony labyrinth. In the future, the applicabil-
ity of our functions should be further verified using multiple population samples. Future
research could focus on putting forth a method of population affinity estimation that would
combine various standard craniometric distances with bony labyrinth dimensions.

Additional research is needed to enable the applicability of this approach to recent
forensic cases, highlighting the important value of the present work as a basis for pursuing
this goal in the future. Utilising the new technology of high-resolution microCT scans and
processing of this large virtual data for precise measurements can allow future works to
have larger sample sizes (such as the ones in this study), whereas former studies using
this trait for forensic studies had smaller sample sizes, as they relied on direct linear
measurements of bone.

5. Conclusions

Based on our sample, which consists of German, African (Zulu), and Oneota indi-
viduals, the human adult bony labyrinth can be used for accurate population affinity
determination. When all three population samples were analysed together, the average
correct classification rate was 90.8%. The mean accuracy rate of the function discriminating
between Zulu and Germans was 91.2%, while the rate of the function involving Zulu and
Oneota demonstrated an accuracy rate of 95.6%. The highest correct classification rate was
presented by the mathematical equation discriminating between Oneota and Germans
(96.6%). After applying the “leave-one-out classification” technique, the prediction accu-
racy was about the same. In all four analyses, a similar number of males and females were
correctly diagnosed. This novel method of affinity estimation using the well-preserved
bony labyrinth and non-destructive methods has high potential for identification of human
remains, even if incomplete or in conditions where other methods are not possible.
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