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Simple Summary: C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide
family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not
previously regarded as an important cardiac modulator. However, recent studies have revealed the
physiological and pathophysiological importance of CNP in the heart; in concert with its cognate
natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective
natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the
cardiac field.

Abstract: C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family.
Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP),
which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP
is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its
low expression levels compared to ANP and BNP, early studies failed to show its existence and
role in the heart. However, recent studies have revealed the physiological and pathophysiological
importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide
receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in
the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon
CNP binding, followed by various molecular effects including the activation of cGMP-dependent
protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in
cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal
and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance
receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic
strategy for cardiac protection.
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1. Introduction

C-type natriuretic peptide (CNP) was extracted from porcine brain in 1990 for the
first time [1] and then cloned in pigs [2], as well as in rats [3] and humans [4]. CNP is the
third member of the natriuretic peptide family, and, along with the other two natriuretic
peptide family members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide
(BNP), it shares a similar ring structure of 17 amino acids with the essential residues needed
to exert their biological actions through binding to their biological active receptors [1]
(Figure 1A). CNP acts as an intrinsic and bioactive peptide ligand through the binding to its
specific membrane guanylyl cyclase receptor [5], natriuretic peptide receptor-B (NPR-B) [6],
whereas ANP and BNP are selective ligands for the other receptor membrane guanylyl
cyclase, natriuretic peptide receptor-A (NPR-A) [7]; these NPRs exert their biological action
through the generation of the second messenger, cyclic guanosine 3′,5′-monophosphate
(cGMP) from GTP upon ligand binding [8]. Accordingly, they are also referred to as guany-
lyl cyclase-A (GC-A) for NPR-A and guanylyl cyclase-B (GC-B) for NPR-B (Figure 1B).
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Although ANP and BNP act as cardiac hormones secreted from the atrium and ven-
tricle of the heart, respectively [9–11], CNP was shown to be expressed ubiquitously in the 
body [12]: CNP and its specific receptor, NPR-B [13], are expressed in the central nervous 
system including the brain [14], hypothalamus [15,16], and pituitary gland [14,17], in the 
circulatory system including the blood vessels [18] and heart, in the reproductive system 
[19,20], and in the skeletal system including the growth plate cartilage [21–24]. Together 
with the fact that CNP has considerably low blood concentrations in mammals [25–27], 
CNP is regarded as an autocrine/paracrine regulator, not an endocrine hormone [28]. 

For a few decades, the physiological and pathophysiological roles of ANP and BNP 
were intensively investigated, and these cardiac hormones were shown to be engaged in 
the protection of circulatory homeostasis, including the exertion of their cardioprotective 
effects. These discoveries have assisted in establishing the clinical implications of ANP 
and BNP as biomarkers that detect cardiac disease including heart failure and cardiac hy-
pertrophy, and ANP and BNP themselves and molecules relevant to them have been im-
plicated in the development of therapeutic agents for heart failure or related diseases 
[29,30]. 

On the other hand, along with the notion that CNP is a ubiquitously expressed auto-
crine/paracrine factor, research pursuing the physiological and pathophysiological roles 
of CNP in the body and their transition to clinical use has diverged into a wide variety of 
organs. The recent and most prominent studies were performed in the skeletal system 
[31,32]. Nevertheless, several groups have persisted with working to resolve the roles of 
CNP in the heart [33]. In this review, after a brief general description of CNP, I introduce 
studies of CNP in the heart. 

2. General Features of CNP 
2.1. Generation of CNP 

The gene encoding CNP, NPPC, is located on the second chromosome, 2q37.1, in hu-
mans. CNP is first produced as the pre-pro-peptide of 126 amino acids, which is subse-
quently cleaved into proCNP with 103 amino acids by the endoprotease furin [34]. 
ProCNP is further cleaved by furin into biologically active and mature CNP with 53 amino 
acids (CNP-53) and the presumably bio-inactive N-terminal product amino-terminal 
proCNP with 50 amino acids (NTproCNP). A New Zealand group has been reporting on 
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Although ANP and BNP act as cardiac hormones secreted from the atrium and ven-
tricle of the heart, respectively [9–11], CNP was shown to be expressed ubiquitously in
the body [12]: CNP and its specific receptor, NPR-B [13], are expressed in the central
nervous system including the brain [14], hypothalamus [15,16], and pituitary gland [14,17],
in the circulatory system including the blood vessels [18] and heart, in the reproductive sys-
tem [19,20], and in the skeletal system including the growth plate cartilage [21–24]. Together
with the fact that CNP has considerably low blood concentrations in mammals [25–27],
CNP is regarded as an autocrine/paracrine regulator, not an endocrine hormone [28].

For a few decades, the physiological and pathophysiological roles of ANP and BNP
were intensively investigated, and these cardiac hormones were shown to be engaged in the
protection of circulatory homeostasis, including the exertion of their cardioprotective effects.
These discoveries have assisted in establishing the clinical implications of ANP and BNP
as biomarkers that detect cardiac disease including heart failure and cardiac hypertrophy,
and ANP and BNP themselves and molecules relevant to them have been implicated in the
development of therapeutic agents for heart failure or related diseases [29,30].

On the other hand, along with the notion that CNP is a ubiquitously expressed
autocrine/paracrine factor, research pursuing the physiological and pathophysiological
roles of CNP in the body and their transition to clinical use has diverged into a wide
variety of organs. The recent and most prominent studies were performed in the skeletal
system [31,32]. Nevertheless, several groups have persisted with working to resolve the
roles of CNP in the heart [33]. In this review, after a brief general description of CNP, I
introduce studies of CNP in the heart.

2. General Features of CNP
2.1. Generation of CNP

The gene encoding CNP, NPPC, is located on the second chromosome, 2q37.1, in
humans. CNP is first produced as the pre-pro-peptide of 126 amino acids, which is subse-
quently cleaved into proCNP with 103 amino acids by the endoprotease furin [34]. ProCNP
is further cleaved by furin into biologically active and mature CNP with 53 amino acids
(CNP-53) and the presumably bio-inactive N-terminal product amino-terminal proCNP
with 50 amino acids (NTproCNP). A New Zealand group has been reporting on the
significance of NTproCNP as a clinical biomarker for various physiological and patho-
physiological conditions including issues concerning skeletal growth in humans and other
experimental animal models [35]. In some cases, CNP-53 is further broken down into a
variant with 22 amino acids (CNP-22), whose biological activity is thought to be equal to
that of CNP-53, by an unknown enzyme [36] (Figure 1A).
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As for the regulation of CNP production, cytokines (transforming growth factor β,
tumor necrosis factor α, and interleukin 1β), bacterial endotoxin lipopolysaccharides [28],
transcription factors (kruppel-like factor 2) [37], hypoxia [38], and shear stress [39] were
reported to stimulate the production of CNP in blood vessels in in vivo and ex vivo
experiments. Furthermore, molecules participating in Wnt signaling reportedly stimulated
CNP production in the kidney [40], while transforming growth factor β stimulated CNP
production in chondrocytes [41] and osteoblasts [21] in in vitro experiments. In the ovaries
of mice, excess human chorionic gonadotropin treatment reportedly exhibited a marked
decrease in CNP expression in granulosa cells of the preovulatory follicles [20].

2.2. Receptors for CNP and Their Downstream Signaling

As mentioned above, the biologically active receptor for CNP is NPR-B. NPR-B is a
membranous receptor guanylyl cyclase that produces cGMP from GTP through selective
ligand CNP binding. The downstream pathways of this CNP/NPR-B/cGMP signaling
cascade include the pathways through cGMP-dependent protein kinases (abbreviated
as cGKs or PKGs), cGMP-dependent phosphodiesterases (PDEs), and cGMP-gated ion
channels, all of which cause a broad variety of physiological responses. Among these
pathways, that through cGKs is regarded as the most important one; cGKs phosphorylate
various downstream target proteins. One subtype of cGKs, cGKII, is reported to play an
important role in skeletal growth as the downstream mediator of the CNP/NPR-B/cGMP
pathway [42–45]. On the other hand, cGMP signaling is abrogated by cGMP hydrolysis via
PDEs and cGMP export via multidrug resistance proteins.

Furthermore, there exists another receptor for CNP, named NPR-C, which was initially
reported to be engaged in the clearance of ligands [46]. The catalytic effect of NPR-C is
discussed in the next section. After the discovery of its clearance action, it was revealed that
NPR-C contains Gi-binding domains in its intracellular C-terminal region, which induce the
inhibition of adenylyl cyclase (through Gi α subunit) and the activation of phospholipase
C-β (through Gi βγ subunits) [47–50].

2.3. Degradation of CNP

The plasma CNP concentration is considerably low [25,51]. This is because CNP is
rapidly degraded in circulation or in the periphery where it acts as an autocrine/paracrine
factor. The plasma half-life of CNP is reportedly 2.6 min [52]. The main catabolic pathways
of CNP include its clearance receptor, NPR-C, referred to as the c-receptor, and neutrophil
endopeptidase 24. 11 (NEP).

NPR-C is the third identified natriuretic peptide receptor, succeeding NPR-A and NPR-
B. NPR-C has a similar affinity to all three natriuretic peptides; however, the binding affinity
is as follows in both humans and rats: ANP > CNP > BNP [7]. Whereas NPR-A and NPR-B
are biologically active receptor guanylyl cyclases with catalytic or enzymatic domains under
the membranous portion, NPR-C does not have intracellular guanylyl cyclase domains and,
thus, cannot produce cGMP as the second messenger. It internalizes the bound ligands
and degrades them intracellularly [46]. The role of NPR-C in the metabolism of CNP is
summarized elsewhere [53]. In addition, there exists an intrinsic and specific ligand for
NPR-C named osteocrin or musclin. Osteocrin can regulate the effect of CNP by moderating
the local CNP concentrations [54–56].

NEP is a zinc-dependent peptidase that is present in numerous tissues, including
the lung, kidney, endothelial cells, and plasma. NEP degrades natriuretic peptide family
members, and CNP is reportedly highly susceptible to degradation by NEP in vitro [57].
Later, NEP was shown to regulate CNP metabolism in in vivo infusion experiments [58],
and its inhibition was exhibited to enhance CNP-related actions in several tissues [59–61].

2.4. Distribution of CNP

Whereas ANP and BNP are known as cardiac hormones which are produced in the
atrium and ventricle of the heart, respectively, CNP is expressed ubiquitously throughout
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the body and is produced in various tissues. Together with the fact that the plasma
concentrations of CNP are relatively low as mentioned above, CNP is thought to be an
autocrine/paracrine factor. Suga et al. revealed that CNP is expressed in endothelial cells
for the first time [18]. Since then, various studies have exhibited that endothelial cells
express and secret CNP, predisposing that the endothelium is an important tissue in which
CNP plays a pivotal role [62–64]. Generally, CNP is thought to have vasodilatory and
antimitogenic actions there. Furthermore, Komatsu et al. first reported that CNP exists in
the brain, including the pituitary gland [14], and many studies followed with the discovery
of the production and the expression of CNP in the central nervous system [65–71], indicating
important roles of CNP there.

As the most prominent phenotype of systemic CNP knockout mice was impaired
skeletal growth [23], the physiological role of CNP in skeletal tissues, especially that in the
growth plate cartilage, was presumed to be the most important among those in all tissues
in the mammalian body. The notion that the CNP/NPR-B pathway is crucial for skeletal
growth was confirmed in rat experimental models [72,73] and further in humans through
the observation of several pathophysiological phenotypes in cases with genetic mutations
in the genes coding for relevant molecules included in this pathway [74–76]. Using this
prominent growth-promoting effect of the activation of the CNP/NPR-B pathway on
skeletal tissues, a CNP analogue was developed to improve the impaired skeletal growth
observed in patients with achondroplasia, one of the most common forms of skeletal
dysplasia [31,32].

Another obvious phenotype of systemic CNP knockout mice is infertility. Concerning
this point, the CNP/NPR-B system in the reproductive system was investigated, and its
critical role in female fertility was elucidated using mutant mice with impaired CNP or
NPR-B function [19,20].

3. Physiological Roles of CNP in the Heart
3.1. Distribution of CNP and NPR-B in the Heart

Although widely expressed throughout the body as mentioned above, CNP is also
found in the heart [77]. However, the expression levels are much lower than those of ANP
or BNP [78,79]. Researchers could not detect CNP in the heart of rats in the earliest studies
using radioimmunoassay [12,14,80]. Later, in various species including cartilaginous
fish [81], Squalus acanthias [82], and Triakis scyllia [83], CNP itself and its gene expression
were detected in rat heart [84]. CNP and its receptor NPR-B were also detected in goat
cardiomyocytes [85]. Likewise, researchers were unable to detect CNP in human hearts
in early studies [86], but the augmentation of CNP production in the failing heart made
it easy to evaluate the existence of CNP in the heart [87]; as discussed in a later section,
in the failing heart, the expression of CNP and the plasma concentrations of CNP are
increased [27,88–91].

The hearts of vertebrates are roughly composed of two types of cells: cardiomyocytes
and their interstitial fibroblasts. As for cardiomyocytes, Wei et al. confirmed the presence
of CNP within the cardiomyocytes by immunohistochemistry and radioimmunoassay in
human subjects for the first time [77]. Soon after, the expression of NPR-B was detected in
cardiomyocytes isolated from rat ventricle, but the cGMP genesis by CNP in the experi-
mental preparation was reportedly low [92]. Later, CNP and NPR-B were detected in rat
cardiomyocytes both in vitro and ex vivo [78].

On the other hand, CNP was shown to be synthesized in and secreted from cardiac
fibroblasts in in vitro experiments using rat cultured ventricular cells. In an immunohis-
tochemical study, NPR-B was detected at much greater levels in cardiac fibroblasts than
in cardiomyocytes in frozen sections of rat ventricle. This was further confirmed by an
immunoblot study using protein extracts of distinct cardiac cell types. Taken together,
NPR-B in adult rat ventricle was reported to be predominantly confined to the nonmyocyte
population [93]. In humans, NPR-B activity is increased in nonmyocytes in failing ventri-
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cles, possibly as a result of increased fibrosis, and human ventricular cardiomyocytes were
reported to express much lower levels or possibly no NPR-B [94].

3.2. Downstream Signaling of CNP in the Cardiac Cells

As for the downstream signaling of CNP in the cardiac cells, the signaling pathway
through cGKs is regarded as one of the main pathways of the CNP/NPR-B/cGMP signaling
cascade, as reviewed elsewhere [95]. Briefly, cGKs activated by cGMP inhibit calcium (Ca)
signaling and suppress the calcineurin nuclear factor of activated T cells (NFAT) pathway
in cardiac myocytes [96]. A nonselective non-voltage-gated cation channel, L-type Ca
channel [97], and the transient potential canonical 6 (TRPC6) [98] are phosphorylated by
cGKs and are, thus, involved in attenuating Ca entry, while also inhibiting Ca/calmodulin-
activated kinase II (CaMKII). CNP greatly increased the phosphorylation of phospholamban
(PLN) a and increased that of troponin I (TnI) to some extent in a failing heart model [99].
Several studies have revealed the central roles of the regulators of G-protein signaling
(RGSs) (Figure 2).
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Figure 2. Schema of intracellular signaling molecules downstream of CNP/NPR-B. ‘P’ indicates the
action of phosphorylation. SR: sarcoplasmic reticulum, SERCA: SR Ca-ATPase, PLN: phospholamban,
RGS: regulator of G-protein signaling, TRPC6: transient potential canonical 6, TnI: troponin I, cGKI:
cyclic GMP-dependent protein kinase I, mitoK: mitochondrial ATP-sensitive K channels and Ca-
activated K channels of the BK type, PDE: phosphodiesterase.

Among PDEs, PDE3 is dominant in cardiomyocytes [93]. In particular, the CNP-
mediated increase in cGMP is generally regulated by PDE2; however, through inhibition
experiments, PED3 was shown to be more functionally important than PDE2 [99]. On
the other hand, CNP sensitizes cAMP-mediated signaling in the non-failing heart via the
NPR-B-mediated increase in cGMP, which inhibits the cAMP-PDE activity of PDE3 [100].

Natriuretic peptides including CNP reportedly modulate the current of ATP-sensitive
potassium (K) channel in cardiomyocytes from the ventricle [101], which may be relevant
to the fact that they can increase intracellular cGMP levels through NPR-A or NPR-B.
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3.3. Physiological Effects of CNP on the Heart

In a physiological situation, CNP expression levels in cardiomyocytes are much smaller
than those of ANP and BNP [78], and, as was the case with the exhibition of its existence,
early studies failed to prove any effects of CNP on the heart [92]. Although a gene-targeting
approach is fascinating to reveal the physiological roles of a gene product, mice depleted
with CNP in cardiomyocytes or fibroblasts showed no obvious changes in the contractility,
structure, or fibrosis of the heart, supporting the previous idea that CNP plays a minimal
role in the heart in healthy conditions [102]. Nevertheless, NPR-B activity was shown to
represent a significant portion of the natriuretic peptide-dependent guanylyl cyclase activ-
ity in the normal heart [103]. Yoshizumi et al. showed that CNP stimulates Na-dependent
Ca efflux from freshly isolated adult rat cardiomyocytes [104]. Using ex vivo preparations
of rat papillary muscle, CNP was shown to exert a positive lusitropic effect, in that the
putative mechanism involved a cGMP-dependent enhancement of the rate of relaxation
with a slowly developing negative inotropic effect [105]. CNP caused a significant reduction
in the amplitude of contraction of cultured neonatal rat beating cardiomyocytes [106]. In
contrast to endothelin-1, CNP reduced the contractility of these cells and further induced
apoptosis via the accumulation of cGMP [107–109]. By using the hypertrophic rabbit heart
model, negative inotropic effects of CNP were shown to be attenuated in hypertrophied
ventricular myocytes because of reduced cyclic GMP production [110]. A recent study
using ventricular myocytes isolated from transgenic mice expressing the highly sensitive
cytosolic cGMP biosensor exhibited that NPR-B is evenly distributed across the ventricular
muscle membrane and produces far-reaching, diffusible cGMP signals, whereas NPR-A is
exclusively found in T-tubules where it creates a microdomain with restricted cGMP diffu-
sion locally confined by PDE2 [111]. A Norway group also used targeted cGMP biosensors
in rats and showed that CNP increases cGMP production near TnI, as well as sarcoplasmic
reticulum Ca ATPase (SERCA), indicating that CNP can promote lusitropic and negative
inotropic actions [112]. As for the molecular signaling pathway of the contractile effects of
CNP in the heart, cGKI was demonstrated to be a downstream target, and cGMP/cGKI-
stimulated phosphorylation of Ser16-phosphorylated PLN and subsequent activation of
SERCA pump appear to mediate the positive lusitropic responses to CNP [113,114].

Summing up the above concept of the effect of CNP on heart contraction, NPR-B
stimulation by CNP increases cGMP, and its downstream signaling cascade eventually
causes a positive lusitropic and negative inotropic action in the myocardium. These effects
are not mimicked by NPR-A stimulation by BNP, despite a similar cGMP increase.

CNP was reported to decrease fibroblast proliferation and extracellular matrix pro-
duction in a NPR-B-mediated cGMP-dependent manner, i.e., CNP produced by cardiac
fibroblasts is proposed to play a role in inhibiting cardiac fibrosis as an autocrine/paracrine
factor [115].

4. Effects of CNP on Heart Failure

As mentioned, ANP and BNP are cardiac hormones secreted from the atrium and
ventricle of the heart, respectively, and their clinical roles in patients with heart failure are
well established; both of them are markers of the severity of heart failure and are further
used as drugs for heart failure in clinical settings. Unlike ANP and BNP, CNP is thought
to be a ubiquitous autocrine/paracrine regulator, and its expression levels in the heart
are much lower than those of ANP and BNP; thus, so the role of CNP in heart failure did
not initially attract much attention. Nevertheless, the gene expression of CNP and the
plasma levels of NTproCNP were reported to be increased in case of heart failure, as along
with ANP and BNP [27,88–91]. CNP production was increased in the hearts of patients
with chronic heart failure, and this increase was correlated with the severity of heart
failure [89,116]. Furthermore, the severity of the disease correlated with plasma NTproCNP
levels, predicting all-cause mortality and hospitalization in patients suffering from heart
failure with preserved ejection fraction (HFpEF) [117]. As CNP is an autocrine/paracrine
regulator, in order to clarify whether increased levels of plasma proCNP are caused by
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increased production of CNP in the heart, CNP levels in the coronary sinus were compared
with those in the aortic root in subjects with heart failure [116]. As a result, CNP levels in
the coronary sinus were significantly increased compared with those in systemic circulation,
indicating that CNP production is augmented in the failing heart. Dickey et al. reported that
CNP generated twice as much cGMP as ANP in the mouse model of pressure-overloaded
heart failure. They supposed that, in this condition, NPR-A activity decreased whereas
NPR-B activity was not changed, indicating that NPR-B accounts for the majority of the
natriuretic peptide-dependent activity in the failed heart [103].

As is the case with non-failing hearts, CNP is reported to show negative inotropic
and positive lusitropic responses in rat failing heart models [118]. Concerning the role of
PDEs that mediate the effects of CNP on failing hearts, the Oslo University group reported
that the increase in global cGMP by CNP was mainly regulated by PDE2, not PDE3, in
left-ventricular muscle strips and ventricular cardiomyocytes in the failing hearts of Wistar
rats, but the functional consequences were different from the changes in cGMP, i.e., PDE3
inhibition induced the CNP-mediated negative inotropic response and lusitropic response,
whereas PDE2 inhibition desensitized the CNP-induced negative inotropic response, but
not lusitropic response. The increase in cGMP necessarily coincides with the functional
responses and, generally, the functional responses induced by CNP are intermediately
regulated by PDEs [99,100]. Furthermore, CNP sensitizes cAMP-mediated signaling via
NPR-B-mediated increase of cGMP, which inhibits the cAMP-PDE activity of PDE3 in
failing hearts [100].

The same group reported the involvement of SERCA activity as one of the effectors
of the downstream molecules of CNP/NPR-B signaling, which mediates the negative
inotropic and positive lusitropic effects of CNP in the failing heart. CNP-induced PLN
and TnI phosphorylation by cGK in concert mediate both negative inotropic and positive
lusitropic effects in failing hearts [119].

In addition, during the early phases of pressure overload, NPR-B/cGMP/cGKI sig-
naling activated by CNP in cardiomyocytes protects from myocyte stiffening caused via
titin [120].

5. Roles of CNP on Cardiac Hypertrophy

Similar to the case of heart failure, ANP and BNP are also biomarkers for cardiac
hypertrophy. At the early stage of research on CNP, the role of CNP in cardiac hypertrophy
was investigated as one of the cGMP generators along with other natriuretic peptides. The
first intensive study on the specific effect of CNP on cardiac hypertrophy was performed
by Tokudome et al. [121]. They investigated the effects of CNP on cultured cardiac my-
ocyte hypertrophy and the interaction between CNP and endothelin-1 (ET-1), which is a
representative stimulator of cardiac hypertrophy. Resultantly, CNP attenuated basal and
ET-1-induced hypertrophy-related gene expression and inhibited ET-1-induced cardiomy-
ocyte hypertrophy via a cGMP-dependent mechanism. The same group further reported
that CNP affected antihypertrophic action in rat myocardial infarction (MI) models [122].
In addition, CNP reportedly attenuated angiotensin II-induced cardiac hypertrophy, fibro-
sis, and contractile dysfunction, which were accompanied by reduced cardiac superoxide
production, in in vivo experiments using mice models [123]. On the contrary, the effects
of CNP on cardiac contractility, guanylyl cyclase activity, and phosphorylation of cGMP-
dependent protein were dampened in myocytes from the hypertrophied heart of mice
induced by aortic banding [124].

As for other model animals, NPR-B dominant-negative transgenic rats displayed
progressive, blood pressure-independent cardiac hypertrophy, and the hypertrophic phe-
notype was further enhanced in chronic volume overload-induced congestive heart failure,
suggesting the preventing effect of CNP/NPR-B on cardiac hypertrophy [125].
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6. Roles of CNP on MI

The vasculature is the major tissue where CNP abundantly exists and on which CNP
potently works. As for the physiological and pathophysiological roles of CNP in the
vasculature, the vascular natriuretic peptide system is proposed, in that endothelium-
derived CNP affects vascular smooth muscle cells expressing its cognate receptor, NPR-B,
and regulates vascular tone, remodeling, and regeneration [63,126]. On the other hand,
endothelium-derived CNP is reported to maintain vascular homeostasis through NPR-
C [127], and, in the case of MI, the CNP/NPR-C signaling governs coronary blood flow
and protects against ischemia/reperfusion injury (I/R) complicated by MI [128].

In vivo administration of CNP was shown to attenuate cardiac remodeling after MI
through its antifibrotic and antihypertrophic action [122]. In a mouse model with targeted
overexpression of CNP in cardiomyocytes, overexpressed CNP did not affect I/R-induced
infarct size but prevented cardiac hypertrophy induced by MI [129]. On the other hand,
in a swine model of induced MI with preserved left-ventricular ejection fraction, CNP
expression was locally increased in the infarct-remodeled myocardium in the presence of a
dense capillary network, and a high concentration of CNP was required in the vasculogenic
response there together with VEGF-A [130].

During MI and I/R, cGMP triggers cytoprotective responses and improves cardiomy-
ocyte survival; cGMP production leads to the activation of cGKI, which in turn phosphory-
lates many substrates and eventually facilitates the opening of mitochondrial ATP-sensitive
K channels and Ca-activated K channels of the BK type [131,132]. PDEs and SERCA2,
which were mentioned above as downstream molecules in the CNP/NPR-B signaling
cascade in the failing heart, are thought to be effective in MI states because the in vitro
experimental model of heart failure included ventricular cardiomyocytes from Wistar rats
with heart failure after MI [99,119].

In clinical settings, although circulating signal peptides of CNP could not identify
patients with MI or those with unstable angina, it was significantly lower in patients with
a history of previous MI and could identify those at risk of death or reinfarction within
1 year [133]. Similarly, plasma NTproCNP is reported to be an independent predictor of
mortality and cardiac readmission in individuals with unstable angina [134]. A recent
study performed in Denmark hospitals showed that increased proCNP levels at admission
are an independent risk of all-cause mortality in female patients with ST-elevated MI [135].

7. Effects of CNP on Heart Rate and Electrical Conduction in the Sinoatrial Node (SAN)

Chronotropic effects of CNP, i.e., effects of CNP on the heart conduction system, have
also been reported. After indicating that CNP exerts a significant and prolonged posi-
tive chronotropic effect both in vivo and in vitro using a dog model [136], Beaulieu et al.
showed CNP modifies cardiac ionic currents to produce positive chronotropic effects by
stimulation of NPR-B located in the SAN region [137]. Subsequently, natriuretic pep-
tides (including CNP) and their cognate receptors were shown to modulate ion channel
function in the SAN [138–140]. Recently, to investigate the physiological roles of NPR-B
signaling in regulating heart rate and SAN function, NPR-B-deficient mice were used, and
it was revealed that NPR-B plays an essential physiological role in maintaining normal
heart rate and SAN function by modulating ion channel function in SAN myocytes via a
cGMP/PDE3/cAMP signaling mechanism [141].

8. Conclusions and Further Discussion

Despite fewer dynamic changes compared to ANP or BNP, CNP plays a distinct role
in cardiac physiology and pathophysiology. Cardiac cell-specific manipulation of CNP
elucidated its autocrine/paracrine mechanism of action on the heart; a recent study reported
that CNP originating from cardiomyocytes, endothelial cells, and cardiac fibroblasts is
essential in maintaining the cardiac structure, function, and coronary vasoreactivity [102].
In the physiological state, cardiomyocyte- and fibroblast-specific knockout mice showed no
alteration compared to control mice regarding cardiac contractility, structure, or fibrosis,
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supporting the concept that CNP plays a minimal role in a healthy state. On the other hand,
when artificial heart failure was induced by pressure overload after aortic banding, mice
with specific depletion of CNP in cardiomyocytes and in fibroblasts both had decreased
ejection fraction, increased ventricular dilation, and increased collagen deposition; in
particular, in cardiomyocyte-specific knockout mice, cardiac hypertrophy was observed.
Similar effects were observed in clinical settings; therefore, the development of drugs
related to the cardioprotective effect of CNP-NPR-B signaling is expected. As an analogue
for CNP was recently approved as a drug for impaired skeletal growth in achondroplasia,
relevant remedies targeting cardiovascular disorders may be developed in the future.
In addition, the development of a method for measuring CNP or NTproCNP is lacking
compared to other natriuretic peptides. Authentic or standard measuring procedures for
CNP or NTproCNP should be explored.

As for the receptor, NPR-B is regarded as biologically active because of its massive
cGMP generation upon ligand CNP binding. However, NPR-C has come to attract attention
as it can augment regional CNP content. Therefore, osteocrin, the intrinsic and specific
ligand for NPR-C, may play a major role in cardiac physiology and pathophysiology
(Figure 2). Using a wildtype or osteocrin knockout mouse model, Miyazaki et al. showed
the possibility that osteocrin suppresses the worsening of chronic heart failure after MI by
inhibiting the clearance of the natriuretic peptide family including CNP [55]. Szaroszyk
et al. performed RNA sequencing on wasting murine skeletal muscles in the condition of
heart failure and found a reduced osteocrin expression. Furthermore, by generating mice
with skeletal muscle-targeted depletion or overexpression of osteocrin, they demonstrated
that, under the pressure overload condition, the progression of cardiac dysfunction and
myocardial fibrosis is adversely correlated with skeletal muscle osteocrin levels. As for the
mechanism, osteocrin enhanced the abundance of CNP, which promoted cardiomyocyte
contractility via protein kinase A and further inhibited fibroblast activity via cGK signaling.
They also found that osteocrin expression was reduced in the skeletal muscle of patients
with heart failure, suggesting the therapeutic potency of the augmentation of osteocrin
for cardiac cachexia [142]. The activation of NPR-C by its cognate ligands osteocrin or its
analogues may represent a novel therapeutic approach to various cardiac disorders.
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