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Simple Summary: In this review, we describe the basic functions of endothelin and related molecules,
including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in
several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway,
and the scope of endothelin-targeting treatments in the future. We highlight the present uses of
endothelin receptor antagonists and the advancements in the development of future treatment
options, thereby providing an overview of endothelin research over the years and its future scope.

Abstract: Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In sub-
sequent years, three isoforms, two canonical receptors, and two converting enzymes were identified,
and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years,
the endothelin system has been found to be critical in the pathogenesis of several cardiovascular
diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery
disease. In this review, we summarize the current knowledge on endothelin and its role in cardio-
vascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin
receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of
success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment
options for cardiovascular diseases in the future.

Keywords: endothelin; endothelin receptor antagonist; pulmonary hypertension; heart failure;
coronary artery disease; hypertension

1. Introduction

The existence of a vasoconstrictor secreted by endothelial cells was first reported by
several researchers as early as 1981 [1–4]. This culminates in 1988, where Yanagisawa
et al. identified the vasoconstrictor peptide endothelin (ET; now known as endothelin-1 or
ET-1) [5]. Endothelin-1 showed potent and long-lasting vasoconstrictor effects on arteries
that were never observed with another compound at the time. Not long after the discovery of
ET-1, two other isoforms have been discovered, each with distinct functions. These isoforms
are known as endothelin-2 [6,7] (ET-2) and endothelin-3 [8] (ET-3). Two G-protein-coupled
receptors, endothelin type A (ETA) [9,10] and endothelin type B (ETB) receptors [11,12],
which can be activated when bound with endothelin peptides, were also identified. ET-1 and
ET-2 are more potent than ET-3 in activating ETA, while all three isoforms are equipotent
in activating ETB [13]. Subsequently, two endothelin-converting enzymes (ECEs) that
cleaved the endothelin precursor, “big endothelin”, into active peptides were identified
(ECE-1 [14,15] and ECE-2 [16]). Since then, researchers have been working to uncover the
role of the endothelin system in both health and disease. In this review, we discuss the basic
knowledge of endothelin and its role in cardiovascular disease. Evidence of endothelin
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involvement in pathological conditions, both in preclinical and clinical studies, will be
presented, and strategies to target this pathway as a therapeutic option in the past, present,
and future will be discussed.

2. The Endothelin System
2.1. Biosynthesis of Endothelin

ET-1 belongs to the most abundantly synthesized endothelin peptide family. Mature
ET-1 is a 21-amino-acid peptide with two cysteine bridges at the N-terminus and a free
hydrophobic C-terminus. The crystal structure of ET-1 was solved recently using X-ray
diffraction data collected in 1992 [17,18]. Endothelins have structures similar to snake
venom toxins (safarotoxins), whose envenomation causes strong coronary artery constric-
tion [19,20]. Endothelin receptor antagonists have been suggested as antivenoms [21].
Mature ET-1 peptide is synthetized by many types of cells, mainly vascular endothelial and
smooth muscle cells, while macrophages, fibroblasts, podocytes, and brain neurons also
express it [2,13]. Meanwhile, ET-2 peptide is synthetized mainly by intestinal epithelial
cells, while it is also transiently expressed in the lung and ovarian follicles [7,22,23]. Finally,
the ET-3 peptide is synthetized by melanocytes, intestinal cells, brain neurons, and other
cells [2,24,25]. Endothelin peptide synthesis is activated in response to many factors such
as hyperglycemia, hypercholesterolemia, aging, estrogen deficiency, hypoxia, shear stress,
microRNAs, and angiotensin II [22–25].

Endothelin biosynthesis involves three steps, as illustrated in Figure 1. Endothelins
are initially secreted as precursor 212 amino acid polypeptides, named preproETs. A signal
peptidase cleaves the 17-amino acid signal to generate proETs, which are subsequently
cleaved at the C and N terminals by furin enzymes to generate big ETs [25,26]. Finally,
endothelin-converting enzymes (ECEs) cleave big ETs to produce mature ETs with 21 amino
acids [14]. Because big ETs are biologically inactive, this maturation process is their key
activity. Interestingly, in mice lacking both ECE-1 and ECE-2, mature endothelin peptide
levels were reduced by one-third [27]. Other enzymes such as chymases are involved in
the maturation of big ETs [28,29]. The deletion of chymases reduces mature endothelin
levels [30,31], whereas overexpression increases it [32,33].

2.2. Endothelin Receptor

To activate its signaling pathways, the endothelin peptides bind to two subtypes of
endothelin receptor, the ETA receptor [9,10] and the ETB receptor [11,12], which belong to
the seven G-protein-coupled transmembrane-spanning domain receptors (GPCRs). Both
ET-1 and ET-2 showed equal potency for the ETA receptor binding, whereas ET-3 showed
100-fold lower affinity for the ETA receptor. In contrast, ET-1, ET-2, and ET-3 showed
similar potency to ETB receptors [13,34]. ETA receptor expression was relatively higher in
the vascular smooth muscle, whereas ETB receptor expression was higher in endothelial
cells. Thus, ETA and ETB receptors are ubiquitously expressed in all organs that receive
the blood supply. The ETA receptor was expressed at the highest level in the lungs and
heart, with lower expression in the brain, while the brain and periphery of the lung, such
as capillaries, are rich in ETB receptors [35].

ETA receptor stimulation induced potent and prolonged vasoconstriction, inflam-
mation, and cell proliferation, whereas ETB receptor stimulation generally showed the
opposite effects (see Figure 2) [34,36]. As such, the ETB receptor can be considered an
ETA receptor endogenous antagonist. The ETB receptor also functions in the clearance of
ET-1 from circulation (see Figure 2) [37–39]. The crystal structure of the ETB receptor and
its interaction with ligands have been recently determined [40–44]. These findings shed
light on the interaction between the ETB receptor and its ligand as well as the underlying
G-protein mechanism.
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2.3. Endothelin Agonists and Antagonists

Numerous peptide and non-peptide compounds that act on endothelin receptors
with varying degrees of potency and specificity have been discovered. Some of these
compounds act as agonists and antagonists. Several compounds can act selectively, while
others are non-selective on endothelin receptors [13]. Over the last two decades, the
development of agonists and antagonists for endothelin receptors, ETA and ETB, has been
extensively studied. BQ123 and FR139317 were the first ETA-selective peptide antagonists
to be identified. Parallelly, the ETB agonists (BQ3020 and IRL1620) and the first selective
antagonist peptide ETB (BQ788) were identified. Within five years of the discovery of ET-1,
a bioavailable non-peptide antagonist drug of the endothelin system was developed.

ET-1, ET-2, and ET-3 are agonists of the ETA and ETB receptors. However, because ET-3
has a lower affinity for the ETA receptor, it is more likely to activate the ETB receptor [45].
To date, no ETA receptor agonists, either peptides or non-peptides, have been identified. It
is generally accepted that the effects of ETA activation in pathophysiological conditions
are deleterious; therefore, there is no beneficial evidence for activating the ET-1/ETA path-
way [46]; however, several ETB receptor agonists have been discovered to date. Sarafotoxin
6c, which has been used in experimental studies in humans, has notably high selectivity for
rat ETB receptors, but less so for human ETB receptors [47,48]. IRL1620 [49] and BQ3020 [50]
are the most widely used selective ETB receptors. IRL1620 is used in experiments involving
cerebral blood flow as a neuroprotective agent [51–53] and in cancers [54–56]. BQ3020 has
been used in ETB receptor characterization and labeling studies [57–59] and as a selective
PET agent in vivo [60]. However, there is currently no evidence that agonist agents of
endothelin have been initiated in cardiology.

On the contrary, endothelin receptor antagonists (ERAs) have been identified and
utilized for several years. ERAs are classified as selective towards one receptor subtype or
dual antagonists that block both ETA and ETB receptors. There is no agreement regarding
the classification of these antagonists; however, Davenport and Maguire suggested that
selective compounds should have more than 100-fold selectivity towards either ETA or
ETB receptors, while those that display less selectivity than that are defined as balanced
antagonists [61]. The clinical evidence of ERA use in cardiovascular diseases will be
discussed in a later section.

Bosentan is the first antagonist of both ETA and ETB receptors and was approved
by the U.S. Food and Drug Administration in 2001 for pulmonary arterial hypertension
(PAH) [62,63]. The diverse side-effects of bosentan include headache, nasal congestion,
flushing, fluid edema, elevated levels of liver enzymes, and anemia, which resemble
those of ETA-selective antagonists. Bosentan-related elevation of liver enzymes is dose-
dependent and typically asymptomatic [13,64–66]. Macitentan is a non-selective endothelin
receptor antagonist that was approved for clinical use in PAH in 2013. It was designed
by modifying the structure of bosentan to improve its efficacy and tolerability, resulting
in reduced side effects, such as lower liver toxicity and lower extremity fluid retention,
compared to bosentan [61]. Procitentan is a potent dual ET receptor antagonist derived
from macitentan. Aprocitentan is currently under investigation for treatment-resistant
hypertension, which will be discussed in detail later [67,68].

The most widely used ETA receptor selective antagonist is BQ123 [69] which has been
used in both in vivo and in vitro studies. Other peptide-based selective ETA receptor an-
tagonists used in experiments were FR139317 [70] and TAK-044 [71]. Ambrisentan [72] and
sitaxentan [73] have been used in clinical trials to treat PAH patients. Ambrisentan was the
second approved antagonist introduced in clinical settings for PAH treatment in 2007. How-
ever, in 2010, sixatentan was withdrawn owing to cases of idiosyncratic hepatitis resulting
in acute liver failure and death [74]. Atrasentan [75], another highly selective ETA receptor
antagonist, has been successfully used in the treatment of diabetic nephropathy [76].

Selective ETB receptor antagonists are less developed compared to other types of en-
dothelin receptor antagonists, attributed to the potential danger of blocking ET-1 clearance
and vasodilatation effects [13]. In the pre-clinical setting, the most extensively used ETB
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antagonist is peptide BQ788 [77]. The last novel derivative from ERA is the relatively novel
agent, sparcentan. Sparcentan is the first orally active antagonist with ETA receptor and
angiotensin II type 1 (AT1) receptor inhibitory activities in a single compound. It was
developed by merging the elements present in the irbesartan AT1 receptor antagonists
with elements in biphenylsulfonamide ETA receptors. Currently, sparcentan has been
investigated in several clinical trials related to kidney diseases [46,78].

2.4. Genetic Mutations in Endothelin System

Genetic mutations in endothelins, endothelin converting enzymes, and endothelin recep-
tors have been shown to be involved in or risk factors for many diseases. For instance, muta-
tions in endothelin 1 gene are associated with pediatric pulmonary hypertension [79], recessive
auriculocondylar syndrome (ACS), and dominant isolated question-mark ears (QME) [80].
The rs9349379 SNP of the PHACTR1 locus (6p24), which is associated with coronary artery
disease (CAD), migraine headache, cervical artery dissection, fibromuscular dysplasia, and
systemic arterial hypertension [81], is a regulator of endothelin-1 expression [82].

Mutation in the ETA receptor peptide-binding site alters its subtype selectivity, which
affects its interaction with ligands [83]. Mutations in the ETA receptor cause mandibulofacial
dysostosis with alopecia [84]. The genetic variant of EDNRA, rs6841581, is significantly
associated with an increased risk of intracranial aneurysm in East Asian populations [85–87].
The ETA receptor (ENDRA-231 A/G) gene polymorphism is associated with migraine [88,89].

Mutations in endothelin-3 commonly affect the enteric nervous system and the
melanocytes. As endothelin-3 exerts its function by interacting with the ETB receptor, a
similar phenomenon occurred in ETB receptor mutations. Several mutations in endothelin-3
are associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-
Waardenburg syndrome) [90–92]. Mutations in the ETB receptor are also associated with
Hirschsprung and Waardenburg syndromes [93–96]. Hypermethylation and downregula-
tion of the ETB receptor expression are associated with reduced patient survival and poor
prognosis in several types of malignancies [97–100].

Not limited to the peptides or receptors only, mutations in the converting enzymes
have also been linked to pathological conditions. The R742C mutation in the ECE-1 gene
results in a patient with skip lesion Hirschsprung disease, cardiac defects, and autonomic
dysfunction [101]. Another variation in ECE-1 is linked to essential hypertension [102].

2.5. Phenotype of Genetic Endothelin Modification in Mice

A whole-body ET-1 knockout mouse was developed by deleting exon 2 of the ET-1
gene [103]. Homozygous deletion (ET-1−/−) is lethal in neonates. Caesarian delivered
mice on day 18.5, postcoital, all with major craniofacial and cardiac anomalies [103,104].
ET-1−/− mice also have lower neonatal weight, poor thyroid and thymus development, and
lesser cardiac sympathetic innervation [105,106]. Heterozygous deletion of ET-1 (ET-1+/−)
resulted in different phenotypes in which the mice appeared normal, fertile, and with
reduced ET-1 concentration in the lung and plasma. However, mice exhibit elevated blood
pressure [103]. In the overexpression mouse model (ET-1+), the mice exhibited normal ET-1
in the blood, but increased ET-1 expression in the brain, lungs, and kidneys [107]. These
mice exhibited chronic inflammation in the lungs [107]. Kidney phenotypes were more se-
vere, exhibiting increased renal cyst formation, renal interstitial fibrosis, glomerulosclerosis,
and age-dependent salt-sensitive hypertension [107–110].

Global ET-2 deletion in mice resulted in severe growth retardation, juvenile lethality,
internal starvation, hypothermia, and abnormal lung histology. These findings revealed
that ET-2 is important for postnatal growth and survival of mice by regulating energy
homeostasis and maintaining lung function [111]. Global ET-2 overexpression in Sprague-
Dawley rats, called TGR(hET-2)37, results in male rats having significantly lower body
weight accompanied by kidney interstitial and glomerular sclerosis. Female rats exhibit
glomerulosclerosis [112,113].
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ET-3 heterozygous mice (ET-3+/−) were phenotypically normal. However, global
homozygous knockout mice (ET-3−/−) died early postnatally, with an average age of
21 days after birth. The mice also presented with aganglionic megacolon and coat color
spotting. This result showed that ET-3 is required for the proper development of enteric
neurons derived from the vagal neural crest and epidermal melanocytes derived from the
trunk neural crest [114]. Piebaldism (absence of melanocytes in the skin) or lethal spotted
(ls) phenotypes arose spontaneously in mouse colonies. These ls/ls mice also presented
with megacolon. The ET-3 transgene under the control of human dopamine-β-hydroxylase
(DβH) introduced into ls/ls mice reduced piebaldism and megacolon in these mice. This
evidence shows that the ls/ls mouse phenotype is a result of ET-3 deficiency [115].

ETA
−/− mice die shortly after birth due to severe craniofacial deformities and neural

crest-derived structural abnormalities [116,117]. ETB
+/− mice appeared normal and were

able to produce offspring. However, ETB
−/− mice were born healthy but became sick

and died within 4 weeks, and showed similar abnormalities as ET-3−/− mice, including
megacolon and coat color changes [118]. ECE-1 deletion resulted in mortality between
embryonic day 12.5 (E12.5) and 30 min after birth. ECE-1−/− mice showed cardiac and
craniofacial anomalies identical to those in ET-1 and ETA receptor-deficient mice [119].
On the other hand, ECE-2−/− mice survive, appear healthy, fertile, and have the same
lifespan as wild-type littermates. The simultaneous deletion of ECE-1 and ECE-2 with
ECE-1−/−/ECE-2−/− miceshowed broader and more severe cardiac abnormalities than
ECE-1−/− mice [27].

3. Endothelin in Cardiovascular Diseases
3.1. Pulmonary Hypertension
3.1.1. Relations between Endothelin and PAH

Pulmonary hypertension (PH) was among the first conditions in which the clinical
application of endothelin-targeting agents was tested. PH underwent a change in definition
after the World Symposium on Pulmonary Hypertension 2018, where the threshold of the
mean pulmonary artery pressure (mPAP) diagnostic criteria decreased from 25 mmHg to
20 mmHg [120]. PH is divided by the WHO into five groups based on etiology (pulmonary
arterial hypertension/PAH, PH due to left heart disease, PH due to chronic lung disease
or hypoxia, chronic thromboembolic PH/CTEPH, and PH due to other etiologies) [121].
However, a common thread linking the groups, although in varying degrees and locations,
is the pulmonary vascular remodeling that causes an increase in pressure. This remodeling
process primarily involves the dysfunction of the endothelial cells (EC) and smooth muscle
cell (SMC) layers of the vessel, while the contributions of the adventitial layer of the
vasculature and other surrounding cells are also noteworthy [122]. These dysfunctions
include, but are not limited to, inappropriate vascular tone control, aberrant EC and SMC
apoptosis, changes in proliferation capacity of all three vessel layers, and endothelial-to-
mesenchymal transition [122,123].

Endothelin is a potent vasoconstrictor expressed in various vascular beds. For example,
ET-1 is abundantly expressed in the lung. Due to this, ET is a prime candidate molecule to
be involved in PH [34]. Various animal models of pulmonary hypertension have shown that
an increase in both the cellular expression and circulating level of ET-1 could be found in
chronic hypoxia (3 weeks of 10% O2), SU5416-hypoxia, and monocrotaline (MCT) models of
PH, among others [124–126]. Further studies confirmed the mechanism of action by which
endothelin could affect the vascular remodeling and dysfunction [127,128]. In addition to
the well-known imbalance of the nitric oxide (NO) and prostacyclin (PGI2) vasodilation
pathways due to the overactivation of ET, other important pathways are also affected by
the binding of ET-1 to its receptors, ETA and ETB [129].

The expression pattern of ETA and ETB receptors in the lung vasculature varies
according to the cells, where endothelial cells mainly express ETB, whereas smooth muscle
cells and fibroblasts also express ETA in addition to ETB [130,131]. Accordingly, ET-1 affects
various processes in these cells, ultimately causing vascular remodeling when overactivated.
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As mentioned, impaired balance of vasodilator (NO and PGI) and vasoconstrictors (e.g.,
thromboxane A2/TXA2) due to ET-1 is a major problem in the vasculature, while in smooth
muscle cells, aberrant proliferation caused by activation of the PI3K, PLC, and MAPK
pathways, in addition to being the effector site of the vasoconstrictive effects, can be
observed [2,130]. Not limited to those effects, ET-1 overabundance has also been linked to
increased EC apoptosis and decreased SMC apoptosis, the induction of a glycolytic switch in
the EC, and the promotion of reactive oxygen species production, among others [132–135].
With a diverse array of pathways capable of being altered by this family of peptides,
endothelin becomes vital to tackling the challenge of treating PH.

3.1.2. Clinical Applications of Endothelin and ERAs in PH

With strong evidence of the involvement of endothelin, particularly ET-1, as demon-
strated by several preclinical studies, the next important step was to check whether ET
played an equally important role in patients. For this purpose, several studies were
conducted, with results indicating an increase in ET-1 expression levels in the vascular
endothelial cells of PAH patients and in the circulating levels of ET-1 in the blood [136,137].
Furthermore, it was found that the increased presence of ET-1 was not limited to PAH.
Reports of ET-1 overabundance can also be found in PH due to left heart disease, PH due to
lung disease, and CTEPH [138–140]. This underlines the importance of endothelin regard-
less of the etiological cause. Consequently, ET-1 has also been explored as a biomarker and
especially as a prognostic tool. In patients with PAH, blood ET-1 levels have been shown to
have prognostic value in predicting hospitalization and mortality [141].

The most important question regarding endothelin is whether targeting this path-
way can translate into a beneficial treatment option. To this end, the blockade of the
endothelin receptors ETA and ETB through the use of ERA is being tested in clinical trials.
Among the groups of PH, PAH is currently the only condition in which the use of ERA is
approved [142]. The introduction of ERA helped improve what was previously a bleak
prognosis for PAH patients and improved its mortality and morbidity rates. The dual
ETA/ETB receptor antagonist bosentan was first approved as a treatment for PAH in the
groundbreaking BREATHE-1 trial published in 2002 [63]. In this trial, 213 patients with
primary or connective tissue disease-associated PAH were randomly assigned to either
placebo or two different bosentan treatment regimens (125 mg twice daily or 250 mg twice
daily) for a minimum of 12 weeks. Here, those treated with bosentan showed promising
clinical improvements in the 6 min walk test distance, Borg dyspnea index, WHO functional
class, and time to clinical worsening with tolerable levels of adverse effects. This study
served as a major turning point in the clinical use of ERA, and further studies have con-
firmed its efficacy and improved upon the original BREATHE-1 trial. Bosentan, as the first
dual ERA approved for clinical use, has also been studied in the PAH of various etiologies.
For example, bosentan treatment in PAH due to HIV is beneficial, both in the short and
long term, where both hemodynamic and clinical improvements can be seen [143,144].
Portopulmonary hypertension is another condition in which bosentan has been found to
have similar clinical and hemodynamic benefits [145,146]. Lastly, in the case of PAH due to
congenital heart disease (CHD), bosentan has been reported to be effective in patients with
Eisenmenger syndrome in the BREATHE-5 trial [147,148].

Other ERAs with differing affinities to the two ET receptors, such as macitentan or
ambrisentan, have also gained approval for use in patients with PAH in the last decade.
Notably, the SERAPHIN trial analyzing macitentan usage in PAH patients revealed the
benefits of this treatment [149]. In this trial, the investigators analyzed the efficacy of
macitentan at two different dosages in comparison to placebo (3 mg or 10 mg), and found a
decrease in the primary end-point event (death, lung transplantation, prostanoid treatment,
atrial septostomy, or worsening PAH) occurrence rate [149]. Furthermore, macitentan was
also recently reported to benefit right ventricular function and structure, in addition to
improving hemodynamics in the REPAIR study [150].
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In the case of ambrisentan, the ARIES set of clinical trials examined whether treat-
ment with ambrisentan (5 mg or 10 mg doses in ARIES-1 and 2.5 mg or 5 mg doses in
ARIES-2) compared to placebo could have beneficial effects [151]. The results showed that
ambrisentan could effectively improve the clinical worsening of PAH, WHO functional
class, Borg dyspnea index, and B-type natriuretic peptide levels. Notably, ambrisentan
treatment did not exponentially increase liver enzyme levels by more than three-fold [151].
It is noteworthy that in both macitentan and ambrisentan, as is the case with bosentan,
although there was significant hemodynamic and clinical improvement in comparison to
placebo after treatment, the change was not significant enough to stop searching for ways
to further improve PAH treatment.

The AMBITION trial answered the question of whether ERA could have a beneficial
effect when combined with other PAH treatments [152]. In the AMBITION trial, am-
brisentan was administered in combination with the PDE-V inhibitor tadalafil, and it was
found that combined therapy with ambrisentan and tadalafil successfully reduced the
rate of clinical worsening (death, hospitalization, worsening of PAH, disease progression,
unsatisfactory response to treatment), while improving the NT-proBNP and 6 min walk
test distance [152]. The TRITON trial attempted to determine whether the upfront triple
combination therapy of ERA (macitentan), PDE-V-inhibitor (tadalafil), and prostacyclin
receptor agonist (selexipag) is more beneficial than dual therapy (macitentan and tadalafil).
Although no difference in pulmonary vascular resistance reduction was found between
upfront double and triple therapy, an exploratory analysis showed a potential reduction in
disease progression, albeit with a small sample size [153]. Obviously, ambrisentan and/or
macitentan have also been analyzed for PAH due to various etiological causes, such as HIV,
CHD, or hepatopulmonary hypertension, with varying degrees of success or lack thereof,
in the case of the MAESTRO study on Eisenmenger syndrome [154–156].

Unfortunately, not all ERAs are suitable for the treatment of PAH. For instance, the trial
for sitaxentan was terminated prematurely owing to the high incidence of liver dysfunction
in the treatment arm [34,131]. Trials for newer ERAs have also hit a roadblock with slow
recruitment, which was mentioned as the reason for the tezosentan trial in PAH conditions
being terminated (NCT01077297). In summary, ERA has become an essential part of PAH
treatment in the last decade and contributes to the improvement of patient prognosis.

Unfortunately, clinical trials for other forms of PH have not shown similar effective-
ness for the use of ERA. Notably, ERAs failed to show sufficient evidence of efficacy in
Group 3 PH due to lung disease or hypoxia, where several clinical trials did not achieve
satisfactory results [157]. Notably, a single-center trial from the University Hospital Basel,
Switzerland, which examined the use of bosentan in severe COPD, failed to show the
benefits of additional ERA in both lung and cardiac functions [157]. Several trials an-
alyzing the efficacy of ERAs in PH associated with idiopathic pulmonary fibrosis (IPF)
also did not show a positive effect, and one study even observed that the administration
of ambrisentan worsened the clinical condition of IPF patients [158,159]. This result is
discouraging, especially considering the fact that ET-1 has been found to be a driver of
the pro-fibrotic phenotype found in patients with IPF, both in preclinical and translational
studies. However, it is noteworthy that the loss of a different endothelin isoform, ET-2, in
the lung could worsen the IPF phenotype in a preclinical study [160]. As such, it might
be plausible that different strategies are needed to target the endothelin pathway in this
particular group of PH.

Another trial examining ERA use, i.e., bosentan in PH due to left heart disease, also
failed to improve lung hemodynamics and RV remodeling [161]. Tezosentan similarly did
not improve RV function in patients with a history of PH undergoing cardiac surgery [162].
Furthermore, several studies have shown the occurrence of liver injury due to ERA and
fluid retention, which further complicates the use of ERA in this particular condition, such
as those found in the MELODY-1 study [163]. These two adverse effects can also become
major problems in the application of ERA in other cardiovascular conditions, such as
hypertension and heart failure, which will also be discussed in another section.
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Chronic thromboembolic pulmonary hypertension or CTEPH represents another
condition in which ERA could potentially be used. However, to date, ERA has not been
accepted as a treatment option for this condition. Even so, evidence of ERA utility in
CTEPH has recently started to come to light. In 2008, the BENEFIT study analyzing the
use of bosentan concluded that bosentan had a positive effect on hemodynamics, while
no effect could be seen in exercise capacity [164]. Importantly, MERIT-1 reported that
macitentan has significant clinical and hemodynamic benefits for patients with inoperable
CTEPH [165]. Furthermore, recently, a recent multicenter study of macitentan use in
CTEPH was terminated due to reasons unrelated to patient safety (the sponsor decided to
discontinue the study). However, from the reported data, it appears that macitentan is a
promising treatment option for CTEPH, although further studies are required to confirm
this [166]. It is notable that a study found that ETA expression was markedly increased in the
thromboembolic lesions of CTEPH patients who underwent pulmonary endarterectomy
(PEA) [167]. Focusing on blocking this receptor rather than using the traditional dual
ETA/ETB receptor blocker might be an interesting solution to treat CTEPH using ERA.

3.2. Systemic Arterial Hypertension
3.2.1. ET in Basic Molecular Mechanism of Systemic Arterial Hypertension

Because of the nature of endothelin, which was originally found in the endothelium
and acts as a vasoconstrictor in a delicate balance with other vasoactive peptides, ET is a
highly interesting molecule for analysis in systemic arterial hypertension conditions [34].
Molecular mechanisms linking endothelin and systemic arterial hypertension have been
discovered over the years. Various animal models of systemic arterial hypertension have
shown that ET-1 levels increase during systemic arterial hypertension, while molecularly, as
mentioned in the previous section, ET-1 has been shown to affect various pathways related
to vascular tone control, such as the renin–angiotensin–aldosterone system (RAAS), nitric
oxide (NO), prostacyclin, TXA2, cyclic guanosine monophosphate (cGMP)/cyclic adenosine
monophosphate (cAMP), and adrenomedullin receptor activity modifying protein (RAMP)
pathways [34,131]. Conversely, the loss of ET-1, specifically in vascular endothelial cells,
could adversely affect vascular tone maintenance and cause systemic hypotension [168].
Several of the aforementioned pathways are not only known simply as modulators of
vascular tone, but they are also known to be involved in endothelial dysfunction and
arterial stiffness, i.e., two processes caused by the imbalance of said modulators. Indeed, it
is now thought that endothelin has a wide range of effects beyond simple vasoconstriction.
ET-1 is known to play a role in arterial stiffening. For instance, ET-1 is found to regulate
pulse wave velocity and contribute to widening pulse pressure, while ET-1 has already
been known to be closely related to NO production regulation, a major player in arterial
stiffness [169,170]. Another study related ET-1 levels with IL-6, a known marker for arterial
stiffness [171]. Lastly, ET-1 is also known to contribute to aging, i.e., another factor that
contributes to arterial stiffness, in addition to the related oxidative stress pathway [172].

From the point of view of endothelin receptors, there seems to be some variability
among the two endothelin receptors, ETA and ETB, in vascular tone control. Although
the role of ETA in the vasculature appears to be clearer, the endothelial ET-1/smooth
muscle ETA axis plays a straightforward balancing role in maintaining the vascular tone
through the release of the aforementioned vasoconstrictors, and the role of ETB seems to
be rather complex [131]. The ETB blockade caused an increase in blood pressure; however,
ETB knockout mice did not develop elevated blood pressure [173,174]. Additionally, ETB
together with ETA in the kidney has been reported to control the sodium retention function
of the kidney and, in turn, cause changes in vascular tone [175]. Taken together, these
results indicate that the endothelin system is essential for vascular tone control, and its
dysfunction logically leads to pathological consequences.
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3.2.2. Clinical Implications of Endothelin in Systemic Arterial Hypertension

Clinical studies have also shown an increase in ET-1 levels in patients with systemic
arterial hypertension. Elevated levels of ET-1 have been found in patients with salt-sensitive
hypertension, moderate-to-severe systemic essential hypertension, hemangioendothelioma
with systemic arterial hypertension, phaechromocytoma-related systemic arterial hyperten-
sion, and kidney disease, among others [2,135]. Furthermore, a single-nucleotide polymor-
phism in the PHACTR1 gene, which is associated with several vascular diseases, including
systemic arterial hypertension and CAD, was found to regulate the expression of ET-1 [82].

Several ERAs have been analyzed for their efficacy in the treatment of systemic
arterial hypertension. The first clinical trial analyzing dual ERA bosentan in systemic
arterial hypertension yielded positive results with respect to blood pressure reduction;
however, several notable adverse effects occurred in the participants, notably liver enzyme
elevation and fluid retention, i.e., a recurring theme for ERAs [176]. Trials in treatment
darusentan, a moderately ETA-selective ERA, also showed improvements in blood pressure
with differing levels of adverse event occurrence [177]. The relatively high level of adverse
events, combined with the availability of other antihypertensive drug classes with good
efficacy and fewer adverse effects, has shifted the application of endothelin-targeting drugs
to resistant hypertension conditions.

Resistant hypertension, where systemic arterial hypertension persists even after three
or more antihypertensive agents, including diuretics, have been administered, is a condition
where ERA is currently being investigated. Several agents, especially those with high ETA
selectivity, are currently under clinical trial. Notable among these trials is the DORADO trial,
where three different dosages of darusentan (50 mg, 100 mg, or 200 mg) could effectively
reduce both seated systolic and diastolic blood pressure by at least 10 mmHg, a larger drop
compared to the placebo-treated control [178,179]. However, in the DORADO-AC trial, in
which an active treatment control group of guanfacine was included in addition to three
different dosages of darusentan and placebo, placebo treatment unexpectedly reduced
systolic blood pressure to a level similar to that of darusentan in the initial seated blood
pressure measurement [180]. Only after post-hoc analysis using ambulatory blood pressure
measurement did darusentan demonstrate its superiority over placebo and guanfacine, and
the results of this trial put a halt in darusentan usage for treatment-resistant hypertension.
A novel ERA, procitentan, a metabolite of macitentan, is currently undergoing a phase
III trial (PRECISION) in resistant hypertension, buoyed by the positive efficacy results
in a dose-dependent study and its overall safety profile [67,68]. The results from pre-
clinical and human studies appear promising, with significant changes in blood pressure
(BP) observed within 14 days. Aprocitentan enhances the effect of BP lowering by other
antihypertensive drugs. In summary, procitentan exhibits protective capabilities in patients
with resistant hypertension.

It is also important to note that although it is beyond the scope of this article, the kidney
is another vital organ in the regulation of vascular tone, and various ERAs, especially
those selectively blocking ETA, such as atrasentan, have been shown to be capable of
treating kidney-disease-related systemic arterial hypertension. The promising results from
ETA-selective atrasentan treatment in diabetic nephropathy patients, as shown in the
SONAR trial and sparsentan (a combination of ETA-selective ERA and angiotensin II type
1 receptor antagonist) treatment for focal segmental glomerulosclerosis (FSGS) in the DUET
trial, suggests that kidney-disease-related systemic arterial hypertension could also be
an area where ERA and other endothelin-targeting treatments could be beneficial in the
near future [76,181].

3.3. Heart Failure
3.3.1. Endothelin and Heart Failure (HF)

Heart failure due to various etiological causes has long become a topic of interest in
relation to endothelin, as it was later shown in various studies that the effects of endothelin
do not stop merely at vasoconstriction. Indeed, due to the wide range of molecular and
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cellular effects that could be mediated by the binding of ET to its canonical receptor, several
molecular pathways are important to cardiomyocyte hypertrophy and heart remodeling,
such as phosphoinotiside 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase
kinase 3 beta (GSK3β), mitogen-activated protein kinase (MAPK) 1/2, transforming growth
factor beta (TGF-β), nuclear factor kappa B (NFkB), caspases, natriuretic peptides, and
protein kinase C (PKC), among other pathways [182–186].

Of note, as previously mentioned, several pathways and process have been heavily
connected with the endothelin system, especially in relation to the development and pro-
gression of chronic HF. The renin–angiotensin–aldosterone system has long been identified
as a target pathway affected by endothelin activation. Indeed, different changes in ET-1-
induced RAAS activation occur during the initial development of chronic HF, where the
ET-1/ETA axis increased blood pressure and induced RAAS downregulation attenuated by
the sympathetic nervous system, and during the progression of HF, where RAAS activation
could be induced by the same ET-1/ETA axis due to the cardiac output decrease [187,188].
Another pathway related to endothelin that is important in the progression of HF is the TGF-
β, which has been shown to mediate the fibrotic remodeling of the cardiomyocyte [183].
Inflammatory pathways are also another vital part of endothelin-induced factor causing
progression of chronic HF. Inflammatory cytokines (e.g., TNF-α, interferon-γ, IL-1β, IL-6)
are overproduced in the presence of ET-1 overexpression via NFkB translocation and in-
duction of target cytokines expression, all of which leads to inflammatory cells infiltration
and dilated cardiomyopathy phenotype in mice [189]. These are just some of the exam-
ples demonstrating the wide range of influence that the endothelin system could have on
chronic HF development. The role of endothelin on various etiological causes of chronic
HF has been extensively studied throughout the years in various experimental models
of HF. Notably, diabetic cardiomyopathy has gained significant interest as a condition in
which endothelin plays a significant role. Widyantoro et al., using a streptozotocin mouse
model, previously demonstrated that ET-1 is important in the endothelial-to-mesenchymal
transition process, which is important in the pathology of diabetic cardiomyopathy [183].
Hypertrophic cardiomyopathy is another condition where ET-1 is known to play a role
in inducing its pathological phenotypes. Induced pluripotent stem cell (iPSC)-derived
cardiomyocytes isolated from hypertrophic cardiomyopathy treated with ET-1 showed
marked hypertrophy and myofibrillar disarray [190]. In addition, pressure overload mouse
models due to transverse aortic constriction (TAC) have also shown that ET-1, especially
those originating from the vasculature, play an important role in hypertensive myocardial
hypertrophy [191]. The development of pacing-induced chronic HF model in dogs is
another process where the ET-1/ECE-1/ETA axis has been proven to be important. Two
different studies showed that chronic treatment with ETA antagonist or with ECE inhibitor
could ameliorate the HF phenotype [192,193]. Chronic HF due to ischemic heart disease has
been well documented to relate heavily with ET-1 overexpression, such as those found in
the failing hearts of rats after prolonged coronary artery ligation, while prolonged treatment
with ERAs that selectively target ETA was reported to improve this condition [194,195].
Changes in both the peptide and in the receptors also occur in ischemic heart-disease-
related chronic HF. An increase in ETA and ETB receptor expression in the coronary arteries
was also observed in ischemic heart disease-caused chronic HF, and in another study, the
chronic blockade of these receptors could attenuate left ventricular dysfunction and dilation
in rats, which, in part, became the basis of the following clinical trials of ERA on chronic
HF condition [196].

In short, the link between all etiological causes of HF is that endothelin, specifically
ET-1, plays an important role in heart remodeling through the modulation of inflammation,
apoptosis, and fibrosis [197].

3.3.2. Clinical Evidence of Endothelin in Chronic and Acute Heart Failure

As a biomarker, blood ET-1 levels, including the active and modified forms of ET-1,
have prognostic value in predicting hospitalization and mortality for both heart failure
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with reduced and preserved ejection fractions [198,199]. Similar to other cardiovascular
conditions, ET-1 levels are elevated in the blood samples of chronic HF patients of various
etiologies, including diabetic cardiomyopathy and hypertrophic cardiomyopathy [200,201].
One study related natriuresis, fluid congestion, and poor clinical prognosis to the elevation
of plasma ET-1 levels, while another indicated that a higher ET-1 plasma level at admission
is a prognostic marker for poor short-term prognosis in acute heart failure (HF) [202,203].
Chronic HF due to ischemic heart disease has also been correlated clinically with ET-1.
The correlation between ET-1 levels and inflammation has also been established in clinical
setting. For instance, a study established ET-1, in addition to adrenomedullin, to be
correlated to inflammation in chronic HF condition [204]. Additionally, it has also been
found that ET-1 levels is elevated together with other inflammatory cytokines (TNF-α, IL-6,
and MCP-1) in the macrophages of chronic HF patients [205]. Other inflammatory markers
important in chronic HF, such as the C-reactive protein (CRP) and NLRP3, have also been
correlated with ET-1 [206–209]. As inflammation has been established as an important
pathway that modulates the pathophysiology of chronic HF, the link between endothelin
and inflammation becomes essential in devising ways to target endothelin dysfunction as a
therapy [208]. All of the evidences above show that ET-1 elevation is an established marker
for pathological conditions such as chronic HF.

Unfortunately, clinical trials of ERAs in this condition have either not found satisfactory
positive results or were halted prior to achieving the endpoint due to the high occurrence
of side effects. Unlike PH and hypertension, although the importance of endothelin
in the pathophysiology of various etiological causes of HF both in chronic and acute
setting is undeniable, ERA in HF does not enjoy a similar level of clinical success and
is currently, in essence, not favored by other drugs targeting different pathways. One
of the earliest reported trial for ERA usage in chronic HF condition, The REACH-1 trial,
which first analyzed the use of bosentan in chronic HF, was discontinued because of the
high occurrence of elevated liver enzyme levels [210]. Similarly, the ENABLE trial that
utilized a lower bosentan dosage was halted because of the fluid retention caused by
bosentan, a paradoxical effect that is not beneficial for the patients [211]. Other ERAs, such
as darusentan in the EARTH trial and enrasentan in the ENCOR trial, did not achieve
positive results for ERA treatment in chronic HF [2,212]. Furthermore, recent results
from the SONAR trial revealed similar fluid retention problems in atrasentan; however,
in a post-hoc analysis, the kidney protection benefit was deemed to outweigh the fluid
retention problem [213].

Acute heart failure (acute HF) is another focus of study for the clinical use of ERA.
However, similar to chronic conditions, no encouraging results have emerged in this field.
The RITZ-1 and RITZ-2 sets of clinical trials attempted to answer the question of whether
ERA, in this case the non-selective tezosentan, could be useful in an acute HF setting.
Conflicting efficacy results were obtained between RITZ-1, which found no impact of
tezosentan on clinical symptoms and cardiovascular events, and RITZ-2, which showed
hemodynamic and symptom improvements after tezosentan in severe chronic HF [214,215].
This conflicting result was one of the main reasons for the shelving of tezosentan as a
medication for heart failure. Similarly, the VERITAS trial observed minimal clinical effects
of tezosentan treatment in acute HF [216]. The discrepancy seen between the successful
preclinical studies and disappointing clinical trials could be factored by various causes.
These include the administration of other standard-of-care HF treatment in conjunction
with ERA treatment in patients that might have overlapping beneficial effect with ERA—a
phenomenon that obviously cannot be found in the animal models that only received ERA.
Another possible explanation is that the differences in ERA treatment effects (and side
effects) between humans and rodents or other animals used as experimental models were
physiologically significant enough to elicit unwanted side effects in other untargeted organs
only in humans. As such, novel modes of therapy are needed to properly address the need
to alter the effects of endothelin on HF. Encouragingly, several clinical studies are being
conducted to analyze the perceived “gap” in endothelin importance in HF pathophysiology
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and the ineffectiveness of ERA (NCT 02319590, NCT02124824), with the hope that novel
strategies can be implemented to counter the dysfunction of endothelin system in HF. At the
same time, treating the phenomenon that is associated with endothelin system activation,
such as targeting the inflammation of interleukins, could be beneficial as an alternative.

3.4. Atherosclerosis, Acute Coronary Syndrome and Coronary Artery Disease
3.4.1. Endothelin and Coronary Artery Pathologies

Endothelin has also been implicated in the pathophysiology of atherosclerosis and
other CAD, including, but not limited to, vasospastic angina, microvascular angina,
prinzmetal angina, and Takotsubo syndrome [2,217–219]. Specifically pertaining to
atherosclerosis, the relation of the classical risk factors to develop atherosclerosis (diabetes,
obesity, smoking, arterial hypertension) with an increased level of endothelin, specifically
ET-1, has demonstrated the correlation between ET-1 and atherosclerosis [220]. ET-1 is
also found with increased expression at various sites and cells of atheroma plaques, such
as in fresh coronary thrombi of patients with ST-segment elevation myocardial infarction
(STEMI) and vascular smooth muscle cells of atherosclerotic coronary arteries [217,221].
The ischemia–reperfusion injury mice model via coronary artery ligation and reperfusion
also revealed an increase in plasma ET-1 levels after injury, while the blockade of ETA could
attenuate the myocardial injury via NO-related mechanism [222]. More recently, the ERA
tezosentan was also found to be effective in attenuating ischemia–reperfusion-induced left
ventricular remodeling in rats [223].

Endothelin also plays a role in immune cells and immunological processes that corre-
late with the formation of atherosclerotic plaques. ET-1 is known to be pro-inflammatory
because of its ability to activate macrophages and release inflammatory cytokines, including
TNF-α, IL-6, and IL-1β, while also increasing adhesion molecule expression and stimulat-
ing neutrophil aggregation [224]. These effects actually cause a reciprocal induction of ET-1,
specifically from the pro-inflammatory cytokines, causing a vicious inflammatory cycle
that promotes further vascular injury, thereby promoting atherosclerosis [217,225]. This
was confirmed in an in vivo model of high-fat diet-induced atherosclerotic ApoE knockout
mice, where overexpression of endothelin ET-1 led to the exacerbation of atherosclerotic
lesions and, concurrently, an inflammatory phenotype [226]. This inflammatory phenotype
also extends in the event of acute myocardial infarction. As inflammatory cytokines and
inflammasomes, such as IL-6, IL-1β, or NLRP3, has been established to be major players in
the condition of acute myocardial infarction, and ET-1, as has been mentioned previously,
correlates strongly with inflammation, both as an inducer of cytokine expression and as
one of the secreted factors after exposure to inflammation [208,227].

During the formation of the atherosclerotic plaque or during the infarction event,
endothelin also plays a role in the post-infarction process of left ventricular repair and
remodeling. In relation to the previously mentioned chronic HF due to myocardial injury,
there is also evidence of endothelin involvement in the acute post-infarction phase of my-
ocardial remodeling. Specifically, it is implied in the EPHESUS study that an elevation of
bigET-1 could be found in the post-infarcted heart [228]. In the animal model, it has already
been known that ET-1 levels in the early days of post-infarction correlate with left ventricu-
lar remodeling. Interestingly, while the blockade of ET receptors could prove beneficial
to attenuate left ventricular remodeling and improve its function post-infarction, as previ-
ously mentioned, another study showed that the very early blockade of the same receptors
could paradoxically aggravates left ventricular remodeling, implying the importance of
endothelin system activation in the acute post-infarction response of the heart [196,229].
Molecularly, some of the molecular pathways previously mentioned in other sections of this
review, such as NO, RAAS, and inflammatory pathways, among others, are both important
and closely related to endothelin system activity, particularly to ET-1 [230–232]. As such, it
is clear that endothelin has also been extensively studied in the field of CAD and it is an
important pathway to tackle this condition.
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3.4.2. Clinical Application of Endothelin in Coronary Artery Disease

In the clinical setting, many studies have found a correlation between ET-1 and CAD
and atherosclerosis [221]. A recent study found that high ET-1 levels are increased in
atherosclerotic arteries and could reflect the severity of three-vessel disease [233]. Simi-
larly, another study found that big ET-1 levels were increased in patients with CAD [234].
Furthermore, in patients undergoing CABG, ET-1 is known to be elevated in patients with
diabetes compared with non-diabetic patients [235]. Meanwhile, a clinical trial evaluating
eplerenone (EPHESUS), which is known to have anti-inflammatory capability, found that
blood levels of bigET-1 could also be reduced by eplerenone treatment [228]. The role
of ET-1 in left ventricular remodeling post-infarction is also confirmed by the elevation
of its plasma level in the acute post-myocardial infarction phase of patients with acute
myocardial infarction [236]. In addition to the peptide, its enzyme, ECE-1, is also found
to increase in various cells in atherosclerotic plaques, including endothelial cells, smooth
muscle cells, macrophages, and the fibrous cap of the plaque, while this increase in ECE-1
is thought to be functionally relevant [237,238]. Interestingly, there are different effects
of the dual ET receptor blockade and the ETA-specific blockade in the peripheral and
coronary arteries. In contrast, in the peripheral arteries (in the case of the study conducted
by Rafnsson et al.), forearm vasodilation could be best achieved by the dual ET receptor
blockade; in coronary arteries, the ETA-specific blockade interestingly showed the most
effective vasodilation [239,240]. This can, in part, explain the varying degrees of success
ERA has in CAD.

Clinical trials involving ERAs in CAD include ENDORA, whereby ambrisentan
treatment in NSTEMI/ACS could reduce neutrophil overactivation and hs-troponin-T
levels [241]. In contrast, no effects of ERA were found in acute coronary syndrome accom-
panying HF, as shown by the RITZ series of trials mentioned above. In the RITZ-4 trial,
the investigators focused on the use of tezosentan in the case of acute coronary syndrome-
related acute heart failure [242]. Unfortunately, no apparent benefit could be found after
tezosentan in comparison with placebo, and this trial dims the hope of tezosentan usage
in acute coronary syndrome. Taken together with the results of the studies of ERA in HF,
although it is unfortunate that the potential of endothelin as a treatable pathway has not
been fully realized, it is encouraging to observe that there are specific groups of patients
that could benefit from ERA treatment. Furthermore, recent advances in anti-inflammatory
therapy, such as the interleukin-targeting canakinumab and anakinra, gives hope that
endothelin system dysfunction could be treated through the alleviation of inflammatory
phenotype [208]. Even so, further studies are still warranted to analyze the specific popula-
tions that benefit from ERA treatment in addition to devising new strategies to combat the
dysfunction of this pathway.

3.5. Others
3.5.1. Cardiac Arrythmia

Although less evidence can be seen in comparison with other conditions, endothelin
also appears to play a role in several arrhythmias. The ET-1/ETA axis has been shown to
possess arrhythmogenic potential in various studies of cardiomyocytes through several
proposed mechanisms, such as its ability to handle intracellular Ca2+ and MMP9-derived
pro-fibrotic activity [243,244]. Atrial fibrillation, for instance, is a condition in which ET-1
and its precursor big ET-1 were found to be elevated, while the arrhythmogenic activity of
the pulmonary veins could also be controlled by ET-1 [245–247]. In the case of ventricular
arrythmia, ET-1 gene polymorphism has been identified as a risk factor in having a worse
hemodynamic outcome during a ventricular arrythmia episode [248]. On the contrary, a
study in isolated rat cardiomyocytes could not prove that ET-1 has a direct role in causing
the arrhythmogenic properties in the ventricle [249]. In short, arrhythmia is a pathological
condition where endothelin could be intervened and studied in the future.
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3.5.2. Antiangiogenic Treatment Adverse Effects

Antiangiogenic drugs, such as vascular endothelial growth factor (VEGF) inhibitors,
have been increasingly used as treatment options to fight several forms of cancer in recent
times [250]. One of its adverse events is VEGF inhibition-related hypertension [34,250].
The endothelin system has been previously related to the VEGF pathway, in which the
blockade of ET receptors could improve ischemia through the VEGF-NO pathway [251].
Clinically, an increase in ET-1 plasma levels was observed after VEGF inhibition [252]. The
ENDEAVOUR trial (NCT 03557190) that analyzed the use of ERA after treatment with
VEGF inhibitor has been completed; however, to the best of the authors’ knowledge, no
results have been published yet. We hope that endothelin could be a viable alternative to
treat this specific inducer of hypertension.

3.5.3. Peripheral Artery Disease

Endothelin has also been found to be involved in the peripheral artery disease develop-
ment. Of note, in patients with peripheral artery disease, the blood levels of ET-1 are found
to increase [253]. In the clinical setting recently, a clinical trial (the CLAU trial) indicated
the possible effectiveness of ERA in treating peripheral artery disease [254,255]. In this case,
bosentan was administered to patients with intermittent claudication for 12 weeks, and
both the initial and four-year follow-up results indicated that bosentan treatment could
be effective in improving the claudication distance, C-reactive protein (CRP) levels, and
flow-mediated arterial dilation in a select group of patients with low-to-mild stages of PAD
with low risk of severe adverse effects [254,255].

4. Future Perspectives

Dysregulation of the endothelin pathway has been identified as a cause of various
diseases. Targeting ETA/ETB receptors or their effectors has emerged as the long-term goal
of developing new therapies. Over the last few decades, the development of molecular
orthosteric and allosteric ligands has been the central focus of endothelin research. Notably,
several emerging novel modalities targeting these receptors have been identified, such as
pepducins, aptamers, and antibodies.

4.1. Allosteric Modulators

Allosteric modulators are molecules that can alter the biological activity of receptors
through distinct binding sites of endogenous ligands. Currently, ET receptor antagonist-
related adverse effects have been reported, including the risk of embryonic–fetal toxicity
due to the blocking action of ET1. Allosteric modulation that reduces, but does not block, the
action of ET1 may offer advantages in this regard [256,257]. The first allosteric modulator
was identified in 2000, but there were no allosteric modulators that underwent a clinical
trial phase until recently [258,259].

4.2. Peptide-Based Biased ET Receptor Signaling

Recently, in the field of G-protein-coupled receptor (GPCR) research, targeting specific
downstream pathways, such as G protein or β-arrestin, via biased orthosteric ligands
and/or allosteric modulators, holds a novel paradigm for targeted drug development, as
depicted in Figure 3 [260]. This concept has been explored in the cardiovascular field for
angiotensin II type 1 receptor (AT1R). The downstream G-protein signaling of AT1R is
considered cardio-deleterious, whereas β-arrestin has cardioprotective properties. Targeted
novel agonists of AT1R β-arrestin, such as TRV027, have been investigated for heart failure
treatment [261,262].

Unfortunately, molecules related to ET-biased signaling have not been explored previ-
ously. However, the distinct downstream signaling properties of ET receptors offer a potential
explanation for ineffective ET antagonists in cancer treatment, despite numerous studies
proving that the endothelin system axis plays a significant role in cancer pathogenesis [263].
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Allosteric modulators are molecules that can alter the biological activity of receptors 
through distinct binding sites of endogenous ligands. Currently, ET receptor antagonist-

related adverse effects have been reported, including the risk of embryonic–fetal toxicity 
due to the blocking action of ET1. Allosteric modulation that reduces, but does not block, 
the action of ET1 may offer advantages in this regard [256,257]. The first allosteric modu-

lator was identified in 2000, but there were no allosteric modulators that underwent a 
clinical trial phase until recently [258,259]. 

4.2. Peptide-Based Biased ET Receptor Signaling 

Recently, in the field of G-protein-coupled receptor (GPCR) research, targeting spe-

cific downstream pathways, such as G protein or -arrestin, via biased orthosteric ligands 
and/or allosteric modulators, holds a novel paradigm for targeted drug development, as 

depicted in Figure 3. [260]. This concept has been explored in the cardiovascular field for 
angiotensin II type 1 receptor (AT1R). The downstream G-protein signaling of AT1R is 

considered cardio-deleterious, whereas -arrestin has cardioprotective properties. Tar-
geted novel agonists of AT1R -arrestin, such as TRV027, have been investigated for heart 
failure treatment [261,262]. 

Unfortunately, molecules related to ET-biased signaling have not been explored pre-
viously. However, the distinct downstream signaling properties of ET receptors offer a 

potential explanation for ineffective ET antagonists in cancer treatment, despite numerous 
studies proving that the endothelin system axis plays a significant role in cancer patho-
genesis [263]. 

 

Figure 3. Pharmacologic mechanism of biased G-protein-coupled receptor signaling. 
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Pepducins are synthetic, short, cell-penetrating peptides derived from the three in-
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pepducins is lipidated to support the transfer process between the cell membrane and 
anchor the peptide. Once inside the cell, pepducins stabilize receptor conformations, 

Figure 3. Pharmacologic mechanism of biased G-protein-coupled receptor signaling.

4.3. Pepducins/Cell-Penetrating Peptides

Pepducins are synthetic, short, cell-penetrating peptides derived from the three in-
tracellular loops or the C-terminal tail of GPCR and ETA/ETB receptors. The N-terminus
of pepducins is lipidated to support the transfer process between the cell membrane and
anchor the peptide. Once inside the cell, pepducins stabilize receptor conformations, which
may stimulate or inhibit intracellular signaling [46,264]. Previous studies have revealed that
these pepducins can modulate ET1 signaling capabilities and ameliorate hypoxic-induced
pulmonary hypertension in rats [265,266].

4.4. Antibody against ET Receptors

Therapeutic vaccines are novel modalities used for the treatment of chronic diseases,
including cardiovascular diseases. Compared with small-molecule drugs, vaccines and
antibodies have several advantages. First, the ability of therapeutic antibodies to target
antigens is highly specific, resulting in higher efficacy and reduced side effects. Second, the
serum half-life of antibodies is relatively high, affecting the frequency of administration
and improving patient compliance [267].

Preclinical studies of vaccine-targeting ETA receptors, getagozumab, have shown
promising results for the treatment of hypoxia-induced and monocrotaline (MCT)-induced
pulmonary arterial hypertension (PAH) in monkey models. Currently, getagozumab is in
phase 1b clinical trials [268]. In addition, a monoclonal antibody against ETA receptors
(ETRQβ-002 vaccine/mAb) has been developed to effectively ameliorate pulmonary arterial
hypertension (PAH) in MCT-treated and SUGEN–hypoxia-induced animal models, with
satisfactory safety properties [269,270]. Similar to ETA receptors, antibodies targeting ETB
receptors, such as Rendomab-B1 and Rendomab-B4, are also available for cancer treatment,
particularly for melanoma [46].

4.5. ET-1 Traps

Endothelin-1 traps or ET traps are molecular constructs composed of molecules that
potently bind to ET-1 fused to the Fc portion of human immunoglobulin (Ig)-G1. ET traps
have shown potential therapeutic effects in in vitro and diabetic animal models. ET trap
administration can have beneficial effects on diabetic target organs, such as the heart and
kidney. In addition, ET traps were not immunogenic and did not exhibit any adverse
effects. Therefore, the ET trap is an attractive target for further therapeutic development of
disease-associated pathological ET-1 [271,272].
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5. Conclusions

Endothelin is a vital peptide with three isoforms and was originally identified as a
potent vasoconstrictor. In subsequent years, the wide array of influences that the endothelin
system can affect has led to evidence that demonstrates the importance of endothelin in
various cardiovascular diseases, including hypertension, PH, HF, and CAD, among others.
Consequently, strategies have been, and are currently being, developed to improve the
ways that clinicians can target this pathway. Although significant progress has been made
in the 35 years since the discovery of endothelin, many questions remain in this field,
and further studies are encouraged to fully realize the potential of targeting endothelin in
cardiovascular diseases.
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